The Structure of the Tunguska Comet

Olga G. Gladysheva

Ioffe Institute, Politekhnicheskaya st. 26, St. Petersburg, 194021, Russia

DOI: https://doi.org/10.36956/eps.v3i1.924

Received: 12 August 2023; Received in revised form: 13 December 2023; Accepted: 18 December 2023; Published: 28 December 2023

Copyright © 2024 Author(s). Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

The collision of the Tunguska cosmic body with the Earth occurred more than a hundred years ago. However, the question of the nature of the cosmic body is still being actively discussed. Here, the author demonstrated that the Tunguska cosmic body was indeed a comet, the nucleus of which had a layered structure separated by gas-tight closed partitions. Thanks to these partitions, comets can penetrate the dense layers of the atmosphere, breaking up and losing layers one by one. Here, the author shows that the Tunguska body could have been decelerated by the atmosphere, in which case the explosion above the epicentre would have been a volumetric explosion of a mixture of dispersed cosmic matter and atmospheric oxygen. The author proposes one of the possible methods for the formation of cometary nuclei with partitions at the early stages of the evolution of a protoplanetary nebula.

Keywords: Tunguska cosmic body, Comet structure, Formation of cometary nuclei


References

[1] Fesenkov, V.G., 1969. Nature of comets and the Tunguska phenomenon. Solar System Research. 3, 177–179.

[2] Whipple, F.L., 1975. Do comets play a role in galactic chemistry and gamma-ray bursts. The Astronomical Journal. 80, 525–531.

[3] Kresak, L., 1978. The Tunguska object: A fragment of comet Encke. Bulletin Astronomical Institutes of Czechoslovakia. 29(3), 129–134.

[4] Bronshten, V.A., 1983. Physics of meteoric phenomena. Springer Dordrecht: Reidel.

[5] Sekanina, Z., 1983. The Tunguska event-No cometary signature in evidence. Astronomical Journal. 88, 1382–1413.

[6] Chyba, C.F., Thomas, P.J., Zahnle, K.J., 1993. The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature. 361(6407), 40–44. DOI: https://doi.org/10.1038/361040a0

[7] Svetsov, V.V., 1996. Total ablation of the debris from the 1908 Tunguska explosion. Nature. 383(6602), 697–699. DOI: https://doi.org/10.1038/383697a0

[8] Shuvalov, V.V., Artemieva, N.A., 2002. Numerical modeling of Tunguska-like impacts. Planetary and Space Science. 50(2), 181–192. DOI: https://doi.org/10.1016/S0032-0633(01)00079-4

[9] Florenskii, K.P., 1963. Preliminary results of the Tunguska meteorite complex expedition in 1961. Meteoritika. (23), 3–29.

[10] Boyarkina, A.P., Vasiliev, N.V., Menavtseva, T.A., et al. 1976. To assess the substance of the Tunguska meteorite at the epicenter of the explosion. Cosmic matter on Earth. Novosibirsk: Nauka. pp. 8–15. (in Russian).

[11] Grigorian, S.S., 1976. On the question of Tunguska meteorite nature. Academy of Sciences USSR. 231. 57–60. (in Russian).

[12] Grigorian, S.S., 1998. The cometary nature of the Tunguska meteorite: On the predictive possibilities of mathematical models. Planetary and Space Science. 46(2–3), 213–217. DOI: https://doi.org/10.1016/S0032-0633(97)00110-4

[13] Stulov, V.P., 1998. Gasdynamical model of the Tunguska fall. Planetary and Space Science. 46(2–3), 253–260. DOI: https://doi.org/10.1016/S0032-0633(97)00082-2

[14] Zotkin, I.T., 1969. Anomalous twilight associated with the Tunguska meteorite. Meteoritika. 29, 170–176. (in Russian).

[15] Bronshtehn, V.A., Zotkin, I.T., 1995. Tunguska meteorite: Fragment of a comet or an asteroid. Astronomicheskii Vestnik. 29(3), 278–283.

[16] Jopek, T.J., Froeschlé, C., Gonczi, R., et al., 2008. Searching for the parent of the Tunguska cosmic body. Earth, Moon, and Planets. 102, 53–58. DOI: https://doi.org/10.1007/s11038-007-9156-4

[17] Sekanina, Z., 1998. Evidence for asteroidal origin of the Tunguska object. Planetary and Space Science. 46(2–3), 191–204. DOI: https://doi.org/10.1016/S0032-0633(96)00154-7

[18] Krinov, E.L., 1966. Giant meteorites. Pergamon: Oxford. pp. 397.

[19] Levin, B.Y., Bronshten, V.A., 1986. The Tunguska event and the meteors with terminal flares. Meteoritics. 21(2), 199–215. DOI: https://doi.org/10.1111/j.1945-5100.1986.tb01242.x

[20] Krinov, E.L., 1950. Heavenly stones (meteorites). Publishing House of the Academy of Sciences of the USSR: M.L. pp. 80. (in Russian).

[21] Brown, P.G., Assink, J.D., Astiz, L., et al., 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature. 503(7475), 238–241. DOI: https://doi.org/10.1038/nature12741

[22] Tancredi, G., Ishitsuka, J., Schultz, P.H., et al., 2009. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteoritics & Planetary Science. 44(12), 1967–1984. DOI: https://doi.org/10.1111/j.1945-5100.2009.tb02006.x

[23] L’vov, Yu.A., 1984. Carbon in composition of Tunguska meteorite. Meteorite investigations in Siberia. Nauka: Novosibirsk. pp. 83–88.

[24] Kolesnikov, E.M., Boettger, T., Kolesnikova, N.V., 1999. Finding of probable Tunguska Cosmic Body material: Isotopic anomalies of carbon and hydrogen in peat. Planetary and Space Science. 47(6–7), 905–916. DOI: https://doi.org/10.1016/S0032-0633(99)00006-9

[25] Gladysheva, O., 2020. The Tunguska event. Icarus. 348, 113837. DOI: https://doi.org/10.1016/j.icarus.2020.113837

[26] Rasmussen, K.L., Olsen, H.J., Gwozdz, R., et al., 1999. Evidence for a very high carbon/iridium ratio in the Tunguska impactor. Meteoritics & Planetary Science. 34(6), 891–895. DOI: https://doi.org/10.1111/j.1945-5100.1999.tb01407.x

[27] Kolesnikov, E.M., 1982. Isotopic anomalies in H and C from peat from the site of the fall of the Tunguska meteorite. Reports of the Academy of Sciences of the USSR. 266(4), 993–995. (in Russian).

[28] Hou, Q.L., Kolesnikov, E.M., Xie, L.W., et al., 2000. Discovery of probable Tunguska cosmic body material: Anomalies of platinum group elements and rare-earth elements in peat near the Explosion Site (1908). Planetary and Space Science. 48(15), 1447–1455. DOI: https://doi.org/10.1016/S0032-0633(00)00089-1

[29] Kolesnikov, E.M., Hou, Q.L., Xie, L.W., et al., 2005. Finding of probable Tunguska Cosmic Body material: Anomalies in platinum group elements in peat from the explosion area. Astronomical & Astrophysical Transactions. 24(2), 101–111. DOI: https://doi.org/10.1080/10556790500085678

[30] Kolesnikov, E.M., Kolesnikova, N.V., 2010. Traces of cometary material in the area of the Tunguska impact (1908). Solar System Research. 44, 110–121. DOI: https://doi.org/10.1134/S0038094610020048

[31] Huebner, W.F., 2000. Composition of comets: Observations and models. Earth, Moon, and Planets. 89, 179–195. DOI: https://doi.org/10.1023/A:1021506821862

[32] Gladysheva, O.G., 2022. Was there an upward atmospheric discharge in the Tunguska catastrophe? Journal of Atmospheric and Solar-Terrestrial Physics. 236, 105909. DOI: https://doi.org/10.1016/j.jastp.2022.105909

[33] Gladysheva, O.G., 2021. Fragmentation of the Tunguska cosmic body. Planetary and Space Science. 200, 105211. DOI: http://dx.doi.org/10.1016/j.pss.2021.105211

[34] Kissel, J., Krueger, F., 1987. The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature. 326(6115), 755–760. DOI: https://doi.org/10.1038/326755a0

[35] Greenberg, J.M., 2002. Cosmic dust and our origins. Surface Science. 500(1–3), 793–822. DOI: https://doi.org/10.1016/S0039-6028(01)01555-2

[36] Küppers, M., Bertini, I., Fornasier, S., et al., 2005. A large dust/ice ratio in the nucleus of comet 9P/Tempel 1. Nature. 437(7061), 987–990. DOI: https://doi.org/10.1038/nature04236

[37] Öpik, E.J., 1958. Physics of meteor flight in the atmosphere. Interscience Publishers, Inc.: New York.

[38] Simonenko, A.N., 1973. On the hypothesis of the fragmentation of meteoric bodies by separating small particles. Meteoritics. 32, 50–64.

[39] Longo, G., Serra, R., Cecchini, S., et al., 1994. Search for microremnants of the Tunguska Cosmic Body. Planetary and Space Science. 42(2), 163–177. DOI: https://doi.org/10.1016/0032-0633(94)90028-0

[40] Alekseev, V.A., 1998. New aspects of the Tunguska meteorite problem. Planetary and Space Science. 46(2–3), 169–177. DOI: https://doi.org/10.1016/S0032-0633(97)00173-6

[41] Groussin, O., Hahn, G., Lamy, P.L., et al., 2007. The long-term evolution and initial size of comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society. 376(3), 1399–1406. DOI: https://doi.org/10.1111/j.1365-2966.2007.11553.x

[42] Pajola, M., Vincent, J.B., Güttler, C., et al., 2015. Size-frequency distribution of boulders ≥ 7 m on comet 67P/Churyumov-Gerasimenko. Astronomy & Astrophysics. 583, A37. DOI: https://doi.org/10.1051/0004-6361/201525975

[43] Gladysheva, O.G., 2020. Swarm of fragments from the Tunguska event. Monthly Notices of the Royal Astronomical Society. 496(2), 1144–1148. DOI: https://doi.org/10.1093/mnras/staa1620

[44] Belton, M.J., Thomas, P., Veverka, J., et al., 2007. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model. Icarus. 187(1), 332–344. DOI: https://doi.org/10.1016/j.icarus.2006.09.005

[45] Pokrovsky, G.I., 1966. Hydrodynamics of high speeds. Znanie: Moscow. pp. 48. (in Russian).

[46] Altenhoff, W.J., Kreysa, E., Menten, K.M., et al., 2009. Why did Comet 17P/Holmes burst out?-Nucleus splitting or delayed sublimation? Astronomy & Astrophysics. 495(3), 975–978. DOI: https://doi.org/10.1051/0004-6361:200810458

[47] Naumenko, T.N., 1941. Observation of the flight of the Tunguska meteorite. Meteoritika. 2, 19–120. (in Russian).

[48] The Journal of Interrogation of Eyewitnesses of the TM Fall along r. Angara from Bratsk to Irkutsk in June 1969 [Internet] [cited 2011 Nov 11]. Available from: https://tunguska.tsc.ru/ru/science/mat/oche/1-30/d-024/ (in Russian).

[49] Gladysheva, O.G., 2013. Eyewitnesses about the Tunguska cosmic body. Acta Geodaetica et Geophysica. 48, 1–7. DOI: https://doi.org/10.1007/s40328-012-0002-4

[50] Zolotov, A.V., 1967. Estimation of parameters of the Tunguska cosmic body according to new data. Reports of the Academy of Sciences of the USSR. 172(5), 1049–1052.

[51] Zolotov, A.V., 1969. The problem of the Tunguska catastrophe of 1908. Nauka and Technology: Minsk. pp. 204.

[52] Chyba, C.F., Thomas, P.J., Brookshaw, L., et al., 1990. Cometary delivery of organic molecules to the early Earth. Science. 249(4967), 366–373. DOI: https://doi.org/10.1126/science.11538074

[53] Bernstein, M.P., Sandford, S.A., Allamandola, L.J., et al., 1995. Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol. The Astrophysical Journal. 454, 327–344. DOI: https://doi.org/10.1086/176485

[54] Strazzulla, G., Baratta, G.A., Palumbo, M.E., 2001. Vibrational spectroscopy of ion-irradiated ices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 57(4), 825–842. DOI: https://doi.org/10.1016/S1386-1425(00)00447-9

[55] Schutte, W.A., Allamandola, L.J., Sandford, S.A., 1993. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus. 104(1), 118–137. DOI: https://doi.org/10.1006/icar.1993.1087

[56] Flynn, G.J., Wirick, S., Keller, L.P., 2013. Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula. Earth, Planets and Space. 65, 1159–1166. DOI: https://doi.org/10.5047/eps.2013.05.007

[57] Ferrín, I., Orofino, V., 2021. Taurid complex smoking gun: Detection of cometary activity. Planetary and Space Science. 207, 105306. DOI: https://doi.org/10.1016/j.pss.2021.105306