Some Remarks about Asteroid Impact Triggered “Bioaerosol” Escape during a Putative Microbial Exchange between Early Earth and Mars
Laboratory of Exo-Oceanography, Faculty of Oceanology, Kobe University, 5-1-1 Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
DOI: https://doi.org/10.36956/eps.v2i2.860
Received: 17 May 2023; Revised: 28 June 2023; Accepted: 30 June 2023; Published Online: 10 July 2023
Copyright © 2023 Author(s). Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
In general, Panspermia theory discusses the possibility of the spread of life in the universe. The migration of living organisms between planets is crucial in such a “fertilization” process. This study focuses on one particular case and phase of such migration: the possible material transport between the early Earth and Mars with a focus on the phase of escape, i.e., the ejection of a microorganism-containing material into space. Specific characteristics of asteroid impacts and one of the possible processes, which may be able to transfer microorganisms to space, were investigated. The comparison of the terrestrial and Martian paleoenvironment showed that theoretically, early Mars, similar to Earth, might allow biological evolution and might be able to harbor life. Determining various pressure zones regarding the survivability of the mechanical compression in the case of an impact and the characterization of specific physical parameters of the ejected debris lead to the identification of the pressure—mass/size conflict and the conclusion, which indicates two possible ways of material escape. The possibly “common” and known way is the material ejection close to ground zero. It guarantees big enough debris to protect its passengers during their travel. Still, the survival rate at/close to ground zero is supposedly low, and the heat and overpressure-related compression may sterilize the material even before boarding. An alternative way, discussed in this study, provides a higher chance of survival further from the impact center. Still, the possibility of the ejectile reaching the escaping velocity and the minimum required size is low. Although solving such a problem is out of the scope of this manuscript, searching for an ideal combination of various parameters is a possible challenge for future studies.
Keywords: Early Earth; Early Mars; Panspermia; Escape phase; Asteroid impact
References
[1] Crick, F.H., Orgel, L.E., 1973. Directed panspermia. Icarus. 19(3), 341-346. DOI: https://doi.org/10.1016/0019-1035(73)90110-3
[2] Mautner, M., 1979. Directed panspermia: A technical evaluation of seeding nearby solar systems. Journal of British Interplanetary Society. 32, 419-422.
[3] Rampelotto, P.H. (editor), 2010. Panspermia: A promising field of research. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond; 2010 Apr 20-26; League City, Texas.
[4] Kawaguchi, Y., 2019. Panspermia hypothesis: History of a hypothesis and a review of the past, present, and future planned missions to test this hypothesis. Astrobiology. Springer: Singapore. 419-428. DOI: https://doi.org/10.1007/978-981-13-3639-3_27
[5] Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., et al., 2000. Natural transfer of viable microbes in space: 1. From Mars to Earth and Earth to Mars. Icarus. 145(2), 391-427. DOI: https://doi.org/10.1006/icar.1999.6317
[6] Bottke, W.F., Andrews-Hanna, J.C., 2017. A post-accretionary lull in large impacts on early Mars. Nature Geoscience. 10(5), 344-348. DOI: https://doi.org/10.1038/ngeo2937
[7] Canup, R.M., Asphaug, E., 2001. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature. 412(6848), 708-712. DOI: https://doi.org/10.1038/35089010
[8] Robbins, S.J., Hynek, B.M., Lillis, R.J., et al., 2013. Large impact crater histories of Mars: The effect of different model crater age techniques. Icarus. 225(1), 173-184. DOI: https://doi.org/10.1016/j.icarus.2013.03.019
[9] Andrews-Hanna, J., Bottke, W.B. (editors), 2017. Mars during the pre-Noachian. Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life; 2017 Oct 2-6; Flagstaff, Arizona.
[10] Carter, J., Poulet, F., Bibring, J.P., et al., 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets. 118(4), 831-858. DOI: https://doi.org/10.1029/2012JE004145
[11] Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al., 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature. 479(7371), 53-60. DOI: https://doi.org/10.1038/nature10582
[12] Wordsworth, R.D., 2016. The climate of early Mars. Annual Review of Earth and Planetary Sciences. 44, 381-408. DOI: https://doi.org/10.1146/annurev-earth-060115-012355
[13] Camprubí, E., De Leeuw, J.W., House, C.H., et al., 2019. The emergence of life. Space Science Reviews. 215, 1-53. DOI: https://doi.org/10.1007/s11214-019-0624-8
[14] Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a habitable planet. Space Science Reviews. 129, 35-78. DOI: https://doi.org/10.1007/s11214-007-9225-z
[15] Grott, M., Morschhauser, A., Breuer, D., et al., 2011. Volcanic outgassing of CO2 and H2O on Mars. Earth and Planetary Science Letters. 308(3-4), 391-400. DOI: https://doi.org/10.1016/j.epsl.2011.06.014
[16] Benner, S.A., Bell, E.A., Biondi, E., et al., 2020. When did life likely emerge on Earth in an RNA-first process? Chem Systems Chem. 2(2), e1900035. DOI: https://doi.org/10.1002/syst.201900035
[17] McKay, D.S., Gibson Jr, E.K., Thomas-Keprta, K.L., et al., 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science. 273(5277), 924-930. DOI: https://doi.org/10.1126/science.273.5277.924
[18] Bradley, J.P., Harvey, R.P., McSween Jr, H.Y., et al., 1997. No ‘nanofossils’ in martian meteorite. Nature. 390(6659), 454-455. DOI: https://doi.org/10.1038/37257
[19] Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., et al., 2000. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils. Geochimica et Cosmochimica Acta. 64(23), 4049-4081. DOI: https://doi.org/10.1016/S0016-7037(00)00481-6
[20] Friedmann, E.I., Wierzchos, J., Ascaso, C., et al., 2001. Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin. Proceedings of the National Academy of Sciences. 98(5), 2176-2181. DOI: https://doi.org/10.1073/pnas.051514698
[21] Steele, A., Benning, L.G., Wirth, R., et al., 2022. Organic synthesis associated with serpentinization and carbonation on early Mars. Science. 375(6577), 172-177. DOI: https://doi.org/10.1126/science.abg7905
[22] Borg, L.E., Connelly, J.N., Nyquist, L.E., et al., 1999. The age of the carbonates in Martian meteorite ALH84001. Science. 286(5437), 90-94. DOI: https://doi.org/10.1126/science.286.5437.90
[23] Boehnke, P., Harrison, T.M., 2016. Illusory late heavy bombardments. Proceedings of the National Academy of Sciences. 113(39), 10802-10806. DOI: https://doi.org/10.1073/pnas.1611535113
[24] Bottke, W.F., Norman, M.D., 2017. The late heavy bombardment. Annual Review of Earth and Planetary Sciences. 45, 619-647. DOI: https://doi.org/10.1146/annurev-earth-063016-020131
[25] Toon, O.B., Zahnle, K., Morrison, D., et al., 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics. 35(1), 41-78. DOI: https://doi.org/10.1029/96RG03038
[26] Baker, V.R., Strom, R.G., Gulick, V.C., et al., 1991. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature. 352(6336), 589-594. DOI: https://doi.org/10.1038/352589a0
[27] Carr, M.H., Head III, J.W., 2010. Geologic history of Mars. Earth and Planetary Science Letters. 294(3-4), 185-203. DOI: https://doi.org/10.1016/j.epsl.2009.06.042
[28] Ryder, G., Koeberl, C., Mojzsis, S.J., 2000. Heavy bombardment of the Earth at ~3.85 Ga: The search for petrographic and geochemical evidence. Origin of the Earth and Moon. University of Arizona Press: Tucson. pp. 475-492. DOI: https://doi.org/10.2307/j.ctv1v7zdrp.30
[29] Barlow, N.G., 2010. What we know about Mars from its impact craters. Bulletin. 122(5-6), 644-657. DOI: https://doi.org/10.1130/B30182.1
[30] Rapin, W., Dromart, G., Rubin, D., et al., 2021. Alternating wet and dry depositional environments recorded in the stratigraphy of Mount Sharp at Gale crater, Mars. Geology. 49(7), 842-846. DOI: https://doi.org/10.1130/G48519.1
[31] Rodriguez, J.A.P., Fairén, A.G., Tanaka, K.L., et al., 2016. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Scientific Reports. 6(1), 1-8. DOI: https://doi.org/10.1038/srep25106
[32] Costard, F., Séjourné, A., Lagain, A., et al., 2019. The Lomonosov crater impact event: A possible mega-tsunami source on Mars. Journal of Geophysical Research: Planets. 124(7), 1840-1851. DOI: https://doi.org/10.1029/2019JE006008
[33] Turbet, M., Forget, F., 2019. The paradoxes of the Late Hesperian Mars ocean. Scientific Reports. 9(1), 5717. DOI: https://doi.org/10.1038/s41598-019-42030-2
[34] Gladman, B., Dones, L., Levison, H.F., et al., 2005. Impact seeding and reseeding in the inner solar system. Astrobiology. 5(4), 483-496. DOI: https://doi.org/10.1089/ast.2005.5.483
[35] Van Eaton, A.R., Harper, M.A., Wilson, C.J., 2013. High-flying diatoms: Widespread dispersal of microorganisms in an explosive volcanic eruption. Geology. 41(11), 1187-1190.
[36] Mandon, L., Quantin-Nataf, C., Thollot, P., et al., 2020. Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus. 336, 113436. DOI: https://doi.org/10.1016/j.icarus.2019.113436
[37] Whelley, P., Matiella Novak, A., Richardson, J., et al., 2021. Stratigraphic evidence for early martian explosive volcanism in Arabia Terra. Geophysical Research Letters. 48(15), e2021GL094109. DOI: https://doi.org/10.1029/2021GL094109
[38] de Kock, M.O., Evans, D.A., Beukes, N.J., 2009. Validating the existence of Vaalbara in the Neoarchean. Precambrian Research. 174(1-2), 145-154. DOI: https://doi.org/10.1016/j.precamres.2009.07.002
[39] Mole, D.R., Fiorentini, M.L., Thebaud, N., et al., 2014. Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Sciences. 111(28), 10083-10088. DOI: https://doi.org/10.1073/pnas.1400273111
[40] Polat, A., 2012. Growth of Archean continental crust in oceanic island arcs. Geology. 40(4), 383. DOI: https://doi.org/10.1130/focus042012.1
[41] Djokic, T., Van Kranendonk, M.J., Campbell, K.A., et al., 2017. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications. 8(1), 15263. DOI: https://doi.org/10.1038/ncomms15263
[42] Kawaguchi, Y., Shibuya, M., Kinoshita, I., et al., 2020. DNA damage and survival time course of deinococcal cell pellets during 3 years of exposure to outer space. Frontiers in Microbiology. 11, 2050.
[43] Dong, J., Fischer, R.A., Stixrude, L.P., et al., 2021. Constraining the volume of Earth’s early oceans with a temperature-dependent mantle water storage capacity model. AGU Advances. 2(1), e2020AV000323. DOI: https://doi.org/10.1029/2020AV000323
[44] Schopf, J.W., Kitajima, K., Spicuzza, M.J., et al., 2018. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proceedings of the National Academy of Sciences. 115(1), 53-58. DOI: https://doi.org/10.1073/pnas.1718063115
[45] Homann, M., 2019. Earliest life on earth: Evidence from the Barberton Greenstone Belt, South Africa. Earth-Science Reviews. 196, 102888. DOI: https://doi.org/10.1016/j.earscirev.2019.102888
[46] Lepot, K., 2020. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Reviews. 209, 103296. DOI: https://doi.org/10.1016/j.earscirev.2020.103296
[47] Hibbing, M.E., Fuqua, C., Parsek, M.R., et al., 2010. Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology. 8(1), 15-25. DOI: https://doi.org/10.1038/nrmicro2259
[48] Marchi, S., Bottke, W.F., Elkins-Tanton, L.T., et al., 2014. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature. 511(7511), 578-582. DOI: https://doi.org/10.1038/nature13539
[49] Marchi, S., Drabon, N., Schulz, T., et al., 2021. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nature Geoscience. 14(11), 827-831. DOI: https://doi.org/10.1038/s41561-021-00835-9
[50] Robbins, S.J., Hynek, B.M., 2012. A new global database of Mars impact craters ≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets. 117, E05004. DOI: https://doi.org/10.1029/2011JE003966
[51] Hughes, D.W., 2003. The approximate ratios between the diameters of terrestrial impact craters and the causative incident asteroids. Monthly Notices of the Royal Astronomical Society. 338(4), 999-1003. DOI: https://doi.org/10.1046/j.1365-8711.2003.06157.x
[52] Shoemaker, E.M., Wolfe, R.F., Shoemaker, C.S., 1990. Asteroid and comet flux in the neighborhood of Earth. Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. GeoScienceWorld: McLean. pp. 155-170. DOI: https://doi.org/10.1130/SPE247-p155
[53] Armstrong, J.C., Wells, L.E., Gonzalez, G., 2002. Rummaging through Earth’s attic for remains of ancient life. Icarus. 160(1), 183-196. DOI: https://doi.org/10.1006/icar.2002.6957
[54] Vijayaraghavan, C., Thirumalaivasan, D., Venkatesan, R., 2012. A study on nuclear blast overpressure on buildings and other infrastructures using geospatial technology. Journal of Computer Science. 8(9), 1520. DOI: https://doi.org/10.3844/jcssp.2012.1520.1530
[55] Melosh, H.J., 1985. Ejection of rock fragments from planetary bodies. Geology. 13(2), 144-148. Available from: https://pubs.geoscienceworld.org/gsa/geology/article-abstract/13/2/144/188960/Ejection-of-rock-fragments-from-planetary-bodies?redirectedFrom=fulltext
[56] Wells, L.E., Armstrong, J.C., Gonzalez, G., 2003. Reseeding of early Earth by impacts of returning ejecta during the late heavy bombardment. Icarus. 162(1), 38-46. DOI: https://doi.org/10.1016/S0019-1035(02)00077-5
[57] Britt, D.T., Consolmagno, G.J.S.J., 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science. 38(8), 1161-1180. DOI: https://doi.org/10.1111/j.1945-5100.2003.tb00305.x
[58] Hazael, R., Meersman, F., Ono, F., et al., 2016. Pressure as a limiting factor for life. Life. 6(3), 34. DOI: https://doi.org/10.3390/life6030034
[59] Burchell, M.J., Mann, J.R., Bunch, A.W., 2004. Survival of bacteria and spores under extreme shock pressures. Monthly Notices of the Royal Astronomical Society. 352(4), 1273-1278. DOI: https://doi.org/10.1111/j.1365-2966.2004.08015.x
[60] Glasstone, S., Dolan, P.J., 1977. The effect of nuclear weapons. United States Department of Defense and Energy Research and Development Administration. pp. 653.
[61] Ben-dor, G., Igra, O., Elperin, T., 2001. Handbook of shock waves: Shock wave interactions and propagation. Academic Press: Cambridge. pp. 543.