Open Access


Open Hours

Mon-Fri(09:00-18:00 hrs)

Main Mechanisms of Celestial Bodies Negative Polarization Formation: A Review

Dmitry Petrov

Crimean Astrophysical Observatory (CrAO RAS), Nauchnyj, 298409, Crimea


Copyright © 2023 Author. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons License

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


The scattered light by the vast majority of celestial bodies without atmospheres has a characteristic feature: A negative branch of linear polarization degree at little phase angles. Researchers have proposed many theoretical mechanisms to explain this feature. This review describes the main mechanisms that form a negative branch of linear polarization degree. The results of ground-based observations of the negative branch of the degree of linear polarization of various objects of the solar system are described. Scattering by single particles, shadow effect, coherent backscattering enhancement, and effects of the near field are considered. The review will be useful for all researchers studying the scattering of light by celestial bodies.

Keywords: Light scattering, Degree of linear polarization, Polarization mechanisms


[1] Shkuratov, Y., Ovcharenko, A., Zubko, E., et al., 2002. The opposition effect and negative polarization of structural analogs for planetary regoliths. Icarus. 159(2), 396-416.

[2] Lyot, B., 1929. Recherches sur la polarisation de la lumiere des planetes et de queldues substances terrestres (French) [Research on the polarization of the light of planets and certain terrestrial substances]Ann Obs Meudon. 8, 1-161.

[3] Bowell, E., Dollfus, A., Geake, J.E., 1972. Polarimetric properties of the lunar surface and its interpretation. Part 5: Apollo 14 and Luna 16 lunar samples. Proceedings of the Lunar Science Conference. 3, 3103.

[4] Ovcharenko, A.A., Shkuratov, Y.G., 2000. Weak-localization effect for light backscattered by surfaces with a complex structure. Optics and Spectroscopy. 88, 253-259.

[5] Ohman Y., 1955. A tentative explanation of the polarization in diffuse reflection. Stockholm Observatory Annual. 18, 1-10.

[6] McCoyd, G.C., 1967. Polarization properties of a simple dielectric rough-surface model. Journal of the Optical Society of America. 57(11), 1345-1350.

[7] Hopfield, J.J., 1966. Mechanism of lunar polarization. Science. 151(3716), 1380-1381.

[8] Veverka J., 1977. Polarimetry of satellite surfaces. Planetary satellites. University of Arizona Press: Tucson. pp. 210-231.

[9] Petrova, E.V., Tishkovets, V.P., 2011. Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research. 45(4), 304.

[10] Noebauer, U.M., Sim, S.A., 2019. Monte Carlo radiative transfer. Living Reviews in Computational Astrophysics. 5, 1-103.

[11] Mishchenko, M.I., Rosenbush, V.K., Kiselev, N.N., et al., 2010. Polarimetric remote sensing of solar system objects. arXiv preprint arXiv:1010.1171.

[12] Lyot, B., 1964. Research on the polarization of light from planets and from some terrestrial substances. National Aeronautics and Space Administration: Washington.

[13] Coyne, G.V., Pellicori, S.F., 1970. Wavelength dependence of polarization. xx. the integrated disk of the moon. Astronomical Journal. 75, 54.

[14] Dollfus, A., Bowell, E., 1971. Polarimetric properties of the lunar surface and its interpretation. Part I. Telescopic observations. Astronomy and Astrophysics. 10, 29.

[15] Veverka, J., 1971. Polarization measurements of the Galilean satellites of Jupiter. Icarus. 14(3), 355-359.

[16] Dollfus, A., 1975. Optical polarimetry of the Galilean satellites of Jupiter. Icarus. 25(3), 416-431.

[17] Rosenbush, V.K., Avramchuk, V.V., Rosenbush, A.E., et al., 1997. Polarization properties of the Galilean satellites of Jupiter: Observations and preliminary analysis. The Astrophysical Journal. 487(1), 402.

[18] Rosenbush, V.K., Kiselev, N.N., Jockers, K., et al., 2000. Optical polarimetry of the Galilean satellites, Iapetus, and 64 Angelina near opposition. Kinematika i Fizika Nebesnykh Tel Supplement. 3, 227-230.

[19] Kiselev, N., Rosenbush, V., Muinonen, K., et al., 2022. New polarimetric data for the galilean satellites: Europa observations and modeling. The Planetary Science Journal. 3(6), 134.

[20] Rosenbush, V.K., 2002. The phase-angle and longitude dependence of polarization for Callisto. Icarus. 159(1), 145-155.

[21] Rosenbush, V.K., Kiselev, N.N., 2005. Polarization opposition effect for the Galilean satellites of Jupiter. Icarus. 179(2), 490-496.

[22] Zellner, B., 1972. Minor planets and related objects. VIII. Deimos. The Astronomical Journal. 77, 183.

[23] Bowell, E., Zellner, B., 1974. Polarizations of asteroids and satellites. University Arizona Press: Tucson. pp. 381-404.

[24] Kiselev, N.N., Chernova, G.P., 1981. Phase functions of polarization and brightness and the nature of cometary atmosphere particles. Icarus. 48(3), 473-481.

[25] Mukai, S., Mukai, T., Kikuchi, S. (editors), 1991. Scattering properties of cometary dust based on polarimetric data. Origin and Evolution of Interplanetary Dust: Proceedings of the 126th Colloquium of the International Astronomical Union; 1990 Aug 27-30; Kyoto. Netherlands: Springer. p. 249-252.

[26] Chernova, G.P., Kiselev, N.N., Jockers, K., 1993. Polarimetric characteristics of dust particles as observed in 13 comets: Comparisons with asteroids. Icarus. 103(1), 144-158.

[27] Levasseur-Regourd, A.C., Hadamcik, E., Renard, J.B., 1996. Evidence for two classes of comets from their polarimetric properties at large phase angles. Astronomy and Astrophysics. 313, 327-333.

[28] Dlugach, J.M., Ivanova, O.V., Mishchenko, M.I., et al., 2018. Retrieval of microphysical characteristics of particles in atmospheres of distant comets from ground-based polarimetry. Journal of Quantitative Spectroscopy and Radiative Transfer. 205, 80-90.

[29] Halder, P., Ganesh, S., 2021. Modelling heterogeneous dust particles: An application to cometary polarization. Monthly Notices of the Royal Astronomical Society. 501(2), 1766-1781.

[30] Lyot, B., 1934. Polarisation des petites planets (French) [Polarization of minor planets]. Comptes Rendus de l’Académie des Sciences. 199, 774.

[31] Zellner, B., Gehrels, T., Gradie, J., 1974. Minor planets and related objects. XVI-Polarimetric diameters. The Astronomical Journal. 79, 1100-1110.

[32] Zellner, B., Gradie, J., 1976. Polarization of the reflected light of asteroid 433 Eros. Icarus. 28(1), 117-123.

[33] Grynko, Y., Shkuratov, Y., Alhaddad, S., et al., 2022. Negative polarization of light at backscattering from a numerical analog of planetary regoliths. Icarus. 384, 115099.

[34] Bohren, C.F., Huffman, D.R., 1998. Absorption and scattering of light by small particles. Wiley-VCH: Weinheim.

[35] Kiselev, N.N., Chernova, G.P., 1976. On a possible new version of the polarization-phase relation for comets. Astronomicheskij Tsirkulyar. 931, 5-7.

[36] Muñoz, O., Volten, H., Hovenier, J.W., et al., 2006. Experimental and computational study of light scattering by irregular particles with extreme refractive indices: Hematite and rutile. Astronomy & Astrophysics. 446(2), 525-535.

[37] Muñoz, O., Hovenier, J.W., 2011. Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review. Journal of Quantitative Spectroscopy and Radiative Transfer. 112(11), 1646-1657.

[38] Zubko, E., Petrov, D., Shkuratov, Y., et al., 2005. Discrete dipole approximation simulations of scattering by particles with hierarchical structure. Applied Optics. 44(30), 6479-6485.

[39] Steigmann, G.A., 1978. A polarimetric model for a dust-covered planetary surface. Monthly Notices of the Royal Astronomical Society. 185(4), 877-888.

[40] Steigmann, G.A., 1984. Application of a polarimetric model to the surface microstructure of particles in the B-ring of Saturn. Monthly Notices of the Royal Astronomical Society. 209(2), 359-371.

[41] Steigmann, G.A., 1986. Optical polarimetry of sulphur and the surface microstructure of Io. Monthly Notices of the Royal Astronomical Society. 219(4), 823-833.

[42] Steigmann, G.A., Dodsworth, M.B., 1987. Surface microstructure of the nucleus of Comet P/Halley. The Observatory. 107, 263-267.

[43] Shkuratov, Y.G., Muinonen, K., Bowell, E., et al., 1994. A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. Earth Moon and Planets. 65(3), 201-246.

[44] Wolff, M., 1975. Polarization of light reflected from rough planetary surface. Applied Optics. 14(6), 1395-1405.

[45] Wolff, M., 1980. Theory and application of the polarization-albedo rules. Icarus. 44(3), 780-792.

[46] Wolff, M., 1981. Computing diffuse reflection from particulate planetary surface with a new function. Applied Optics. 20(14), 2493-2498.

[47] Geake, J.E., Geake, M., Zellner, B.H., 1984. Experiments to test theoretical models of the polarization of light by rough surfaces. Monthly Notices of the Royal Astronomical Society. 210(1), 89-112.

[48] Dollfus, A., Wolff, M. (editors), 1981. Theory and application of the negative branch of polarization for airless planetary objects. Lunar and Planetary Science Conference; 1981 Mar 16-20; Houston. p. 232-234.

[49] Dollfus, A., Wolff, M., Geake, J.E., et al., 1989. Photopolarimetry of asteroids. Asteroids Ii. 594-616.

[50] Shkuratov, Y.G., 1982. A model for negative polarization of light by cosmic bodies without atmospheres. Soviet Astronomy. 26, 493-496.

[51] Shkuratov, I.G., Kreslavskii, M.A., Opanasenko, N.V., 1992. Analysis of a mechanism of the negative polarization of light scattered by atmosphereless celestial bodies. Astronomicheskii Vestnik. 26, 46-53.

[52] Jentzsch, F., 1927. Über die Beugung des Lichtes an Stahlschneiden (German) [On the diffraction of light on steel cutting edges]. Annalen der Physik. 389(18), 292-312.

[53] Wolfsohn G., 1928. Strenge theorie der interferenz und beugung (German) [Strict theory of interference and diffraction]. Handbuch der Physik. Springer Verlag: Berlin. pp. 263-316.

[54] Savornin, J., 1939. Étude de la diffraction éloignée (French) [Study of distant diffraction]. Annales de Physique. 11(11), 129-255.

[55] Horton, C.W., Watson, R.B., 1950. On the diffraction of radar waves by a semi‐infinite conducting screen. Journal of Applied Physics. 21(1), 16-21.

[56] Watson, K.M., 1969. Multiple scattering of electromagnetic waves in an underdense plasma. Journal of Mathematical Physics. 10(4), 688-702.

[57] Akkermans, E., Wolf, P.E., Maynard, R., et al., 1988. Theoretical study of the coherent backscattering of light by disordered media. Journal de Physique. 49(1), 77-98.

[58] Barabanenkov, Y.N., Kravtsov, Y.A., Ozrin, V.D., et al., 1991. II enhanced backscattering in optics. Progress in optics. 29, 65-197.

[59] Mishchenko, M.I., Dlugach, J.M., Liu, L., 2009. Azimuthal asymmetry of the coherent backscattering cone: Theoretical results. Physical Review A. 80(5), 053824.

[60] Zhou, C., 2018. Coherent backscatter enhancement in single scattering. Optics Express. 26(10), A508-A519.

[61] Gorodnichev, E.E., Kondratiev, K.A., Rogozkin, D.B., 2022. Coherent backscattering of light from a Faraday medium. Physical Review B. 105(10), 104208.

[62] Shkuratov, Y.G., 1985. On opposition brightness surge and light negative polarization of solid cosmic surfaces. Astronomicheskij Tsirkulyar. 1400, 1.

[63] Shkuratov, I.G., 1988. The nature of the polarimetric inhomogeneity of the surface of the asteroid 4 Vesta. Astronomicheskii Vestnik. 22, 152-158.

[64] Muinonen, K. (editor), 1989. Electromagnetic scattering by two interacting dipoles. The 1989 URSI International Symposium on Electromagnetic Theory; 1989 Aug 14-17; Stockholm. p. 428-430.

[65] Frattin, E., Muñoz, O., Moreno, F., et al., 2019. Experimental phase function and degree of linear polarization of cometary dust analogues. Monthly Notices of the Royal Astronomical Society. 484(2), 2198-2211.

[66] Muñoz, O., Moreno, F., Gómez-Martín, J.C., et al., 2020. Experimental phase function and degree of linear polarization curves of millimeter-sized cosmic dust analogs. The Astrophysical Journal Supplement Series. 247(1), 19.

[67] Muinonen, K.O., Sihvola, A.H., Lindell, I.V., et al., 1991. Scattering by a small object close to an interface. II. Study of backscattering. Journal of the Optical Society of America A. 8(3), 477-482.

[68] Muinonen K., 1990. Light scattering by inhomogeneous media: Backward enhancement and reversal of linear polarization [PhD thesis]. Helsinki: University of Helsinki.

[69] Shkuratov, I.G., 1991. An interference model of the negative polarization of light scattered by solid surfaces of celestial bodies. Astronomicheskii Vestnik. 25, 152-161.

[70] Hapke, B.W., 1963. A theoretical photometric function for the lunar surface. Journal of Geophysical Research. 68(15), 4571-4586.

[71] Hapke, B., 1993. Theory of reflectance and emittance spectroscopy. Cambridge University Press: Cambridge.

[72] Hapke, B., 2008. Bidirectional reflectance spectroscopy: 6. Effects of porosity. Icarus. 195(2), 918-926.

[73] Shkuratov, Y.G., Melkumova, L.Y., 1991. Diffraction model of the negative polarization of light scattering by atmosphereless cosmic bodies. Lunar and Planetary Science Conference. 22, 1243.

[74] Zhuzhulina, E., Petrov, D., Kiselev, N., et al., 2022. Aperture polarimetry of selected comets in 2018-2020: Observations and computer simulation. Journal of Quantitative Spectroscopy and Radiative Transfer. 290, 108321.

[75] Petrov, D., Kiselev, N., 2018. Computer simulation of position and maximum of linear polarization of asteroids. Journal of Quantitative Spectroscopy and Radiative Transfer. 204, 88-93.

[76] Mishchenko, M.I., 1993. On the nature of the polarization opposition effect exhibited by Saturn’s rings. The Astrophysical Journal. 411, 351-361.

[77] Ozrin, V.D., 1992. Exact solution for coherent backscattering of polarized light from a random medium of Rayleigh scatterers. Waves in Random Media. 2(2), 141.

[78] Amic, E., Luck, J.M., Nieuwenhuizen, T.M., 1997. Multiple Rayleigh scattering of electromagnetic waves. Journal de Physique I. 7(3), 445-483.

[79] Mishchenko, M.I., Luck, J.M., Nieuwenhuizen, T.M., 2000. Full angular profile of the coherent polarization opposition effect. Journal of the Optical Society of America A. 17(5), 888-891.

[80] Mishchenko, M.I., 1996. Diffuse and coherent backscattering by discrete random media-I. Radar reflectivity, polarization ratios, and enhancement factors for a half-space of polydisperse, nonabsorbing and absorbing spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer. 56(5), 673-702.

[81] Tishkovets, V.P., 1998. Backscattering of light by close-packed systems of particles. Optics and Spectroscopy. 85(2), 212-217.

[82] Petrova, E.V., Tishkovets, V.P., Jockers, K., 2007. Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms. Icarus. 188(1), 233-245.

[83] Tishkovets, V.P., 2008. Light scattering by closely packed clusters: Shielding of particles by each other in the near field. Journal of Quantitative Spectroscopy and Radiative Transfer. 109(16), 2665-2672.

[84] Tishkovets, V., Litvinov, P., Petrova, E., et al., 2005. Backscattering effects for discrete random media: theoretical results. Photopolarimetry in remote sensing. Springer: Netherlands. pp. 221-242.

[85] Shkuratov, Y.G., Zubko, E.S., 2008. Comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by Elena V. Petrova, Victor P. Tishkovets, Klaus Jockers, 2007 [Icarus 188, 233-245]. Icarus. 194(2), 850-852.

[86] Born, M., Wolf, E., 1999. Principles of optics. Cambridge University Press: Cambridge.

[87] Petrova, E.V., Tishkovets, V.P., Jockers, K., 2008. Rebuttal to comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by Elena V. Petrova, Victor P. Tishkovets, Klaus Jockers, 2007 [Icarus 188, 233-245]. Icarus. 194(2), 853-856.