Curie Depth and Surface Heat Flow Estimation from Anomalous Magnetic Blocks in the Lower and Part of Middle Benue Trough and Anambra Basin

Mukaila Abdullahi

Department of Science Laboratory Technology, Modibbo Adama University, P.M.B. 2076, Yola, Nigeria

Yunis B. Valdon

Department of Geology, Modibbo Adama University, P.M.B. 2076, Yola, Nigeria

Fartisincha P. Andrew

Department of Science Laboratory Technology, Modibbo Adama University, P.M.B. 2076, Yola, Nigeria

Bello Yusuf Idi

Department of Science Laboratory Technology, Modibbo Adama University, P.M.B. 2076, Yola, Nigeria

DOI: https://doi.org/10.36956/eps.v2i1.821

Received: 28 February 2023; Revised: 7 April 2023; Accepted: 18 April 2023; Published Online: 23 April 2023

Copyright © 2023 Author(s). Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

Estimation of the bottom (Curie) depths and SHF values on blocks (A, B, C, …, Y) of magnetic anomalies in the lower and part of the middle Benue trough and Anambra basin have been presented. A Map of the result shows a shallow Curie depth of about 11 km around the area of Abakaliki with the deepest Curie depth of about 27 km obtained around Utukpa region. The overriding bottom (Curie) depth of 18 km is calculated around Iku mbur, Arufu and Igumale regions. Heat flow has also been calculated from the Curie depth results. The SHF vary from 54 mWm–2 around Utukpa to the highest value of 132 mWm–2 around Abakaliki. The obtained high SHF value could be of sufficiently good prospects for the exploration of geothermal energy resources in the region.

Keywords: Curie depth, Surface heat flow, Geothermal energy, magnetic data, Benue trough


References

[1] Bhattacharyya, B.K., Leu, L.K., 1975. Analysis of magnetic anomalies over Yellowstone National Park: Mapping of Curie point isothermal surface for geothermal reconnaissance. Journal of Geophysical Research. 80, 4461-4465.

[2] Tanaka, A., Okubo, Y., Matsubayashi, O., 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics. 306, 461-470.

[3] Chiozzi, P., Matsushima, J., Okubo, Y., et al., 2005. Curie-point depth from spectral analysis of magnetic data in central-southern Europe. Physics of Earth and Planetary Interior. 152(4), 267-276.

[4] Ross, H.E., Blakely, R.J., Zoback, M.D., 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics. 71, L51-L59.

[5] Rajaram, M., Anand, S.P., Hemant, K., et al., 2009. Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth and Planetary Science Letter. 281(3-4), 147-158.

[6] Trifonova, P., Zhelev, Z., Petrova, T., et al., 2009. Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics. 473(3-4), 362-374.

[7] Bansal, A.R., Gabriel, G., Dimri, V.P., et al., 2011. Estimation of the depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics. 76, L11-22.

[8] Bansal, A.R., Anand, S.P., Rajaram, M., et al., 2013. Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of central India using modified centroid method for fractal distribution of sources. Tectonophysics. 603, 155-161.

[9] Bansal, A.R., Dimri, V.P., 2013. Modelling of magnetic data for scaling geology. Geophysical Prospecting. 62(2), 385-396.

[10] Bansal, A.R., Dimri, V.P., Kumar, R., et al., 2016. Curie depth estimation from aeromagnetic for fractal distribution of sources. Fractal solutions for understanding complex system in earth sciences. Springer Earth System Sciences. Springer, Cham: Switzerland. pp. 19-31.

[11] Dunlop, D.J., Ozdemir, O., 1997. Rock magnetism: Fundamentals and frontiers. Cambridge University Press: Cambridge.

[12] Bhattacharyya, B.K., Leu, L.K., 1977. Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics. 42, 41-50.

[13] Shuey, R.T., Schellinger, D.K., Tripp, A.C., et al., 1977. Curie depth determination from aeromagnetic spectra. Geophysical Journal of Royal Astronomical Society. 50, 75-101.

[14] Okubo, Y., Graf, R.J., Hansen, R.O., et al., 1985. Curie point depths of the island of Kyushu and surrounding area, Japan. Geophysics. 50, 481-489.

[15] Blakely, R.J., 1996. Potential theory in gravity and magnetic applications. Cambridge University Press: Cambridge.

[16] Maus, S., Gordon, D., Fairhead, J.D., 1997. Curie temperature depth estimation using a self-similar magnetization model. Geophysical Journal International. 129, 163-168.

[17] Ravat, D., Pignatelli, A., Nicolosi, I., et al., 2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International. 169, 421-434.

[18] Bouligand, C., Glen, J.M.G., Blakely, R.J., 2009. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. Journal of Geophysical Research. 114, B11104.

[19] Ravat, D., Morgan, P., Lowry, A.R., 2016. Geotherms from the temperature-depth-constrained solutions of 1-D steady-state heat-flow equation. Geosphere. 12(4), 1187-1197.

[20] Nwankwo, L.I., 2015. Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin Nigeria. Geothermics. 54, 76-81.

[21] Melouah, O., Eldosouky, A.M., Ebong, E.D., 2021. Crustal architecture, heat transfer modes and geothermal energy potentials of the Algerian Triassic provinces. Geothermics. 96, 102211.

[22] Onwuemesi, A.G., 1997. One-dimensional spectral analysis of aeromagnetic anomalies and curie depth isotherm in the Anambra basin of Nigeria. Journal of Geodynamics. 23(2), 95-107.

[23] Nwankwo, C.N., Ekine, A.S., Nwosu, L.I., 2009. Estimation of the heat flow variation in the Chad basin, Nigeria. Journal of Applied Sciences and Environmental Management. 13, 73-80.

[24] Obande, G.E., Lawal, K.M., Ahmed, L.A., 2014. Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm spring, north-east Nigeria. Geothermics. 50, 85-90.

[25] Abraham, E.M., Obande, E.G., Chukwu, M., et al., 2015. Estimating depth to the bottom of magnetic sources at Wikki warm spring region, northeastern Nigeria, using fractal distribution of sources approach. Turkish Journal of Earth Sciences. 24(5), 494-512.

[26] Chukwu, C.G., Udensi, E.E., Abraham, E.M., et al., 2017. Geothermal energy potential from analysis of aeromagnetic data of part of the Niger-delta basin, southern Nigeria. Energy. 143, 846-853.

[27] Lawal, T.O., Nwankwo, L.I., Iwa, A.A., et al., 2018. Geothermal energy potential of the Chad basin, north-eastern Nigeria. Journal Applied Science and Environmental Management. 22(11), 1817-1824.

[28] Carter, J.D., Barber, W., Tait, E.A., et al., 1963. The geology of parts of Adamawa, Bauchi and Bornu Provinces in northeastern Nigeria. Bulletin of Geological Society of Nigeria. 30, 109.

[29] Cratchley, C.R., Jones, G.P., 1965. An interpretation of the geology and gravity anomalies of the Benue Valley Nigeria. Oversea Geological Survey, Geophysics Paper. (1), 1-25.

[30] Ajayi, C.O., Ajakaiye, D.E., 1981. The origin and perculiarities of the Nigerian Benue Trough: Another look from recent gravity data obtained from middle Benue. Tectonophysics. 80, 285-303.

[31] Adighije, C., 1981. A gravity interpretation of the Benue Trough, Nigeria. Tectonophysics. 79, 109-128.

[32] Agagu, O.K., Adighije, C.I., 1983. Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria. Journal of African Earth Sciences. 1(3/4), 267-274.

[33] Ofoegbu, C.O., 1984. Interpretation of aeromagnetic anomalies over Lower and Middle Benue Trough of Nigeria. Geophysical Journal of Royal Astronomical Society. 79, 813-823.

[34] Benkhelil, J., 1989. The origin and evolution of the Cretaceous Benue Trough (Nigeria). Journal of African Earth Sciences. 6, 251-282.

[35] Ogunmola, J.K., Ayolabi, E.A., Olobaniyi, S.B., 2016. Structural-depth analysis of the Yola Arm of the Upper Benue Trough of Nigeria using high resolution aeromagnetic data. Journal of African Earth Sciences. 124, 32-43.

[36] Abdullahi, M., Kumar, R., Singh, U.K., 2019. Magnetic basement depth from high-resolution aeromagnetic data of parts of lower and middle Benue Trough (Nigeria) using scaling spectral method. Journal of African Earth Sciences. 150, 337-345.

[37] Obaje, N.G., 2009. Geology and mineral resources of Nigeria. Springer: Berlin. pp. 221.

[38] Abdullahi, M., Singh, U.K., 2018. Basement geology derived from gravity anomalies beneath the Benue Trough of Nigeria. Arabian Journal of Geosciences. 11, 694.

[39] Abdullahi, M., Kumar, R., 2020. Curie depth estimated from high-resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria). Acta Geodaetica et Geophysica. 55(4), 627-643.

[40] Anudu, G.K., Stephenson, R.A., Macdonald, D.I.M., 2014. Using high-resolution aeromagnetic data to recognize and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria. Journal of African Earth Sciences. 99, 625-636.

[41] Maluski, H., Coulon, C., Popoff, M., et al., 1995. 40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria. Journal of Geological Society, London. 152, 311-326.

[42] Ajayi, C.O., Ajakaiye, D.E., 1986. Structures deduced from gravity data in the middle Benue Trough, Nigeria. Journal of African Earth Sciences. 5(4), 359-369.

[43] Ofoegbu, C.O., 1985. A review of the geology of the Benue Trough, Nigeria. Journal of African Earth Sciences. 3(3), 283-291.

[44] Maus, S., Dimri, V.P., 1996. Depth estimation from the scaling power spectrum of potential fields. Geophysical Journal International. 124, 113-120.

[45] Pilkington, M., Todoeschuck, J.P., 1993. Fractal magnetization of continental crust. Geophysical Research Letter. 20, 627-630.

[46] Pilkington, M., Gregotski, M.E., Todoeschuck, J.P., 1994. Using fractal crustal magnetization models in magnetic interpretation. Geophysical Prospecting. 42, 677-692.

[47] Bansal, A.R., Gabriel, G., Dimri, V.P., 2010. Power law distribution of susceptibility and density and its relation to seismic properties: An example from the German Continental Deep Drilling Program. Journal of Applied Geophysics. 72, 123-128.

[48] Pilkington, M., Todoeschuck, J.P., 1995. Scaling nature of crustal susceptibilities. Geophysical Research Letter. 22, 779-782.

[49] Maus, S., Dimri, V.P., 1994. Scaling properties of potential fields due to scaling sources. Geophysical Research Letter. 21, 891-894.

[50] Maus, S., Dimri, V.P., 1995. Potential field power spectrum inversion for scaling geology. Journal of Geophysical Research. 100, 12605-12616.

[51] Fedi, M., Quarta, T., Santis, A.D., 1997. Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics. 62, 1143-1150.

[52] Kumar, R., Bansal, A.R., Anand, S.P., et al., 2018. Mapping of magnetic basement in Central India from aeromagnetic data for scaling geology. Geophysical Prospecting. 66, 226-239.

[53] Li, C.F., Lu, Y., Wang, J., 2017. A global reference model of Curie-point depths based on EMAG2. Scientific Report. 7(1), 45129.

[54] Turcotte, D.L., Schubert, G., 1982. Geodynamics applications of continuum physics to geologic problems. Wiley: New York.

[55] Akpan, O., Nyblade, A., Okereke, C., et al., 2016. Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions. Tectonophysics. 676, 250-260.

[56] Pham, L.T., Eldosouky, A.M., Melouah, O., et al., 2021. Mapping subsurface structural lineaments using the edge filters of gravity data. Journal of King Saud University—Science. 33(8), 101594.

[57] Melouah, O., Pham, L.T., 2021. An improved ILTHG method for edge enhancement of geological structures: Application to gravity data from the Oued Righ valley. Journal of African Earth Sciences. 177, 104162.

[58] Melouah, O., Steinmetz, R.L.L., Ebong, E.D., 2021. Deep crustal architecture of the eastern limit of the West African Craton: Ougarta range and western Algerian Sahara. Journal of African Earth Sciences. 183, 104321.

[59] Tokam, K.A.P., Tabod, C.T., Nyblade, A.A., et al., 2010. Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophysical Journal International. 183, 1061-1076.

[60] Tugume, S., Nyblade, A., Julià, J., et al., 2013. Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation. Tectonophysics. 609, 250-266.

[61] Fairhead, J.D., Okereke, C.S., 1987. A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic implication. Tectonophysics. 143, 141-159.

[62] Okereke, C.S., 1988. Contrasting modes of rifting: The Benue Trough and Cameroon volcanic line, West Africa. Tectonics. 7(4), 775-784.

[63] Fairhead, J.D., Okereke, C.S., Nnange, J.M., 1991. Crustal structure of the Mamfe basin, West Africa based on gravity data. Tectonophysics. 186, 351-358.

[64] Nwachukwu, S.O., 1976. Approximate geothermal gradients in the Niger Delta sedimentary basins. The American Association of Petroleum Geology. 60(7), 1073-1077.

[65] Avbovbo, A.A., 1978. Geothermal gradients in the southern Nigerian basins. Bulletin of Canadian Petroleum Geology. 26(2), 268-274.

[66] Onuaha, K.M., Ekine, A.S., 1999. Subsurface temperature variations and heat flow in the Anambra Basin, Nigeria. Journal of African Earth Sciences. 28(3), 641-652.

[67] Kwaya, M.Y., Kurowska, E., 2018. Geothermal exploration in Nigeria—Country update. Proceedings of 7th African Rift Geothermal Conference; 2018 Oct 31; Kigali, Rwanda. Nairobi: ARGeo—The African Rift Geothermal Development Facility.