Life in the Exoplanet K2‑18b?
José Antonio de Freitas Pacheco
Lagrange Laboratory, Côte d’Azur Observatory, Nice 06304, France
DOI: https://doi.org/10.36956/eps.v4i2.2317
Received: 13 June 2025 | Revised: 24 July 2025 | Accepted: 5 August 2025 | Published Online: 22 August 2025
Copyright © 2025 José Antonio de Freitas Pacheco de Freitas Pacheco. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
The possible presence of dimethyl sulfide (DMS) in the atmosphere of the exoplanet K2‑18b—an ocean‑bearing Hycean world candidate—has intensified the interest in its potential habitability. This sulfur compound, primarily produced by marine life on Earth, is considered a potential biosignature. We investigate whether the observed atmospheric DMS levels could plausibly originate from biological activity, assuming Earth‑like metabolic pathways. Through energy budget modeling, this study estimates the DMS production capacity of a hypothetical biosphere on K2‑18b and finding that, even under optimistic assumptions, biogenic DMS levels would fall several orders of magnitude short of those inferred from James Webb Space Telescope (JWST) observations. Additionally, we examine DMS atmospheric lifetimes under K2‑18b’s environmental conditions. The results suggest that, while the presence of DMS cannot be conclusively attributed to biological activity, its detection remains inconclusive as a biosignature due to possible non‑biological production mechanisms and uncertainties in spectral retrieval procedures. We conclude that current evidence does not support the presence of life on K2‑18b and emphasize the need for more refined observational data and atmospheric models.
Keywords: Exoplanets; K2‑18b Atmosphere; Dimethyl Sulfide; Atmospheric Biosignatures
References
[1] Cloutier, R., Astudillo-Defru, N., Doyon, R., et al., 2019. Confirmation of the radial velocity super-Earth K2-18c with HARPS and CARMENES. Astronomy & Astrophysics. 621, A49. DOI: https://doi.org/10.1051/0004-6361/201833995
[2] Benneke, B., Wong, I., Piaulet, C., et al., 2019. Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b. Astrophysical Journal Letters. 887, L14. DOI: https://doi.org/10.3847/2041-8213/ab59dc
[3] Montet, B.T., Morton, T.D., Foreman-Mackey, D., et al., 2015. Stellar and planetary properties of K2 campaign candidates and validation of 17 planets, including a planet receiving Earth-like insolation. Astrophysical Journal. 809, 25. DOI: https://doi.org/10.1088/0004-637X/809/1/25
[4] Cloutier, R., Astudillo-Defru, N., Doyon, R., et al., 2017. Characterization of the K2-18 multi-planetary system with HARPS. Astronomy & Astrophysics. 608, A35. DOI: https://doi.org/10.1051/0004-6361/201731558
[5] Sarkis, P., Henning, T., Kürster, M., et al., 2018. The CARMENES Search for Exoplanets around M Dwarfs: A Low-mass Planet in the Temperate Zone of the Nearby K2-18. Astronomical Journal. 155, 257. DOI: https://doi.org/10.3847/1538-3881/aac108
[6] Mitchell, E.G., Madhusudhan, N., 2025. Prospects for biological evolution on Hycean worlds. Monthly Notices of the Royal Astronomical Society. 538, 1653–1662. DOI: https://doi.org/10.1093/mnras/staf094
[7] Innes, H., Tsai, S.-M., Pierrehumbert, R.T., 2023. The Runaway Greenhouse Effect on Hycean Worlds. Astrophysical Journal. 953, 168. DOI: https://doi.org/10.3847/1538-4357/ace346
[8] Piette, A.A.A., Madhusudhan, N., 2020. On the Temperature Profiles and Emission Spectra of Mini-Neptune Atmospheres. Astrophysical Journal. 904, 154. DOI: https://doi.org/10.3847/1538-4357/abbfb1
[9] Madhusudhan, N., Sarkar, S., Constantinou, S., et al., 2023. Carbon-bearing Molecules in a Possible Hycean Atmosphere. Astrophysical Journal Letters. 956, L13. DOI: https://doi.org/10.3847/2041-8213/acf577
[10] Wogan, N.F., Batalha, N.E., Zahnle, K.J., et al., 2024. JWST Observations of K2-18b Can Be Explained by a Gas-rich Mini-Neptune with No Habitable Surface. Astrophysical Journal Letters. 963, L7. DOI: https://doi.org/10.3847/2041-8213/ad2616
[11] Madhusudhan, N., Constantinou, S., Holmberg, M., et al., 2025. New Constraints on DMS and DMDS in the Atmosphere of K2-18 b from JWST MIRI. Astrophysical Journal Letters. 983, L40. DOI: https://doi.org/10.3847/2041-8213/adc1c8
[12] Hänni, N., Altwegg, K., Combi, M., et al., 2024. Evidence for Abiotic Dimethyl Sulfide in Cometary Matter. Astrophysical Journal. 976, 74. DOI: https://doi.org/10.3847/1538-4357/ad8565
[13] Sanz-Novo, M., Rivilla, V.M., Endres, C.P., et al., 2025. On the Abiotic Origin of Dimethyl Sulfide: Discovery of Dimethyl Sulfide in the Interstellar Medium. Astrophysical Journal Letters. 980, L37. DOI: https://doi.org/10.3847/2041-8213/adafa7
[14] Welbanks, L., Nixon, M.C., McGill, P., et al., 2025. The Challenges of Detecting Gases in Exoplanet Atmospheres. arXiv Preprint. DOI: https://doi.org/10.48550/arXiv.2504.21788
[15] Luque, R., Piaulet-Ghorayeb, Radica, C.M., et al., 2025. Insufficient evidence for DMS and DMDS in the atmosphere of K2-18b. From a joint analysis of JWST NIRISS, NIRSpec, and MIRI observations. arXiv Preprint. DOI: https://doi.org/10.48550/arXiv.2505.13407
[16] Ksionzek, K.B., Lechtenfeld, O.J., McCallister, S.L., et al., 2016. Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory. Science. 354, 456–459.
[17] Hulswar, S., Simó, R., Galí, M., et al., 2022. Third revision of the global surface seawater dimethyl sulfide climatology (DMS‐Rev3). Earth System Science Data. 14, 2963–2987. DOI: https://doi.org/10.5194/essd-14-2963-2022
[18] Stoer, A.C., Fennel, K., 2024. Carbon-centric dynamics of Earth’s marine phytoplankton. Proceedings of the National Academy of Sciences. 121, e2405354121. DOI: https://doi.org/10.1073/pnas.2405354121
[19] Hillebrand, H., Acevedo-Trejos, E., Moorthi, S.D., et al., 2022. Cell size as driver and sentinel of phytoplankton community structure and functioning. Functional Ecology. 36, 276–293. DOI: https://doi.org/10.1111/1365-2435.13986
[20] Charlson, R.J., Lovelock, J.E., Andreae, M.O., et al., 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 326, 655–661. DOI: https://doi.org/10.1038/326655a0
[21] Andreae, M.O., Raemdonck, H., 1983. Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science. 221, 744–747. DOI: https://doi.org/10.1126/science.221.4612.744
[22] Lana, A., Bell, T.G., Simo, R., et al., 2011. An updated climatology of surface dimethyl sulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles. 25, 1004. DOI: https://doi.org/10.1029/2010GB003850
[23] Ortega-Arzola, E., Higgins, P.M., Cockell, C.S., 2024. The minimum energy required to build a cell. Nature Scientific Reports. 14, 5267. DOI: https://doi.org/10.1038/s41598-024-54303-6
[24] Haxo, F.T., Blinks, L.R., 1950. Photosynthetic action spectra of marine algae. Journal of General Physiology. 33, 389–442. DOI: https://doi.org/10.1085/jgp.33.4.389
[25] McCree, K.J., 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology. 9, 191–216. DOI: https://doi.org/10.1016/0002-1571(71)90022-7
[26] Leconte, J., Wu, H., Menou, K., et al., 2015. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science. 347, 632–635. DOI: https://doi.org/10.1126/science.1258686
[27] Tsai, S.-M., Innes, H., Wogan, N.F., et al., 2024. Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds. Astrophysical Journal Letters. 966, L24. DOI: https://doi.org/10.3847/2041-8213/ad3801