Water Mass Vertical Mixing in The Sulawesi Sea and Makassar Strait During the Second Transition Monsoon

Shofia Karima

Master’s Program in Earth Sciences, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
Research Center for Geological Disaster, National Research and Innovation Agency, Bandung 40293, Indonesia

Nining Sari Ningsih

Environmental and Applied Oceanography Research Group, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia

Anastasia Rita Tisiana

Agency for Marine and Fisheries Research and Human Resources, Ministry of Marine Affairs and Fisheries, Jakarta 14430, Indonesia

Gandhi Napitupulu

Environmental and Applied Oceanography Research Group, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia

DOI: https://doi.org/10.36956/eps.v4i1.2061

Received: 26 February 2025 | Revised: 22 March 2025 | Accepted: 26 March 2025 | Published Online: 3 April 2025

Copyright © 2025 Shofia Karima, Nining Sari Ningsih, Anastasia Rita Tisiana, Gandhi Napitupulu. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

The transformation of water masses along the Indonesian Throughflow (ITF) pathway is evident from the disappearance of Western North Pacific Water (WNPW) south of the Makassar Strait, despite its prior presence in the Sulawesi Sea. One of the primary mechanisms driving this transformation is vertical mixing. This study investigates the characteristics of vertical mixing along the Sulawesi Sea–Makassar Strait route during the second transition season (September–November), using vertical diffusivity (Kz) as a key indicator. The temperature, density, and current velocity data were obtained from the Transport, Internal Waves, and Mixing in the Indonesian Throughflow Regions (TIMIT) cruise in October 2015. The results show spatial variability of vertical mixing both horizontally and vertically. Horizontally, the strongest vertical mixing was observed in the Makassar Strait (Kz = 8.5 × 10−3 m2 /s and Ri = 2.0−2.2), consistent with values reported for the first transition season but exceeding those typical of the southeast monsoon. Vertically, mixing was most intense in the deep layer (Kz = 9.2 × 10−3 m2/s), followed by the homogeneous layer (Kz = 3.9 × 10−3 m2/s), while the weakest is in the thermocline layer (Kz = 1.2 × 10−3 m2/s). These patterns are influenced by the complex interaction of current dynamics and bathymetric features such as sills. The findings highlight the southern Makassar Strait (Transect 4) as a hotspot of vertical mixing and water mass transformation, playing a critical role in shaping ITF structure and the downstream transport of thermohaline properties.

Keywords: Richardson Number; Vertical Diffusivity; Sulawesi Sea; Vertical Mixing


References

[1] Panjaitan, F.A.P., Wulandari, S.Y., Handoyo, G., et al., 2021. Identification and Stratification of Water Masses in the Sulawesi Sea [in Indonesian]. Indonesian Journal of Oceanography. 3(3), 322–331. DOI: https://doi.org/10.14710/IJOCE.V3I3.12255

[2] Yudowaty, S.O., Radjawane, I.M., Fajary, R., et al., 2025. Heat Transport Variability Within the Inlet and Outlet of Makassar Strait. Malaysian Applied Geography. 3(1), 38–44. DOI: http://dx.doi.org/10.26480/magg.01.2025.38.44

[3] Napitupulu, G., Fekranie, N.A., Millina, A.V., et al., 2025. Seasonal Variability of Surface Heat Transport in the Banda Sea. Thalassas: An International Journal of Marine Sciences. 41(2), 1–20. DOI: https://doi.org/10.1007/S41208-025-00840-4

[4] Yuliardi, A.Y., Prayogo, L.M., Joesidawati, M.I., et al., 2022. Dynamics of the Spatial-Vertical Distribution of Water Masses in the West and East Indonesian Throughflow Routes in the Wet Season [in Indonesian]. Jurnal Miyang: Ronggolawe Fisheries and Marine Science Journal. 2(2), 38–46. DOI: https://doi.org/10.55719/JMIY.V2I2.532

[5] Ilahude, A.G., Gordon, A.L., 1996. Thermocline stratification within the Indonesian Seas. Journal of Geophysical Research: Oceans. 101(C5), 12401–12409. DOI: https://doi.org/10.1029/95JC03798

[6] Wang, S., Ummenhofer, C.C., Oppo, D.W., et al., 2023. Freshwater Contributions to Decadal Variability of the Indonesian Throughflow. Geophysical Research Letters. 50(14), e2023GL103906. DOI: https://doi.org/10.1029/2023GL103906

[7] Fieux, M., Molcard, R., Ilahude, A.G., 1996. Geostrophic transport of the Pacific-Indian Oceans throughflow. Journal of Geophysical Research: Oceans. 101(C5), 12421–12432. DOI: https://doi.org/10.1029/95JC03566

[8] Gordon, A.L., Susanto, R.D., Ffield, A., et al., 2008. Makassar Strait throughflow, 2004 to 2006. Geophysical Research Letters. 35(24). DOI: https://doi.org/10.1029/2008GL036372

[9] Rugebregt, M.J., Hudiyono, S., Utomo, S.W., et al., 2023. Indonesian Through-Flow Water Mass Circulation in the Makassar Strait and Lombok Strait, Indonesia. Migration Letters. 20(S2), 1190–1198. DOI: https://doi.org/10.59670/ml.v20iS2.5257

[10] Sprintall, J., Wijffels, S.E., Molcard, R., et al., 2009. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research: Oceans. 114(C7), 7001. DOI: https://doi.org/10.1029/2008JC005257

[11] Susanto, R.D., Gordon, A.L., 2005. Velocity and transport of the Makassar Strait throughflow. Journal of Geophysical Research: Oceans. 110(C1), 1–10. DOI: https://doi.org/10.1029/2004JC002425

[12] Guo, Y., Li, Y., Yang, D., et al., 2023. Water sources of the Lombok, Ombai and Timor outflows of the Indonesian throughflow. Frontiers in Marine Science. 10, 1326048. DOI: https://doi.org/10.3389/fmars.2023.1326048

[13] Atmadipoera, A., Molcard, R., Madec, G., et al., 2009. Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep Sea Research Part I: Oceanographic Research Papers. 56(11), 1942–1954. DOI: https://doi.org/10.1016/J.DSR.2009.06.004

[14] Ffield, A., Gordon, A.L., 1992. Vertical Mixing in the Indonesian Thermocline. Journal of Physical Oceanography. 22(2), 184–195.

[15] Larasati, O.D.D., Hendrizan, M., Rachmayani, R., et al., 2024. Variability of Sea Surface Temperature and Salinity in Makassar Strait During the Last Glacial Maximum. Bulletin of the Marine Geology. 39(2). DOI: https://doi.org/10.32693/BOMG.39.2.2024.882

[16] Murray, S.P., Arief, D., 1988. Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature. 333(6172), 444–447. DOI: https://doi.org/10.1038/333444a0

[17] Gordon, A.L., 1986. Interocean exchange of thermocline water. Journal of Geophysical Research: Oceans. 91(C4), 5037–5046. DOI: https://doi.org/10.1029/JC091IC04P05037

[18] setiyo Pranowo, W., Nurhidayat, N., Asmoro, N.W., 2022. Characteristic of Temperature and Salinity in The Makassar Strait Based on Arlindo 2005 and Timit 2015 CTD Cruise Data [in Indonesian]. Jurnal Chart Datum. 8(2), 107–116. DOI: https://doi.org/10.37875/CHARTDATUM.V8I2.144

[19] Gordon, A.L., Susanto, R.D., 1998. Makassar Strait transport: Initial estimate based on Arlindo results. Marine Technology Society Journal. 32(4), 34.

[20] Anshari, A.I., 2023. Identification of Surface Current Patterns in Small Pelagic Fishing Areas in the Western Season of the Spermonde Islands, Indonesia. Asian Journal of Advanced Research and Reports. 17(8), 80–87. DOI: https://doi.org/10.9734/AJARR/2023/V17I8506

[21] Atmadipoera, A.S., Jaya, I., Sudjono, E.H., 2017. Analysis of turbulent mixing in Dewakang Sill, Southern Makassar Strait. IOP Conference Series: Earth and Environmental Science. 54(1), 012086. DOI: https://doi.org/10.1088/1755-1315/54/1/012086

[22] Atmadipoera, A.S., Widyastuti, P., 2014. A Numerical Modeling Study on Upwelling Mechanism in Southern Makassar Strait. Jurnal Ilmu dan Teknologi Kelautan Tropis. 6(2), 355–371. DOI: https://doi.org/10.29244/JITKT.V6I2.9012

[23] Naulita, Y., 2016. TURBULENT MIXING PROCESSES IN LABANI CHANNEL, THE MAKASSAR STRAIT. Jurnal Ilmu dan Teknologi Kelautan Tropis. 8(1), 345–355.

[24] Finnigan, T.D., Luther, D.S., Lukas, R., 2002. Observations of Enhanced Diapycnal Mixing near the Hawaiian Ridge. Journal of Physical Oceanography. 32(11), 2988–3002. DOI: https://doi.org/10.1175/1520-0485(2002)032<2988:OOEDMN>2.0.CO;2

[25] Purwandana, A., Purba, M., Atmadipoera, A.S., 2014. Distribution of Turbulence Mixing in Alor Strait [in Indonesian]. Ilmu Kelautan. 19(1), 43–54. DOI: https://doi.org/10.14710/IK.IJMS.19.1.43-54

[26] Pond, S., Pickard, G.L., 1983. Introductory dynamical oceanography. Gulf Professional Publishing: Houston, TX, USA. pp. 1–329.

[27] Richardson, M.L.F., 1920. The supply of energy from and to atmospheric eddies. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 97(686), 354–373. DOI: https://doi.org/10.1098/RSPA.1920.0039

[28] Purwandana, A., 2013. Study of Vertical Water Mass Mixing and Its Benefits [in Indonesian]. Jurnal Oseana. 38(3), 9–22.

[29] Dillon, T.M., 1982. Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research: Oceans. 87(C12), 9601–9613. DOI: https://doi.org/10.1029/JC087IC12P09601

[30] Wang, Z., Yin, X., Li, X., et al., 2023. Water Mass Variations in the Maluku Channel of the Indonesian Seas During the Winter of 2018–2019. Journal of Geophysical Research: Oceans. 128(3), e2022JC018731. DOI: https://doi.org/10.1029/2022JC018731

[31] Wyrtki, K., 1961. The thermohaline circulation in relation to the general circulation in the oceans. Deep Sea Research. 8(1), 39–64. DOI: https://doi.org/10.1016/0146-6313(61)90014-4

[32] Guo, X.Y., Zhu, X.H., Long, Y., et al., 2013. Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan. Biogeosciences. 10(10), 6403–6417. DOI: https://doi.org/10.5194/BG-10-6403-2013

[33] Yuliarinda, R.E., Muslim, M., Atmodjo, W., 2013. Study of the Thermocline Layer Structure in the Waters of the Makassar Strait [in Indonesian]. Jurnal Oceanografi. 1(1), 33–39. DOI: https://doi.org/10.20884/1.oa.2017.13.2.70

[34] Shinoda, T., Han, W., Metzger, E.J., et al., 2012. Seasonal Variation of the Indonesian Throughflow in Makassar Strait. Journal of Physical Oceanography. 42(7), 1099–1123. DOI: https://doi.org/10.1175/JPO-D-11-0120.1

[35] Gordon, A.L., 2005. The indonesian seas. Oceanography. 18(4), 14.

[36] Delpeche, N.C., Soomere, T., Lilover, M.-J., 2010. Diapycnal mixing and internal waves in the Saint John River Estuary, New Brunswick, Canada with a discussion relative to the Baltic Sea. Estonian Journal of Engineering. 16(2), 157–175. DOI: https://doi.org/10.3176/eng.2010.2.05

[37] Utama, F.G., Atmadipoera, A.S., Purba, M., et al., 2017. Analysis of upwelling event in Southern Makassar Strait. IOP Conference Series: Earth and Environmental Science. 54(1), 012085. DOI: https://doi.org/10.1088/1755-1315/54/1/012085

[38] Napitupulu, G., Fekranie, N.A., Nurdjaman, S., et al., 2023. Analysis of Upwelling Variations Caused by ENSO Intensification in the Southern Makassar Strait. Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science (INCREASE 2022); 22–23 November 2022; Indonesia (online). pp. 437–448. DOI: https://doi.org/10.1007/978-981-19-9768-6_41

[39] Napitupulu, G., Nurdjaman, S., Fekranie, N.A., et al., 2022. Analysis of Upwelling in the Southern Makassar Strait in 2015 Using Aqua-Modis Satellite Image. Journal of Water Resources and Ocean Science. 11(4), 64–70.

[40] Schiller, A., 2004. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Modelling. 6(1), 31–49. DOI: https://doi.org/10.1016/S1463-5003(02)00057-4

[41] Hatayama, T., 2004. Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves. Journal of Oceanography. 60(3), 569–585. DOI: https://doi.org/10.1023/B:JOCE.0000038350.32155.CB

[42] McCreary, J.P., Miyama, T., Furue, R., et al., 2007. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Progress in Oceanography. 75(1), 70–114. DOI: https://doi.org/10.1016/J.POCEAN.2007.05.004

[43] Wajsowicz, R.C., Gordon, A.L., Ffield, A., et al., 2003. Estimating transport in Makassar Strait. Deep Sea Research Part II: Topical Studies in Oceanography. 50(12–13), 2163–2181. DOI: https://doi.org/10.1016/S0967-0645(03)00051-1

[44] Gordon, A.L., Susanto, R.D., Ffield, A., 1999. Throughflow within Makassar Strait. Geophysical Research Letters. 26(21), 3325–3328. DOI: https://doi.org/10.1029/1999GL002340

[45] Susanto, R.D., Gordon, A.L., Sprintall, J., et al., 2000. Intraseasonal variability and tides in Makassar Strait. Geophysical Research Letters. 27(10), 1499–1502. DOI: https://doi.org/10.1029/2000GL011414

[46] Gordon, A.L., Napitu, A., Huber, B.A., et al., 2019. Makassar Strait Throughflow Seasonal and Interannual Variability: An Overview. Journal of Geophysical Research: Oceans. 124(6), 3724–3736. DOI: https://doi.org/10.1029/2018JC014502

[47] Susanto, R.D., Wei, Z., Adi, R.T., et al., 2013. Observations of the Karimata Strait througflow from December 2007 to November 2008. Acta Oceanologica Sinica. 32(5), 1–6. DOI: https://doi.org/10.1007/S13131-013-0307-3

[48] Susanto, R.D., Gordon, A.L., Sprintall, J., 2007. Observations and proxies of the surface layer throughflow in Lombok Strait. Journal of Geophysical Research: Oceans. 112(C3), 1–6. DOI: https://doi.org/10.1029/2006JC003790

[49] Susanto, R.D., Ray, R.D., 2022. Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature. Remote Sensing. 14(8), 1934. DOI: https://doi.org/10.3390/RS14081934

[50] Prihatiningsih, I., Jaya, I., Atmadipoera, A.S., et al., 2019. Turbulent mixing of water masses in Selayar Slope - Southern Makassar Strait. IOP Conference Series: Earth and Environmental Science. 284(1), 012033. DOI: https://doi.org/10.1088/1755-1315/284/1/012033

[51] Susanto, R.D., Ffield, A., Gordon, A.L., et al., 2012. Variability of Indonesian throughflow within Makassar Strait, 2004–2009. Journal of Geophysical Research: Oceans. 117(C9), 9013. DOI: https://doi.org/10.1029/2012JC008096

[52] Firdaus, M., Rahmawitri, H., Haryoadji, S., et al., 2021. Indirect estimation of turbulent mixing in western route of Indonesian throughflow. IOP Conference Series: Earth and Environmental Science. 944(1), 012059. DOI: https://doi.org/10.1088/1755-1315/944/1/012059

[53] Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., et al., 2007. On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophysical Research Letters. 34(4). DOI: https://doi.org/10.1029/2006GL028405

[54] Tillinger, D., Gordon, A.L., 2010. Transport weighted temperature and internal energy transport of the Indonesian throughflow. Dynamics of Atmospheres and Oceans. 50(2), 224–232. DOI: https://doi.org/10.1016/j.dynatmoce.2010.01.002

[55] Osborn, T.R., 1980. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography. 10(1), 83–89. DOI: https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

[56] Gordon, A.L., Sprintall, J., Van Aken, H.M., et al., 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans. 50(2), 115–128. DOI: https://doi.org/10.1016/J.DYNATMOCE.2009.12.002

[57] Gordon, A.L., Huber, B.A., Metzger, E.J., et al., 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters. 39(11). DOI: https://doi.org/10.1029/2012GL052021