Mass Comparison of Protoplanetary Disk and Planetary Systems
Grupo de Ciencias Planetarias, Departamento de Geofísica y Astronomía, FCEFyN, UNSJ – CONICET, San Juan, J5402DCS Rivadavia, Argentina
Grupo de Ciencias Planetarias, Departamento de Geofísica y Astronomía, FCEFyN, UNSJ – CONICET, San Juan, J5402DCS Rivadavia, Argentina
DOI: https://doi.org/10.36956/eps.v4i1.1955
Received: 8 February 2025 | Revised: 13 March 2025 | Accepted: 27 March 2025| Published Online: 3 April 2025
Copyright © 2025 Aldana Terluk, Ricardo Gil-Hutton. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
In recent decades, the number of discovered exoplanets has increased significantly and is expected to continue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks has enabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace of planetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet formation and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the solid mass in known exoplanetary systems to estimate the initial solid mass required to form the observed population of planets. First, the total masses of exoplanetary systems are calculated and these values are then compared with the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass of exoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stage disks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages (Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could be limited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of material in the cores of giant planets.
Keywords: Exoplanets; Protoplanetary Disks; Planetary Systems
References
[1] Andrews, S.M., Rosenfeld, K.A., Kraus, A.L., et al., 2013. The Mass Dependence between Protoplanetary Disks and their Stellar Hosts. Astrophysical Journal. 771(2), 129. DOI: https://doi.org/10.1088/0004-637X/771/2/129
[2] Ansdell, M., Williams, J.P., van der Marel, N., et al., 2016. ALMA Survey of Lupus Protoplanetary Disks. I. Dust and Gas Masses. Astrophysical Journal. 828(1), 46. DOI: https://doi.org/10.3847/0004-637X/828/1/46
[3] Pascucci, I., Testi, L., Herczeg, G.J., et al., 2016. A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation. Astrophysical Journal. 831(2), 125. DOI: https://doi.org/10.3847/0004-637X/831/2/125
[4] Cieza, L.A., Ruíz-Rodríguez, D., Hales, A., et al., 2019. The Ophiuchus DIsc Survey Employing ALMA (ODISEA) - I: project description and continuum images at 28 au resolution. Monthly Notices of the Royal Astronomical Society. 482(1), 698–714. DOI: https://doi.org/10.1093/mnras/sty2653
[5] Cazzoletti, P., Manara, C.F., Liu, H.B., et al., 2019. ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses. Astronomy and Astrophysics. 626, A11. DOI: https://doi.org/10.1051/0004-6361/201935273
[6] Tychoniec, Ł., Tobin, J.J., Karska, A., et al., 2018. The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). IV. Free-Free Emission from Protostars: Links to Infrared Properties, Outflow Tracers, and Protostellar Disk Masses. Astrophysical Journals. 238(2), 19. DOI: https://doi.org/10.3847/1538-4365/aaceae
[7] Tobin, J.J., Sheehan, P.D., Megeath, S.T., et al., 2020. The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks. Astrophysical Journal. 890(2), 130. DOI: https://doi.org/10.3847/1538-4357/ab6f64
[8] van Terwisga, S.E., Hacar, A., van Dishoeck, E.F., et al., 2022. Survey of Orion Disks with ALMA (SODA). I. Cloud-level demographics of 873 protoplanetary disks. Astronomy and Astrophysics. 661, A53. DOI: https://doi.org/10.1051/0004-6361/202141913
[9] Eisner, J.A., Arce, H.G., Ballering, N.P., et al., 2018. Protoplanetary Disk Properties in the Orion Nebula Cluster: Initial Results from Deep, High-resolution ALMA Observations. Astrophysical Journal. 860(1), 77. DOI: https://doi.org/10.3847/1538-4357/aac3e2
[10] Ruíz-Rodríguez, D., Cieza, L.A., Williams, J.P., et al., 2018. ALMA survey of circumstellar discs in the young stellar cluster IC 348. Monthly Notices of the Royal Astronomical Society. 478(3), 3674–3692. DOI: https://doi.org/10.1093/mnras/sty1351
[11] Williams, J.P., Cieza, L.A., 2011. Protoplanetary Disks and Their Evolution. Anual Review of Astronomy and Astrophysics. 49(1), 67–117. DOI: https://doi.org/10.1146/annurev-astro-081710-102548
[12] Testi, L., Natta, A., Manara, C.F., et al., 2022.The protoplanetary disk population in the ρ-Ophiuchi region L1688 and the time evolution of Class II YSOs. Astronomy and Astrophysics. 663, A98. DOI: https://doi.org/10.1051/0004-6361/202141380
[13] Franceschi, R., Birnstiel, T., Henning, T., et al., 2022. Mass determination of proto-planetary disks from dust evolution. Astronomy and Astrophysics. 657, A74. DOI: https://doi.org/10.1051/0004-6361/202141705
[14] Appelgren, J., Lambrechts, M., Johansen, A., 2020. Dust clearing by radial drift in evolving protoplanetary discs. Astronomy and Astrophysics. 638, A156. DOI: https://doi.org/10.1051/0004-6361/202037650
[15] Kama, M., Trapman, L., Fedele, D., et al., 2020. Mass constraints for 15 protoplanetary discs from HD 1-0. Astronomy and Astrophysics. 634, A88. DOI: https://doi.org/10.1051/0004-6361/201937124
[16] Savvidou, S., Bitsch, B., 2025. There is no disk mass budget problem of planet formation. Astronomy and Astrophysics. 693, A302. DOI: https://doi.org/10.1051/0004-6361/202449847
[17] Greaves, J.S., Rice, W.K.M. 2010. Have protoplanetary discs formed planets?. Monthly Notices of the Royal Astronomical Society. 407(3), 1981–1988. DOI: https://doi.org/10.1111/j.1365-2966.2010.17043.x
[18] Najita, J.R., Kenyon, S.J., 2014. The mass budget of planet-forming discs: isolating the epoch of planetesimal formation. Monthly Notices of the Royal Astronomical Society. 445(3), 3315–3329. DOI: https://doi.org/10.1093/mnras/stu1994
[19] Mulders, G.D., Pascucci, I., Apai, D., 2015. An Increase in the Mass of Planetary Systems around Lower-mass Stars. Astrophysical Journal. 814(2), 130. DOI: https://doi.org/10.1088/0004-637X/814/2/130
[20] Mulders, G.D., Pascucci, I., Apai, D., et al., 2018. The Exoplanet Population Observation Simulator. I. The Inner Edges of Planetary Systems. Astronomical Journal. 156(1), 24. DOI: https://doi.org/10.3847/1538-3881/aac5ea
[21] Manara, C.F., Morbidelli, A., Guillot, T., 2018. Why do protoplanetary disks appear not massive enough to form the known exoplanet population? Astronomy and Astrophysics. 618, L3. DOI: https://doi.org/10.1051/0004-6361/201834076
[22] Cieza, L.A., González-Ruilova, C., Hales, A.S., et al., 2021. The Ophiuchus DIsc Survey Employing ALMA (ODISEA) - III. The evolution of substructures in massive discs at 3-5 au resolution. Monthly Notices of the Royal Astronomical Society. 501(2), 2934–2953. DOI: https://doi.org/10.1093/mnras/staa3787
[23] Segura-Cox, D.M., Schmiedeke, A., Pineda, J.E., et al., 2020. Four annular structures in a protostellar disk less than 500,000 years old. Nature. 586, 7828. DOI: https://doi.org/10.1038/s41586-020-2779-6
[24] Tychoniec, Ł., Manara, C.F., Rosotti, G.P., et al., 2020. Dust masses of young disks: constraining the initial solid reservoir for planet formation. Astronomy and Astrophysics. 640, A19. DOI: https://doi.org/10.1051/0004-6361/202037851
[25] Thorngren, D.P., Fortney, J.J., Murray-Clay, Ruth A., et al., 2016. The Mass-Metallicity Relation for Giant Planets. Astrophysical Journal. 831(1), 64. DOI: https://doi.org/10.3847/0004-637X/831/1/64