The Columnar Jointing in the Deccan Continental Flood Basalt, India: Implications as a Martian Analogue

Aditya Das

Physical Research Laboratory, Planetary Sciences Division, Ahmedabad 380009, India

Subham Sarkar

Physical Research Laboratory, Planetary Sciences Division, Ahmedabad 380009, India                                                          †Current address: Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760003, India.

Dwijesh Ray

Physical Research Laboratory, Planetary Sciences Division, Ahmedabad 380009, India

Rahul Sirvi

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382007, Gujarat, India

DOI: https://doi.org/10.36956/eps.v4i1.1652

Received: 5 January 2025 | Revised: 24 March 2025 | Accepted: 25 March 2025 | Published Online: 1 April 2025

Copyright © 2025 Aditya Das, Subham Sarkar, Dwijesh Ray, Rahul Sirvi. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

The continental flood basalt on Earth and the extensive flood basalt provinces on Mars are well recognised for their prominent surface manifestation, which offer valuable insights into the planet’s interior activity and evolution. Mars’s volcanic provinces are significantly larger than those on Earth; however, the volcanic landforms, particularly the columnar jointing in basalt flows, show some remarkable morphological resemblances. The Deccan trap basalts are characterised by a tholeiite composition with typical iron‑rich trend similar to that of Martian basalts. Within the Deccan volcanic province, the columnar jointing includes both colonnade and entablature jointing facies with a more or less consistent hexagonality index (XN:1.34), reflecting its maturity index. A higher cooling rate (0.29 °C/h) contributes to the formation of entablature as compared to colonnade. The morphology of the colonnade is influenced by a uniform cooling mechanism corroborated with the liquid water infiltration during the emplacement of lava. Thus, the columnar jointing in basalt provides insights into the paleoenvironment during lava emplacement. The morphology of columnar basalt on Mars is mainly gained through remote sensing and in situ rover observations. The presence of both colonnade and entablature on Martian columnar basalt also indicates that water was likely prevalent, possibly flooding or ponding during the lava’s emplacement. In comparative planetology, incorporating new, potential terrestrial analogue materials remains a top priority to validate orbiter data and to strategise for future planetary exploration.

Keywords: Columnar Jointing; Basalt; Deccan; Mars; Terrestrial Analogue


References

[1] Horvath, D.G., Moitra, P., Hamilton, C.W., et al., 2021. Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus. 365, 114499. DOI: https://doi.org/10.1016/j.icarus.2021.114499

[2] Stähler, S.C., Mittelholz, A., Perrin, C., et al., 2022. Tectonics of Cerberus Fossae unveiled by marsquakes. Nature Astronomy. 6(12), 1376–1386. DOI: https://doi.org/10.1038/s41550-022-01803-y

[3] Weitz, C.M., Bishop, J.L., Grant, J.A., 2013. Gypsum, opal, and fluvial channels within a trough of Noctis Labyrinthus, Mars: Implications for aqueous activity during the Late Hesperian to Amazonian. Planetary and Space Science. 87, 130–145. DOI: https://doi.org/10.1016/j.pss.2013.08.007

[4] Keszthelyi, L.P., Jaeger, W.L., Dundas, C.M., et al., 2010. Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging. Icarus. 205(1), 211–229. DOI: https://doi.org/10.1016/j.icarus.2009.08.020

[5] Brož, P., Krýza, O., Wilson, L., et al., 2020. Experimental evidence for lava-like mud flows under Martian surface conditions. Nature Geoscience. 13(6), 403–407. DOI: https://doi.org/10.1038/s41561-020-0577-2

[6] Bhattacharyya, T., Pal, D.K., Lal, S., et al., 2006. Formation and persistence of Mollisols on zeolitic Deccan basalt of humid tropical India. Geoderma. 136(3–4), 609–620. DOI: https://doi.org/10.1016/j.geoderma.2006.04.021

[7] Broquet, A., Andrews-Hanna, J.C., 2023. Plume-induced flood basalts on Hesperian Mars: An investigation of Hesperia Planum. Icarus. 391, 115338. DOI: https://doi.org/10.1016/j.icarus.2022.115338

[8] Wordsworth, R.D., Kerber, L., Plerrehumbert, R.T., et al., 2015. Comparison of "warm and wet" and "cold and icy" scenarios for early Mars in a 3-D climate model. Journal of Geophysical Research: Planets. 120, 1201–1219. DOI: https://doi.org/10.1002/2015JE004787

[9] Sheth, H., Duraiswami, R.A., Ghule, V., et al., 2022. Flood basalt structures and textures as guides to cooling histories and palaeoclimates: the Deccan Traps of Saurashtra, western India. Geological Magazine. 159(8), 1415–1436. DOI: https://doi.org/10.1017/S0016756822000279

[10] Self, S., Mittal, T., Dole, G., et al., 2022. Toward understanding Deccan volcanism. Annual Review of Earth and Planetary Sciences. 50, 477–506. DOI: https://doi.org/10.1146/annurev-earth-012721-051416

[11] Duncan, R.A., Richards, M.A., 1991. Hotspots, mantle plumes, flood basalts, and true polar wander. Reviews of Geophysics. 29(1), 31–50. DOI: https://doi.org/10.1029/90RG02372

[12] Hawkesworth, C.J., Gallagher, K., Kirstein, L., et al., 2000. Tectonic controls on magmatism associated with continental break-up: an example from the Paraná–Etendeka Province. Earth and Planetary Science Letters. 179(2), 335–349. DOI: https://doi.org/10.1016/S0012-821X(00)00114-X

[13] Sheth, H.C., 2005. From Deccan to Réunion: no trace of a mantle plume. Special Papers-Geological Society of America. 388, 477.

[14] Mahoney, J.J., Duncan, R.A., Khan, W., et al., 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth and Planetary Science Letters. 203(1), 295–310. DOI: https://doi.org/10.1016/S0012-821X(02)00840-3

[15] Greeley, R., Schneid, B.D., 1991. Magma generation on Mars: Amounts, rates, and comparisons with Earth, Moon, and Venus. Science. 254(5034), 996–998. DOI: https://doi.org/10.1126/science.254.5034.996

[16] Head J.W., III, Kreslavsky, M.A., Pratt, S., 2002. Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. Journal of Geophysical Research: Planets. 107(E1), 3-1–3-29. DOI: https://doi.org/10.1029/2000JE001445

[17] Beyer, R.A., McEwen, A.S., 2005. Layering stratigraphy of eastern Coprates and northern Capri Chasmata, Mars. Icarus. 179(1), 1–23. DOI: https://doi.org/10.1016/j.icarus.2005.06.014

[18] Nyquist, L.E., Bogard, D.D., Shih, C.Y., et al., 2001. Ages and geologic histories of Martian meteorites. In: Kallenbach, R., Geiss, J., Hartmann, W.K. (eds.). Chronology and Evolution of Mars. Space Sciences Series of ISSI, vol 12. Springer: Dordrecht, The Netherlands. pp. 105–164. DOI: https://doi.org/10.1007/978-94-017-1035-0_5

[19] Gates-Rector, S., Blanton, T., 2019. The powder diffraction file: a quality materials characterization database. Powder Diffraction. 34(4), 352–360. DOI: https://doi.org/10.1017/S0885715619000812

[20] Ray, D., Shukla, A.D., 2018. The Mukundpura meteorite, a new fall of CM chondrite. Planetary and Space Science. 151, 149–154. DOI: https://doi.org/10.1016/j.pss.2017.11.005

[21] McEwen, A.S., Eliason, E.M., Bergstrom, J.W., et al., 2007. Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE). Journal of Geophysical Research: Planets, 112(E5). DOI: https://doi.org/10.1029/2005JE002605

[22] Biswas, S.K., 1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics. 135(4), 307–327. DOI: https://doi.org/10.1016/0040-1951(87)90115-6

[23] Arora, K., Srinu, Y., Gopinath, D., et al., 2018. Lineaments in Deccan basalts: The basement connection in the Koyna-Warna RTS Region. Bulletin of the Seismological America. DOI: https://doi.org/10.1785/0120180011

[24] Lamur, A., Lavallée, Y., Iddon, F.E., et al., 2018. Disclosing the temperature of columnar jointing in lavas. Nature Communications. 9(1), 1432. DOI: https://doi.org/10.1038/s41467-018-03842-4

[25] Kale, V.S., Chatterjee, P., Pande, K., 2020. Emplacement history and evolution of the Deccan Volcanic Province, India. Episodes Journal of International Geoscience. 43(1), 278–299. DOI: https://doi.org/10.18814/epiiugs/2020/020016

[26] Ming, D.W., Gellert, R., Morris, R.V., et al., 2008. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-ray spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research. 113, E12S39. DOI: https://doi.org/10.1029/2008JE003195

[27] Ray, D., Misra, S., Widdowson, M., et al., 2013. A common parentage for Deccan Continental Flood basalt and Central Indian Ocean Ridge Basalt? A geochemical and isotopic approach. Journal of Asian Earth Sciences. 84(4). DOI: https://doi.org/10.1016/j.jseaes.2013.12.015

[28] Sen, G., Bizimis, M., Das, R., et al.,, 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth and Planetary Science Letters. 277(1–2), 101–111. DOI: https://doi.org/10.1016/j.epsl.2008.10.002

[29] Armbruster, T., Bürgi, H.B., Kunz, M., et al., 1990. Variation of displacement parameters in structure refinements of low albite. American Mineralogist. 75(1–2), 135–140.

[30] Pollack, S.S., Ruble, W.D., 1964. X-ray identification of ordered and disordered ortho-enstatite. American Mineralogist. 49(7–8), 983–992.

[31] Turnock, A.C., Lindsley, D.H., Grover, J.E., 1973. Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes. American Mineralogist. 58(1–2), 50–59.

[32] Budkewitsch, P., Robin, P.Y., 1994. Modelling the evolution of columnar joints. Journal of Volcanology and Geothermal Research. 59(3), 219–239. DOI: https://doi.org/10.1016/0377-0273(94)90092-2

[33] Mondal, T.K., Chowdhury, A., Sain, A., et al., 2022. Understanding the maturity of columnar joints and its spatial relationship with eruptive centre: A critical appraisal from the Rajmahal basalt, India. Physics of the Earth and Planetary Interiors. 326, 106867. DOI: https://doi.org/10.1016/j.pepi.2022.106867

[34] Tanemura, M., Hasegawa, M., 1980. Geometrical models of territory I. Models for synchronous and asynchronous settlement of territories. Journal of Theoretical Biology. 82(3), 477–496. DOI: https://doi.org/10.1016/0022-5193(80)90251-9

[35] Goehring, L., Sletten, R.S., Hallet, B., 2008. Dynamics of polygonal terrain in the Dry Valleys, Antarctica. Proceedings of the 2008 American Geophysical Union Fall Meeting. 15–19 December 2008, San Francisco, USA. p. C22A-08.

[36] Phillips, J.C., Humphreys, M.C., Daniels, K.A., et al., 2013. The formation of columnar joints produced by cooling in basalt at Staffa, Scotland. Bulletin of Volcanology. 75, 1–17. DOI: https://doi.org/10.1007/s00445-013-0715-4

[37] Ryan, M.P., Sammis, C.G., 1981. The glass transition in basalt. Journal of Geophysical Research. 86, 9519–9535.

[38] Goehring, L., Morris, S.W., 2008. Scaling of columnar joints in basalt. Journal of Geophysical Research: Solid Earth. 113(B10). DOI: https://doi.org/10.1029/2007JB005018

[39] Jagla, E.A., 2004. Maturation of crack patterns. Physical Review E. 69, 056212. DOI: https://doi.org/10.1103/PhysRevE.69.056212

[40] Hetényi, G., Taisne, B., Garel, F., et al.,, 2012. Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology, 74, 457–482. DOI: https://doi.org/10.1007/s00445-011-0534-4

[41] Lore, J., Gao, H., Aydin, A., 2000. Viscoelastic thermal stress in cooling basalt flows. Journal of Geophysical Research. 105, 23695–23700. DOI: https://doi.org/10.1029/2000JB900226

[42] Hetényi, G., Taisne, B., Garel, F., et al., 2012. Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology. 74, 457–482.

[43] Gilman, J.J., 2009. Basalt columns: large scale constitutional supercooling? Journal of Volcanology and Geothermal Research. 184(3–4), 347–350. DOI: https://doi.org/10.1016/j.jvolgeores.2009.04.017

[44] Bosshard, S.A., Mattsson, H.B., Hetényi, G., 2012. Origin of internal flow structures in columnar-jointed basalt from Hrepphólar, Iceland: I. Textural and geochemical characterization. Bulletin of Volcanology. 74, 1645–1666. DOI: https://doi.org/10.1007/s00445-012-0623-z

[45] Jin, C., Li, S., Liu, J., 2018. Anisotropic mechanical behaviors of columnar jointed basalt under compression. Bulletin of Engineering Geology and the Environment. 77, 317–330. DOI: https://doi.org/10.1007/s10064-016-0942-y

[46] Long, P.E., Wood, B.J., 1986. Structures, textures, and cooling histories of Columbia River basalt flows. Geological Society of America Bulletin. 97(9), 1144–1155. DOI: https://doi.org/10.1130/0016-7606(1986)97%3C1144:STACHO%3E2.0.CO;2

[47] Lyle, P., 2000. The eruption environment of multi-tiered columnar basalt lava flows. Journal of the Geological Society. 157(4), 715–722. DOI: https://doi.org/10.1144/jgs.157.4.715

[48] Reidel, S.P., Camp, V.E., Tolan, T.L., et al., 2013. The Columbia River flood basalt province: Stratigraphy, areal extent, volume, and physical volcanology. Available from: https://pubs.geoscienceworld.org/gsa/books/edited-volume/661/chapter-abstract/3807083/The-Columbia-River-flood-basalt-province (cited 30 March 2025).

[49] Courtillot, V., Gallet, Y., Rocchia, R., et al., 2000. Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province. Earth and Planetary Science Letters. 182(2), 137–156. DOI: https://doi.org/10.1016/S0012-821X(00)00238-7

[50] Mitra, S., Mitra, K., Gupta, S., et al., 2017. Alteration and submergence of basalts in Kachchh, Gujarat, India: implications for the role of the Deccan Traps in the India–Seychelles break-up. Geological Society, London. Special Publications. 445(1), 47–67. DOI: https://doi.org/10.1144/SP445.9

[51] Spry, A., 1962. The origin of columnar jointing, particularly in basalt flows. Journal of the Geological Society of Australia. 8(2), 191–216. DOI: https://doi.org/10.1080/14400956208527873

[52] Grossenbacher, K.A., McDuffie, S.M., 1995. Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. Journal of Volcanology and Geothermal Research. 69(1–2), 95–103. DOI: https://doi.org/10.1016/0377-0273(95)00032-1

[53] Forbes, A.E., Blake, S., Tuffen, H., 2014. Entablature: fracture types and mechanisms. Bulletin of Volcanology. 76, 1–13. DOI: https://doi.org/10.1007/s00445-014-0820-z

[54] Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al., 2001. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. Journal of Geophysical Research: Planets. 106(E10), 23823–23871. DOI: https://doi.org/10.1029/2000JE001370

[55] Milazzo, M.P., Keszthelyi, L.P., Jaeger, W.L., et al., 2009. Discovery of columnar jointing on Mars. Geology. 37(2), 171–174. DOI: https://doi.org/10.1130/G25187A.1

[56] Ghosh, P., Sayeed, M.R.G., Islam, R., et al., 2006. Inter-basaltic clay (bole bed) horizons from Deccan traps of India: Implications for palaeo-weathering and palaeo-climate during Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology. 242(1–2), 90–109. DOI: https://doi.org/10.1016/j.palaeo.2006.05.018

[57] Ghoshmaulik, S., Bhattacharya, S.K., Hazra, M., et al., 2023. Triple oxygen isotopes in intertrappean fossil woods: Evidence of higher tropical rainfall during Deccan volcanism. Chemical Geology. 121599. DOI: https://doi.org/10.1016/j.chemgeo.2023.121599

[58] Stucky de Quay, G., Kite, E.S., Mayer, D.P., 2019. Prolonged fluvial activity from channel‐fan systems on Mars. Journal of Geophysical Research: Planets. 124(11), 3119–3139. DOI: https://doi.org/10.1029/2019JE006167

[59] Jaeger, W.L., Keszthelyi, L.P., McEwen, A.S., et al., 2007. Athabasca Valles, Mars: A lava-draped channel system. Science. 317(5845), 1709–1711. DOI: https://doi.org/10.1126/science.1143315

[60] Keske, A.L., Hamilton, C.W., McEwen, A.S., et al., 2015. Episodes of fluvial and volcanic activity in Mangala Valles, Mars. Icarus. 245, 333–347. DOI: https://doi.org/10.1016/j.icarus.2014.09.040

[61] Hamilton, C.W., Mouginis-Mark, P.J., Sori, M.M., et al.,, 2018. Episodes of aqueous flooding and effusive volcanism associated with Hrad Vallis, Mars. Journal of Geophysical Research: Planets. 123(6), 1484–1510. DOI: https://doi.org/10.1029/2018JE005543

[62] Keszthelyi, L., McEwen, A.S., 2007, Comparison of flood lavas on Earth and Mars. In: M. Chapman (ed). The Geology of Mars: Evidence from Earth-Based Analogs. Cambridge University Press: Cambridge, UK. pp. 126–150.

[63] Wilson, L., Head, J.W., 1997. Mars: Review and analyses of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics. 32, 221–263.

[64] Hulme, G., 1982. A review of lava flow processes related to the formation of lunar sinuous rilles. Geophysical Survey. 5, 245–279.

[65] Bhattacharya, S., Mitra, S., Gupta, et al., 2016. Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality. Journal of Geophysical Research: Planets. 121(3), 402–431. DOI: https://doi.org/10.1002/2015JE004949

[66] Ray, D., Shukla, A.D., Bhattacharya, S., et al., 2021. Hematite concretions from the Late Jurassic Jhuran sandstone, Kutch, western India: Implications for sedimentary diagenesis and origin of “blueberries" on Mars. Planetary and Space Science. 197. DOI: https://doi.org/10.1016/j.pss.2021.105163

[67] Ray, D., Das, A., Sarkar, S., et al., 2025. Natrojarosite formed in the Matanomadh Formation, Kutch, India: a Na analog of jarosite on Mars. American Mineralogist. DOI: https://doi.org/10.2138/am-2024-9360