A Small Impact Crater in the Dhofar Mountains, Sultanate of Oman: Surface Expression from Satellite Imagery and Cues from the Profiles of ICESat‑2 Photons
Regional Remote Sensing Centre ‑ West, National Remote Sensing Centre, Indian Space Research Organisation, Jodhpur 342005, India
Regional Remote Sensing Centre ‑ West, National Remote Sensing Centre, Indian Space Research Organisation, Jodhpur 342005, India
Regional Remote Sensing Centre ‑ West, National Remote Sensing Centre, Indian Space Research Organisation, Jodhpur 342005, India
Regional Remote Sensing Centre ‑ West, National Remote Sensing Centre, Indian Space Research Organisation, Jodhpur 342005, India
Regional Centres, National Remote Sensing Centre, Indian Space Research Organisation, New Delhi 110049, India
DOI: https://doi.org/10.36956/eps.v4i1.1454
Received: 7 November 2024 | Revised: 11 March 2025 | Accepted: 17 March 2025 | Published Online: 31 March 2025
Copyright © 2025 Giribabu Dandabathula, Omkar Shashikant Ghatage , Subham Roy, Apurba Kumar Bera, Sushil Kumar Srivastav. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
This study discovered a surface expression of one small impact crater on the slopes of the Dhofar Mountains, Sultanate of Oman. This research utilized high‑resolution satellite imagery, a digital elevation model, and ICESat‑2 photon data to determine the geomorphological features of the impact crater. Elevation profiles from the ICESat‑2 photons highlighted the crater’s rim structure with high precision. Also, the structure of this impact crater was crosschecked with a confirmed crater on similar geological settings on Mars using HiRise imagery and numerical simulations. Additionally, a scaled sandbox experiment ensured the simulation of the impact mechanism on slopes. The identified impact crater is a simple type (non‑complex) with a nearly bowl‑shaped depression having a raised rim structure and a maximum diameter of ∼259 m. However, bearing its location on a sloped terrain and at the edge of the gorge’s cliff‑top, this elliptical crater remained crescent, with the deepest point shifted downhill. Notably, features related to the crater’s structure, such as the rim, the floor’s deepest point, and a tongue‑like landslide at the downhill, are consistent with the numerical simulations and corroborate the results from the lab‑based experiments. The crater’s ellipticity and depth‑to‑diameter ratio agree with the mechanisms involved in impact crater formation on slopes. This impact crater is one of the rarest on Earth, uniquely located on sloped terrain, and is the first to be reported through this article.
Keywords: Small Impact Crater; Dhofar Mountains; Sultanate of Oman; Elliptical Crater; Crescent Crater; Impact Craters on Slopes; Salalah
References
[1] Erickson, J., 2001. Quakes, eruptions, and other geologic cataclysms: revealing the earth’s hazards. Facts on File: New York, USA. pp. 1–309.
[2] Brunsden, D., 2001. A critical assessment of the sensitivity concept in geomorphology. Catena. 42(2–4), 99–123. DOI: https://doi.org/10.1016/S0341-8162(00)00134-X
[3] Pike, R.J., 1980. Formation of complex impact craters: Evidence from Mars and other planets. Icarus, 43(1), 1–19. DOI: https://doi.org/10.1016/0019-1035(80)90083-4
[4] Graham, G.A., Kearsley, A.T., Grady, M.M., Wright, I.P., Griffiths, A.D., McDonnell, J.A.M., 1999. Hypervelocity impacts in low Earth orbit: Cosmic dust versus space debris. Advances in Space Research. 23(1), 95–100. DOI: https://doi.org/10.1016/S0273-1177(98)00235-X
[5] Humes, D.H., 1992. Large craters on the meteoroid and space debris impact experiment. In: Levine, A.S. (ed.). LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 1. National Aeronautics and Space Administration: Washington, DC, USA. pp. 399–418.
[6] Campbell, J.W., Phipps, C., Smalley, L., Reilly, J., Boccio, D., 2003. The impact imperative: laser ablation for deflecting asteroids, meteoroids, and comets from impacting the earth. AIP conference proceedings. 664(1), 509–522.
[7] Boyce, J.M., Wilson, L., Mouginis-Mark, P.J., Hamilton, C.W., Tornabene, L.L., 2012. Origin of small pits in Martian impact craters. Icarus. 221(1), 262–275. DOI: https://doi.org/10.1016/j.icarus.2012.07.027
[8] Osinski, G.R., Grieve, R.A.F., Ferrière, L., et al., 2022. Impact Earth: A review of the terrestrial impact record. Earth-Science Reviews. 232, 104112. DOI: https://doi.org/10.1016/j.earscirev.2022.104112
[9] Tancredi G., Ishitsuka, J., Schultz, P.H., et al., 2009. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteoritics & Planetary Science. 44(12), 1967–1984. DOI: https://doi.org/10.1111/j.1945-5100.2009.tb02006.x
[10] Bartoschewitz, R., Appel, P., Barrat, J.A., et al., 2017. The Braunschweig meteorite− a recent L6 chondrite fall in Germany. Geochemistry. 77(1), 207–224. DOI: http://dx.doi.org/10.1016/j.chemer.2016.10.004
[11] Suzuki, A.I., Fujita, Y., Harada, S., et al., 2021. Experimental study concerning the oblique impact of low-and high-density projectiles on sedimentary rocks. Planetary and Space Science. 195, 105141. DOI: https://doi.org/10.1016/j.pss.2020.105141
[12] Pilkington, M., Grieve, R.A.F., 1992. The geophysical signature of terrestrial impact craters. Reviews of Geophysics. 30(2), 161–181. DOI: https://doi.org/10.1029/92RG00192
[13] Kenkmann, T., Poelchau, M.H., Wulf, G., 2014. Structural geology of impact craters. Journal of Structural Geology. 62, 156–182. DOI: https://doi.org/10.1016/j.jsg.2014.01.015
[14] Melosh, H.J., Ivanov, B.A., 1999. Impact crater collapse. Annual Review of Earth and Planetary Sciences. 27(1), 385–415. DOI: https://doi.org/10.1146/annurev.earth.27.1.385
[15] Collins, G.S., Melosh, H.J., Osinski, G.R., 2012. The impact-cratering process. Elements. 8(1), 25–30. DOI: https://doi.org/10.2113/gselements.8.1.25
[16] Holsapple, K.A., Housen, K.R., 2007. A crater and its ejecta: An interpretation of Deep Impact. Icarus. 191(2), 586–597. DOI: https://doi.org/10.1016/j.icarus.2006.08.035
[17] Herrick, R. R., Forsberg‐Taylor, N. K. 2003. The shape and appearance of craters formed by oblique impact on the Moon and Venus. Meteoritics & Planetary Science. 38(11), 1551–1578. DOI: https://doi.org/10.1111/j.1945-5100.2003.tb00001.x
[18] Aschauer, J., Kenkmann, T., 2017. Impact cratering on slopes. Icarus. 290, 89–95. DOI: http://dx.doi.org/10.1016/j.icarus.2017.02.021
[19] Al Shehri, A. A., 2024. Mapping moon craters: Scientific knowledge from 1965 to 2022: Systematic review. The Egyptian Journal of Remote Sensing and Space Sciences. 27(2), 456–465. DOI: https://doi.org/10.1016/j.ejrs.2024.04.001
[20] Salamunićcar, G., Lončarić, S., Pina, P., Bandeira, L., Saraiva, J., 2011. MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets. Planetary and Space Science. 59(1), 111–131. DOI: https://doi.org/10.1016/j.pss.2010.11.003
[21] Wright, S.P., Tornabene, L.L., Ramsey, M.S., 2013. Remote sensing of impact craters. In: Osinski, G.R., Pierazzo, E. (eds.). Impact cratering: Processes and products. Wiley-Blackwell Publishing Ltd: NJ, USA. pp. 194–214.
[22] Yue, Z., Shi, K., Di, K., Lin, Y., Gou, S., 2023. Progresses and prospects of impact crater studies. Science China Earth Sciences. 66(11), 2441–2451. DOI: https://doi.org/10.1007/s11430-022-1009-0
[23] Cockell, C.S., Lee, P., 2002. The biology of impact craters–a review. Biological Reviews. 77(3), 279–310. DOI: https://doi.org/10.1017/S146479310100584X
[24] Reimold, W.U., 1995. Impact cratering-a review, with special reference to the economic importance of impact structures and the Southern African impact crater record. Earth, Moon, and Planets. 70(1), 21–45. DOI: https://doi.org/10.1007/BF00619449
[25] Velázquez, V. F., Colonna, J., Sallun, A. E. M., et al., 2014. The Colônia impact crater: geological heritage and natural patrimony in the southern metropolitan region of São Paulo, Brazil. Geoheritage. 6(4), 283–290. DOI: https://doi.org/10.1007/s12371-014-0121-0
[26] Searle, M., 2019. Geology of the Oman mountains, eastern Arabia. Springer: New York, USA. pp. 478.
[27] Rose, J.I., Usik, V.I., Hilbert, Y., et al., 2023. Prehistoric settlement patterns in southern Oman from the Lower Palaeolithic to the Neolithic. Paléorient. 49(1), 9–34. DOI: https://doi.org/10.4000/paleorient.2774
[28] Charpentier, V., Maiorano, M. P., Marchand, G., Vosges, J., Borgi, F., 2023. Twelve years of the ‘Arabian Seashores’ project: How the extensive investigation of coastal Oman changed the paradigm of the Arabian Neolithic. Arabian Archaeology and Epigraphy. 34(S1), S1–S21. DOI: https://doi.org/10.1111/aae.12236
[29] Cremaschi, M., Zerboni, A., Charpentier, V., et al., 2015. Early–Middle Holocene environmental changes and pre-Neolithic human occupations as recorded in the cavities of Jebel Qara (Dhofar, southern Sultanate of Oman). Quaternary International. 382, 264–276. DOI: http://dx.doi.org/10.1016/j.quaint.2014.12.058
[30] Zerboni, A., Perego, A., Mariani, G. S., et al., 2020. Geomorphology of the Jebel Qara and coastal plain of Salalah (Dhofar, southern Sultanate of Oman). Journal of Maps. 16(2), 187–198. DOI: https://doi.org/10.1080/17445647.2019.1708488
[31] Yue, S., He, L., Wen, Y., Lu, G., Lin, H., 2013. Shape characteristics-based extraction of lunar impact craters: using DEM from the Chang'E-1 satellite as a data source. Annals of GIS. 19(1), 53–62. DOI: https://doi.org/10.1080/19475683.2012.758656
[32] Christian, J. A., Derksen, H., Watkins, R. 2021. Lunar crater identification in digital images. The Journal of the Astronautical Sciences. 68(4), 1056–1144. DOI: https://doi.org/10.1007/s40295-021-00287-8
[33] Pedrosa, M.M., de Azevedo, S.C., da Silva, E.A., Dias, M.A., 2017. Improved automatic impact crater detection on Mars based on morphological image processing and template matching. Geomatics, Natural Hazards and Risk. 8(2), 1306–1319. DOI: https://doi.org/10.1080/19475705.2017.1327463
[34] Urbach, E.R., Stepinski, T.F. 2009. Automatic detection of sub-km craters in high resolution planetary images. Planetary and Space Science. 57(7), 880–887. DOI: https://doi.org/doi:10.1016/j.pss.2009.03.009
[35] Zhou, Y., Zhao, H., Chen, M., Tu, J., Yan, L., 2018. Automatic detection of lunar craters based on DEM data with the terrain analysis method. Planetary and Space Science. 160, 1–11. DOI: https://doi.org/10.1016/j.pss.2018.03.003
[36] Zhang, S., Zhang, P., Yang, J., et al., 2024. Automatic detection for small-scale lunar impact crater using deep learning. Advances in Space Research. 73(4), 2175–2187. DOI: https://doi.org/10.1016/j.asr.2023.05.041
[37] Comer, D.C., Harrower, M.J. 2013. Mapping archaeological landscapes from space. Springer: New York, USA. pp. 276.
[38] Delamere, W.A., Tornabene, L.L., McEwen, A.S., et al., 2010. Color imaging of Mars by the high resolution imaging science experiment (HiRISE). Icarus. 205(1), 38–52. DOI: https://doi.org/10.1016/j.icarus.2009.03.012
[39] Dundas, C.M., Byrne, S., McEwen, A.S., et al., 2014. HiRISE observations of new impact craters exposing Martian ground ice. Journal of Geophysical Research: Planets. 119(1), 109–127. DOI: https://doi.org/10.1002/2013JE004482
[40] Xin, X., Di, K., Wang, Y., et al., 2017. Automated detection of new impact sites on Martian surface from HiRISE images. Advances in Space Research. 60(7), 1557–1569. DOI: https://doi.org/10.1016/j.asr.2017.06.044
[41] Watters, W.A., Geiger, L.M., Fendrock, M., Gibson, R., 2015. Morphometry of small recent impact craters on Mars: Size and terrain dependence, short‐term modification. Journal of Geophysical Research: Planets. 120(2), 226–254. DOI: https://doi.org/10.1002/2014JE004630
[42] Gottwald, M., Fritz, T., Breit, H., et al., 2017. Remote sensing of terrestrial impact craters: The TanDEM‐X digital elevation model. Meteoritics & Planetary Science. 52(7), 1412–1427. DOI: https://doi.org/10.1111/maps.12794
[43] Liu, D., Chen, M., Qian, K., et al., 2017. Boundary detection of dispersal impact craters based on morphological characteristics using lunar digital elevation model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10(12), 5632–5646. DOI: https://doi.org/10.1109/JSTARS.2017.2749403
[44] Indu, G.K., James, S., Chandran, S.R., et al., 2022. Deriving a denudation index for terrestrial meteorite impact craters using drainages as proxies. Geomorphology. 397, 108007. DOI: https://doi.org/10.1016/j.geomorph.2021.108007
[45] Markus, T., Neumann, T., Martino, A., et al., 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote sensing of environment. 190, 260–273. DOI: https://doi.org/10.1016/j.rse.2016.12.029
[46] Magruder, L., Neumann, T., Kurtz, N., 2021. ICESat‐2 Early Mission Synopsis and Observatory Performance. Earth and Space Science. 8(5), e2020EA001555. DOI: https://doi.org/10.1029/2020EA001555
[47] Dandabathula, G. 2022. Applications of ICES at-2 Photon Data in the Third Pole Environment. In Pandey, M., Pandey, P.C., Ray, Y., et al. (eds.). Advances in remote sensing technology and the three poles. Wiley. pp. 213–229. DOI: https://doi.org/10.1002/9781119787754.ch14
[48] Brown, M.E., Arias, S.D., Chesnes, M., 2023. Review of ICESat and ICESat-2 literature to enhance applications discovery. Remote Sensing Applications: Society and Environment. 29, 100874. DOI: https://doi.org/10.1016/j.rsase.2022.100874
[49] Schultz, P.H., Eberhardy, C.A., Ernst, C.M., et al., 2007. The Deep Impact oblique impact cratering experiment. Icarus. 191(2), 84–122. DOI: http://dx.doi.org/10.1016/j.icarus.2007.06.031
[50] Michikami, T., Hagermann, A., Morota, T., et al., 2017. Oblique impact cratering experiments in brittle targets: Implications for elliptical craters on the Moon. Planetary and Space Science. 135, 27–36. DOI: http://dx.doi.org/10.1016/j.pss.2016.11.004
[51] Hayashi, K., Sumita, I., 2017. Low-velocity impact cratering experiments in granular slopes. Icarus. 291, 160–175. DOI: http://dx.doi.org/10.1016/j.icarus.2017.03.027
[52] Herrick, R.R., Forsberg‐Taylor, N.K., 2003. The shape and appearance of craters formed by oblique impact on the Moon and Venus. Meteoritics & Planetary Science. 38(11), 1551–1578. DOI: https://doi.org/10.1111/j.1945-5100.2003.tb00001.x
[53] Neumann, T.A., Brenner, A., Hancock, D., Robbins, J., Gibbons, A., Lee, J., Harbeck, K., Saba, J., Luthcke, S.B. Rebold, T., 2023. ATLAS/ICESat-2 L2A Global Geolocated Photon Data. (ATL03, Version 6). NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, Colorado USA. DOI: https://doi.org/10.5067/ATLAS/ATL03.006
[54] Elbeshausen, D., Wünnemann, K., Collins, G.S., 2013. The transition from circular to elliptical impact craters. Journal of Geophysical Research: Planets. 118(11), 2295–2309. DOI: https://doi.org/10.1002/2013JE004477
[55] Collins, G.S., Elbeshausen, D., Davison, T.M., et al., 2011. The size-frequency distribution of elliptical impact craters. Earth and Planetary Science Letters. 310(1–2), 1–8. DOI: https://doi.org/10.1016/j.epsl.2011.07.023
[56] Bottke Jr, W.F., Love, S.G., Tytell, D., Glotch, T., 2000. Interpreting the elliptical crater populations on Mars, Venus, and the Moon. Icarus. 145(1), 108–121. DOI: https://doi.org/10.1006/icar.1999.6323
[57] Gault, D.E., Sonett, C.P. 1982. Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography, and the surface wave radiation field. In: Silver, L.T., Schultz, P.H. (eds.). Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America: Bolder, CO, USA. pp. 69–92
[58] Krohn, K., Jaumann, R., Elbeshausen, D., et al., 2014. Asymmetric craters on Vesta: Impact on sloping surfaces. Planetary and Space Science. 103, 36–56. DOI: https://doi.org/10.1016/j.pss.2014.04.011