A focus on Chemical Equilibria of Saline Aqueous Solutions Freezing under Ceres’Surface
ASI, Agenzia Spaziale Italiana, 00133 Rome, Italy
ASI, Agenzia Spaziale Italiana, 00133 Rome, Italy
ASI, Agenzia Spaziale Italiana, 00133 Rome, Italy
ASI, Agenzia Spaziale Italiana, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
IAPS, Istituto di Astrofisica e Planetologia Spaziali, INAF, 00133 Rome, Italy
DOI: https://doi.org/10.36956/eps.v3i2.1139
Received: 20 June 2024; Received in revised form: 12 September 2024; Accepted: 29 September 2024; Published: 15 October 2024
Copyright © 2024 Maria Pedone, Edoardo Rognini, Eleonora Ammannito, Christina Plainaki, Maria Cristina De Sanctis, Andrea Raponi, Simone De Angelis, Mauro Ciarniello, Marco Ferrari, Alessandro Frigeri, Filippo Giacomo Carrozzo. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
On Ceres’surface, the region including Kupalo and Juling was selected, in this study, for the geological aspects characterizing the area. Spectral data revealed that, at surface, the two craters show the presence of different carbonates: Na-carbonates (Kupalo) and Ca-Mg-carbonates (Juling). We think that the distinct geology at surface may be the result of the freezing of different subsurface aqueous reservoirs, characterized by different compositions and initial P-T conditions. The first step was to characterize the initial composition of aqueous solutions which, after freezing/precipitation processes, by using FREZCHEM code, delivered salts which can better approximate the surface compositions found by spectral analysis. Our potential brines were alkaline aqueous solutions, and they differ for the Na- and Cl- amounts (higher at Kupalo, rather than Juling solutions). The formation of hydrated sodium carbonate (natron, Na2CO3·10H2O) is highly favored in Na-enriched solution (e.g., Kupalo); instead, it could form only after water ice precipitation in Na-depleted solutions (e.g., in Juling). Natrite (Na2CO3) was found in Kupalo’s surface layers, and, in our simulations, it did not directly precipitate from the solutions. We suggest that it could have been formed from natron and nahcolite (Na2CO3·10H2O and NaHCO3 respectively) at 1 bar of total pressure. Furthermore, we discussed the stability of the carbonates formed including MgCO3 (magnesite) and CaMg(CO3)2 (dolomite). Finally, we investigated on the transport dynamics of brines suggesting that, already in the subsurface, there could be the physical processes to bring solid material (precipitated from the solutions) to the surface.
Keywords: Carbonates and salts-rich material; Ceres Dwarf Planet; Freezing processes; Brines
References
[1] McCord, T.B., Combe, J.-P., Castillo-Rogez, J.C., et al., 2022. Ceres, a wet planet: The view after Dawn. Geochemistry. DOI: https://doi.org/10.1016/j.chemer.2021.125745
[2] De Sanctis, M.C., Coradini, A., Ammannito, E., et al., 2011. The VIR spectrometer. Space Sci. Rev. 163, 329–369.
[3] Li, J.-Y., McFadden, L.A., Parker, J.W., et al., 2006. Photometric Analysis of 1 Ceres and Surface Mapping from HST Observations. Icarus. 182(1), 143–160. DOI:https://doi.org/10.1016/j.icarus.2005.12.012
[4] Li, J.-Y., Schröder, S.E., Mottola, S., et al., 2019. Spectrophotometric Modeling and Mapping of Ceres. Icarus. 322, 144–167. DOI:https://doi.org/10.1016/j.icarus.2018.12.038
[5] Ciarniello, M., De Sanctis, M.C., Ammannito, E., et al., 2017. Spectrophotometric Properties of Dwarf Planet Ceres from the VIR Spectrometer on Board the Dawn Mission. Astronomy & Astrophysics. DOI: https://doi.org/0004-6361/201629490
[6] Ciarniello, M., De Sanctis, M.C., Raponi, A., et al., 2020. Ceres Observed at Low Phase Angles by VIR-Dawn. Astronomy & Astrophysics. DOI: https://doi.org/10.1051/0004-6361/201936492
[7] Lebofsky, L.A., Feierberg, M.A., Tokunaga, A.T., et al., 1981. The 1.7- to 4.2-µm Spectrum of Asteroid 1 Ceres: Evidence for Structural Water in Clay Minerals. Icarus. 48(3), 453–459. DOI: https://doi.org/10.1016/0019-1035(81)90055-5
[8] Rivkin, A.S., Volquardsen, E.L., Clark, B.E., 2006. The Surface Composition of Ceres: Discovery of Carbonates and Iron-rich Clays. Icarus. 185(2), 563–567. DOI: https://doi.org/10.1016/j.icarus.2006.08.022
[9] De Sanctis, M.C., Raponi, A., Ammannito, E., et al., 2016. Bright Carbonate Deposits as Evidence of Aqueous Alteration on (1) Ceres. Nature. 536, 54–57.
[10] King, T.V.V., Clark, R.N., Calvin, W.M., et al., 1992. Evidence for Ammonium-bearing Minerals on Ceres. Science. 255(5051), 1551–1553. DOI: https://doi.org/10.1126/science.255.5051.1551
[11] Milliken, R.E., Rivkin, A.S., 2009. Brucite and Carbonate Assemblages from Altered Olivine-rich Materials on Ceres. Nat. Geosci. 2(4), 258–261. DOI: https://doi.org/10.1038/ngeo478
[12] Rivkin, A.S., Li, J.-Y., Milliken, R.E., et al., 2012. The Surface Composition of Ceres. In: Redline S., Berger, N.A., (Eds.). The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer: New York, NY, USA. pp. 95–116. DOI: https://doi.org/10.1007/S11214-010-9677-4
[13] Beck, P., Schmitt, B., Cloutis, E., et al., 2015. Low-temperature Reflectance Spectra of Brucite and the Primitive Surface of 1-Ceres? Icarus. 257, 471–476. DOI: https://doi.org/10.1016/j.icarus.2015.05.031
[14] Ammannito, E., DeSanctis, M.C., Ciarniello, M., et al., 2016. Distribution of Phyllosilicates on the Surface of Ceres. Science. 353. DOI: https://doi.org/10.1126/science.aaf4279
[15] Carrozzo, F.G., De Sanctis, M.C., Raponi, A., et al., 2018. Nature, Formation, and Distribution of carbonates on Ceres. Sci. Adv. 4(3). DOI: https://doi.org/10.1126/sciadv.1701645
[16] De Sanctis, M.C., Ammannito, E., Raponi, A., et al., 2015. Ammoniated Phyllosilicates with A Likely Outer Solar System Origin on (1) Ceres. Nature. 528, 241–244.
[17] Scully, J.E.C., Russell, C.T., Castillo-Rogez, J.C., et al., 2019. Introduction to the Special Issue: the Formation and Evolution of Ceres’ Occator Crater. Icarus. 320, 1–6. DOI: https://doi.org/10.1016/j.icarus.2018.02.029
[18] Scully, J.E.C., Schenk, P.M., Castillo-Rogez., J.C., et al., 2020. The Varied Sources of Faculae-forming Brines in Ceres’ Occator Crater, Emplacement via Hydrothermal Brine Effusion. Nat. Commun. 11, 3680.
[19] Raponi, A., De Sanctis, M.C., Carrozzo, F.G., et al., 2019. Mineralogy of Occator Crater on Ceres and Insight into Its Evolution from the Properties of Carbonates, Phyllosilicates, and Chlorides. Icarus. 320, 83–96. DOI: https://doi.org/10.1016/j.icarus.2018.02.001
[20] McSween, H.Y., Emery, J.P., Rivkin, A.S., et al., 2017. Carbonaceous Chondrites as Analogs for the Composition and Alteration of Ceres. Meteorit. Planet. Sci. 1–12. DOI: http://dx.doi.org/10.1111/maps.12947
[21] Postberg, F., Schmidt, J., Hillier, J., et al., 2011. A Salt-water Reservoir as the Source of a Compositionally Stratified Plume on Enceladus. Nature. 474, 620–622.
[22] Zambon, F., Raponi, A., Tosi, F., et al., 2017, Spectral Analysis of Ahuna Mons from Dawn Mission’s Visible-infrared Spectrometer. Geophys. Res. Lett. 44, 97–104.
[23] Buczkowski, D.L., Sizemore, H.G., Bland, M.T., et al., 2018. Floor-fractured craters on Ceres and Implications for Interior Processes. Journal of Geophysical Research: Planets. 123, 3188–3204. DOI: https://doi.org/10.1029/2018JE005632
[24] Thomas, E.C., Vu, T.H., Hodyss, R., et al., 2019. Kinetic Effect on the Freezing of Ammonium-sodium-carbonate-chloride Brines and Implications for the Origin of Ceres’ Bright Spots. Icarus. 320, 150–158. DOI: https://doi.org/10.1016/j.icarus.2017.12.038
[25] Sizemore, H.G., Schmidt, B.E., Buczkowski, D.A., et al., 2018. A Global Inventory of Ice‐Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. JGR Planets. DOI: https://doi.org/10.1029/2018JE005699
[26] Bowling, T.J., Ciesla, F.J., Marchi, S., et al., 2016. Impact Induced Heating of Occator Crater on Asteroid 1 Ceres. Proceedings of the 47th LPSC; The Woodlands, TX, USA; 21–25 March 2016. p. 2268.
[27] Bowling, T.J., Ciesla, F.J., Davison, T.M., et al., 2018. Post-impact Thermal Structure and Colling Timescales of Occator Crater on Asteroid 1 Ceres. Icarus. DOI: https://doi.org/10.1016/j.icarus.2018.08.028
[28] De Sanctis, M.C., Frigeri, A., Ammannito, E., et al., 2019. Ac-H-11 Sintana and Ac-H-12 Toharu Quadrangles: Assessing the large and Small Scale Heterogeneities of Ceres’ Surface. Icarus. 318, 230–240. DOI: https://doi.org/10.1016/j.icarus.2017.08.014
[29] Ruiz, J., Jiménez-Díaz, A., Mansilla, F., et al., 2019. Evidence of Thrust Faulting and Widespread Contraction of Ceres. Nature astronomy. DOI: https://doi.org/10.1038/s41550-019-0803-2
[30] Zolotov, M.Y., 2017. Aqueous Origins of Bright Salt Deposits on Ceres. Icarus. 296, 289–304.
[31] De Sanctis, M.C., Ammannito, E., Raponi, A., et al., 2020. Fresh Emplacement of Hydrated Sodium Chloride on Ceres from Ascending Salty Fluids. Nature Astronomy. DOI: https://doi.org/10.1038/s41550-020-1138-8
[32] Vu, T.H., Hodyss, R., Johnson, P.V., et al., 2017. Preferential Formation of Sodium Salts from Frozen Sodium-ammonium-chloride-carbonate Brines – Implications for Ceres’ Bright Spots. Planetary and Space Science. 141, 73–77.
[33] Fanale, F.P., Salvail, J.R., 1989. The Water Regime of Asteroid 1 Ceres. Icarus. 82, 97–110.
[34] Hayne, P.O., Aharonson, O., 2015. Thermal Stability of Ice on Ceres with Rough Topography. J. Geophys. Res. Planets. 120, 1567–1584. DOI:https://doi.org/10.1002/2015JE004887
[35] Formisano, M., De Sanctis, M.C., Magni, G., et al., 2016. Ceres Water Regime: Surface Temperature, Water Sublimation and Transient Exo(atmo)sphere. MNRAS. 455, 1892–1904. DOI:https://doi.org/10.1093/mnras/stv2344
[36] Bu, C., Rodriguez Lopez, G., Dukes, C.A., et al., 2019. Stability of Hydrated Carbonates on Ceres. Icarus. DOI: https://doi.org/10.1016/j.icarus.2017.12.036
[37] Zolotov, M.Y., 2020. The Composition and Structure of Ceres’ Interior. Icarus. 335. DOI:https://doi.org/10.1016/j.icarus.2019.113404
[38] Quick, L.C., Buczkowski, D.L., Ruesch, O., et al., 2019. A Possible Brine Reservoir beneath Occator Crater: Thermal and Compositional Evolution and Formation of the Cerealia Dome and Vinalia Faculae. Icarus. 320, 119–135. DOI: https://doi.org/10.1016/j.icarus.2018.07.016
[39] Fu, R., Ermakov, E., Marchi, S., et al., 2017. The Interior Structure of Ceres as Revealed by Surface Topography. Earth Planet. Sci. Lett. 476, 153–164.
[40] Ermakov, A.I., Fu, R.R., Castillo-Rogez, J.C., et al., 2017. Constraints on Ceres’ Internal Structure and Evolution from Its Shape and Gravity Measured by the Dawn Spacecraft. J. Geophys. Res. Planets. 122, 2267–2293.
[41] Hesse, M.A., Castillo-Rogez, J.C., 2019. Thermal Evolution of the Impact-Induced Cryomagma Chamber Beneath Occator Crater on Ceres. Geophysical Research Letters. 46(3), 1213–1221. DOI: https://doi.org/10.1029/2018GL080327
[42] Ruesch, O., Quick, L.C., Landis, M.E., et al., 2019a. Bright Carbonate Surfaces on Ceres as Remnants of Salt-rich Water Fountains. Icarus. 320, 39–48. DOI: https://doi.org/10.1016/j.icarus.2018.01.022
[43] Ruesch, O., Genova, A., Neumann, W., et al., 2019b. Slurry Extrusion on Ceres from a Convective Mud-bearing Mantle. Nature Geoscience. 12(7), 1–5. DOI: https://doi.org/10.1038/s41561-019-0378-7
[44] Zolotov, M.Y., 2015. Physical Chemistry of Impact-generated Fluids and Bright Spots on Ceres. Meteorit. Planet. Sci. 50, 5384.
[45] Nathues, A., Platz, T., Thangjam, G., et al., 2017. Evolution of Occator Crater on (1) Ceres. Astronom. J. 153(3). DOI: https://doi.org/10.3847/1538-3881/153/3/112
[46] Ruesch, O., Nathues, A., Jaumann, R., et al., 2017. Faculae on Ceres: Possible Formation Mechanisms. Lunar Planet. Sci. 48, 2435.
[47] Stein, N.T., Ehlmann, B.L., Palomba, E., et al., 2019. The Formation and Evolution of Bright Spots on Ceres. Icarus. 320, 188–201. DOI: https://doi.org/10.1016/j.icarus.2017.10.014
[48] Hernandez, J., Nathues, A., Hiesinger, H., et al., 2022. Geology and Color of Kupalo Crater on Ceres. Planet. Space Sci. 220, 105538. DOI:https://doi.org/10.1016/j.pss.2022.105538
[49] Hernandez, J., Nathues, A., Hiesinger, H., et al., 2023. The Unique Floor of Juling Crater on Ceres. Planetary and Space Science. 239. DOI: https://doi.org/10.1016/j.pss.2023.105812
[50] Schmidt, B.E., Hughson, K.H.G., Chilton, H.T., et al., 2017. Geomorphological Evidence for Ground Ice on Dwarf Planet Ceres. Nature Geoscience. 10, 338–343.
[51] Raponi, A., De Sanctis, M.C., Frigeri, A., et al., 2018. Variations in the amount of water ice on Ceres’ surface suggest a seasonal water cycle. Science Advances. 4, eaao3757. DOI: https://doi.org/10.1126/sciadv.aao3757
[52] Pitzer, K.S., 1995. Thermodynamics, 3rd ed. McGraw‐Hill: New York, NY, USA. p. 626.
[53] Marion, G.M., Grant, S.A., 1994. FREZCHEM: A Chemical-thermodynamic Model for Aqueous Solutions at Subzero Temperatures. CRREL Special Report 94–18, Hanover, NH.
[54] Marion, G.M., Catling, D.C., Kargel, J.S., 2003. Modeling Aqueous Ferrous Iron Chemistry at Low Temperatures with Application to Mars. Geochim. Cosmochim. Acta. 67, 4251–4266.
[55] Castillo‐Rogez, J.C., Neveu, M., McSween, H.Y., et al., 2018. Insights into Ceres’s Evolution from Surface Composition. Meteoritics and Planetary Science. DOI: https://doi.org/10.1111/maps.13181
[56] De Angelis, S., Carli, C., Tosi, F., et al., 2019. NIR Reflectance Spectroscopy of Hydrated and Anhydrous Sodium Carbonates at Different Temperatures. Icarus. 317, 388–411. DOI: https://doi.org/10.1016/j.icarus.2018.08.012
[57] Saint-Pe, O., Combes, M., Rigaut, F., 1993. Ceres Surface Properties by High-Resolution Imaging from Earth. Icarus.105, 271–281. DOI: https://doi.org/10.1006/icar.1993.1125
[58] Tosi, F., De Sanctis, M.C., Krohn, K., et al., 2016. Thermal Behavior of Bright Spots on Ceres. Proceedings of the 47th LPSC; The Woodlands, TX, USA; 21–25 March 2016. p. 1883.
[59] Capria, M.T., Tosi, F., De Sanctis, M.C., et al., 2014. Vesta Surface Thermal Properties Map. Geophysical Research Letters. 41(5), 1438–1443.
[60] Rognini, E., Capria, M.T., Tosi, F., et al., 2020. High Thermal Inertia Zones on Ceres from Dawn Data. Journal of Geophysical Research: Planets, 125, e2018JE005733. DOI: https://doi.org/10.1029/2018JE005733
[61] Palmer, E.M., Heggy, E., Letertre, T., et al., 2021. Exploring Ceres’s Unusual Regolith Porosity and Its Implications for Volatile Retention. Planet. Sci. J. DOI: https://doi.org/10.3847/PSJ/ac0b3e
[62] Marion, G.M., Mironenko, M.V., Roberts, M.W., 2010. FREZCHEM: A Geochemical Model for Cold Aqueous Solutions. Computers & Geosciences. 36(1), 10–15. DOI: https://doi.org/10.1016/j.cageo.2009.06.004
[63] Langelier, W.F., Ludwig, H.F., 1942. Graphical Methods for Indicating the Mineral Character of Natural Waters. Journal American Water Works Association. 34(3), 335–352.
[64] Minissale, A., Magro, G., Martinelli, G., et al., 2000. Fluid Geochemical Transect in the Northern Apennines (Central-Northern Italy): Fluid Genesis and Migration and Tectonic Implications. Tectonophysics. 319(3), 199–222. DOI: https://doi.org/10.1016/S0040-1951(00)00031-7
[65] Wilson, L., Head, J.W., 2017. Generation, Ascent and Eruption of Magma on the Moon: New Insights into Source Depths, Magma Supply, Intrusions and Effusive/explosive Eruptions (Part 1: Theory). 283, 146–175. DOI: https://doi.org/10.1016/j.icarus.2015.12.039
[66] Miyamoto, H., Mitri, G., Showman, A.P., et al., 2005. Putative Ice Flows on Europa: Geometric Patterns and Relation to Topography Collectively Constrain Material Properties and Effusion Rates. Icarus. 177, 413–424.
[67] Quick, L.C., Marsh, B.D., 2016. Heat Transfer and Cooling of Ascending Cryomagmas on Europa. J. Volcanol. Geotherm. Res. 319, 66–77.
[68] Fagents, S.A., 2003. Considerations for Effusive Cryovolcanism on Europa: The Post-Galileo Perspective. Journal of Geophysical Reasearch. 108(E12), 5139. DOI: https://doi.org/10.1029/2003JE002128
[69] Lanzafame, G., Iezzi, G., Mancini, L., et al., 2017. Solidification and Turbulence (Non-laminar) during Magma Ascent: Insights from 2D and 3D Analyses of Bubbles and Minerals in an Etnean Dyke. Journal of Petrology. 58(8), 1511–1533. DOI: https://doi.org/10.1093/petrology/egx063
[70] Yasuda, K., Ohmura, R., 2008. Phase Equilibrium for Clathrate Hydrates Formed with Methane, Ethane, Propane or Carbon Dioxide at Temperatures below the Freezing Point of Water. J. Chem. Eng. Data. 53(9), 2182–2188. DOI: https://doi.org/10.1021/je800396v
[71] Kieffer, S.W., Lu, X., Bethke, C.M., et al., 2006. A Clathrate Reservoir Hypothesis for Enceladus' South Polar Plume. Science, 314, 5806. DOI: https://doi.org/10.1126/science.1133519
[72] Scharlin, P., (contributors: Cargill, R.W., et al.), 1996. Carbon Dioxide in Water and Aqueous Electrolyte Solutions. Oxford University Press, UK. Solubility data series. Volume 62, 383 p.
[73] Duan, Z., Sun, R., 2003. An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions from 273 to 533 K and from 0 to 2000. Chemical Geology. 193, 257–271. DOI: https://doi.org/10.1016/S0009-2541(02)00263-2
[74] Duan, Z., Sun, R., Zhu, C., et al., 2006. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine Chemistry. 98, 131–139.
[75] Li, J., Ahmed, R., Li, X., 2018. Thermodynamic Modeling of CO2-N2-O2-Brine-Carbonates in Conditions from Surface to High Temperature and Pressure. Energies. 11, 2627. DOI: https://doi.org/10.3390/en11102627
[76] Butler, B.M., Papadimitriou, S., Santoro, A., et al., 2016. Mirabilite Solubility in Equilibrium Sea Ice Brines. Geochim. Cosmochim. Acta. 182, 40–54.
[77] Millero, F.J., Leung, W.H., 1976. The Thermodynamics of Seawater at One Atmosphere. Am. J. Sci. 276, 1035–1077. DOI: https://doi.org/10.2475/ajs.276.9.1035
[78] Bramble, M.S., Hand, K.P., 2022. Spectral Evidence for Irradiated Sodium Chloride on the Surface of 1 Ceres. Geophysical Research Letters. 49, e2021GL096973. DOI: https://doi.org/10.1029/2021GL096973
[79] Anabaraonye, B.U., Crawshaw, J.P., Trusler, J.P.M., 2019. Brine Chemistry Effects in Calcite Dissolution Kinetics at Reservoir Conditions. Chemical Geology. 509, 92–102. DOI: https://doi.org/10.1016/j.chemgeo.2019.01.014
[80] Li, X., Peng, C., Crawshaw, J.P., et al., 2018. The pH of CO2-saturated Aqueous NaCl and NaHCO3 Solutions at Temperatures between 308 K and 373 K at Pressures up to 15 MPa. Fluid Phase Equilibria. 458, 253–263.