A Multi-Proxy Environmental Reconstruction of the Covacha de los Zarpazos in Galería Site (Atapuerca, Spain)
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, 00143, Italy
Department of Physics of the Earth and Astrophysics, Faculty of Physics, Complutense University of Madrid, Madrid, 28040, Spain
Department of Physics of the Earth and Astrophysics, Faculty of Physics, Complutense University of Madrid, Madrid, 28040, Spain
Geosciences Institute (UCM, CSIC), Madrid, 28040, Spain
Institute of Applied Magnetism (UCM), Las Rozas, 28230, Spain
Geochronology and Geology, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, 09002, Spain
Geochronology and Geology, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, 09002, Spain
Geochronology and Geology, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, 09002, Spain
Département Homme et Environnement, Muséum National d'Histoire Naturelle, Paris, 75005, France
Department of Britain, Europe and Prehistory, British Museum, London, N1 5QJ, United Kingdom
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, 43007, Spain
Department d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, 43003, Spain
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, 43007, Spain
Department d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, 43003, Spain
DOI: https://doi.org/10.36956/eps.v3i2.1108
Received: 26 May 2024; Received in revised form: 13 June 2024; Accepted: 26 June 2024; Published: 14 August 2024
Copyright © 2024 Author(s). Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
Magnetic properties of iron oxides provide invaluable data for environmental reconstruction during sediment deposition. Encouraged by the results of our previous studies in the near Gran Dolina site, we investigate the GI waterlain facies sediments that fill Galería Complex cave (Sierra de Atapuerca, Spain), in particular the Covacha de los Zarpazos cave considering two vertical profiles at different walls and comparing them with two profiles previously analysed. For the first time in this cave, we propose a correlation among these two walls based on the low field susceptibility values. An environmental reconstruction is proposed based on the pedogenesis and weathering processes, and water activity influencing the composition, concentration and grain size of magnetic minerals. In order to have a more comprehensive interpretation, elemental geochemistry was also analysed. The results allow to identify three different sections with the alternation of environmental characteristics.
Keywords: Environmental magnetism; Galería cave; Waterlain facies; Pedogenesis influence; Weathering degree
References
[1] D'Arcangelo, S., Martín-Hernández, F., Parés, J.M., 2021. Magnetic properties of cave sediments at Gran Dolina site in Sierra de Atapuerca (Burgos, Spain). Quaternary International. 583, 1–13. DOI: https://doi.org/10.1016/j.quaint.2021.02.041
[2] D'Arcangelo, S., Martín-Hernández, F., Parés, J.M., 2023. Environmental reconstruction from the identification of magnetic minerals in the upper sedimentary infill of the Gran Dolina cave (Burgos, Spain). Applied Sciences. 13(7), 4580. DOI: https://doi.org/10.3390/app13074580
[3] Šroubek, P., Diehl, J.F., Kadlec, J., 2007. Historical climatic record from flood sediments deposited in the interior of Spirálka Cave, Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology. 251(3–4), 547–562. DOI: https://doi.org/10.1016/j.palaeo.2007.05.001
[4] Aidona, E., Pechlivanidou, S., Pennos, C., 2017. Environmental magnetism: Application to cave sediments. Bulletin of the Geological Society of Greece. 47(2), 892. DOI: https://doi.org/10.12681/bgsg.11128
[5] Bógalo, M.F., Bradák, B., Villalaín, J.J., et al., 2021. High-resolution late Middle Pleistocene paleoclimatic record from the Galería Complex, Atapuerca archaeological site, Spain—An environmental magnetic approach. Quaternary Science Reviews. 251, 106721. DOI: https://doi.org/10.1016/j.quascirev.2020.106721
[6] Goldberg, P., Sherwood, S.C., 2006. Deciphering human prehistory through the geoarcheological study of cave sediments. Evolutionary Anthropology: Issues, News, and Reviews. 15(1), 20–36. DOI: https://doi.org/10.1002/evan.20094
[7] Karkanas, P., Goldberg, P., 2019. Reconstructing Archaeological Sites: Understanding the Geoarchaeological Matrix, 1st ed. Wiley-Blackwell: UK. DOI: https://doi.org/10.1002/9781119016427
[8] Arnold, L.J., Demuro, M., Parés, J.M., et al., 2015. Evaluating the suitability of extended-range luminescence dating techniques over early and Middle Pleistocene timescales: Published datasets and case studies from Atapuerca, Spain. Quaternary International. 389, 167–190. DOI: https://doi.org/10.1016/j.quaint.2014.08.010
[9] Berger, G.W., Pérez-González, A., Carbonell, E., et al., 2008. Luminescence chronology of cave sediments at the Atapuerca paleoanthropological site, Spain. Journal of Human Evolution. 55(2), 300–311. DOI: https://doi.org/10.1016/j.jhevol.2008.02.012
[10] Demuro, M., Arnold, L.J., Parés, J.M., et al., 2014. New Luminescence Ages for the Galería Complex Archaeological Site: Resolving Chronological Uncertainties on the Acheulean Record of the Sierra de Atapuerca, Northern Spain. PLoS ONE. 9(10), e110169. DOI: https://doi.org/10.1371/journal.pone.0110169
[11] Falguères, C., Bahain, J.J., Yokoyama, Y., et al., 2001. Datation par RPE et U-Th des sites pléistocènes d’Atapuerca: Sima de los Huesos, Trinchera Dolina et aTrinchera Galería. Bilan géochronologique. L'Anthropologie. 105(1), 71–81. DOI: https://doi.org/10.1016/S0003-5521(01)80006-6
[12] Falguères, C., Bahain, J.J., Bischoff, J.L., et al., 2013. Combined ESR/U-series chronology of Acheulian hominid-bearing layers at Trinchera Galería site, Atapuerca, Spain. Journal of Human Evolution. 65(2), 168–184. DOI: https://doi.org/10.1016/j.jhevol.2013.05.005
[13] Grün, R., Aguirre, E. 1987. Datación por ESR y por la serie del U, en los depósitos cársticos de Atapuerca. In: Aguirre, E., Carbonell, E., Castro, J.M.B. (eds). El Hombre Fósil de Ibeas y el Pleistoceno de la Sierra de Atapuerca: I. Junta de Castilla y León: Valladolid. pp. 201–204.
[14] Pérez-González, A., Parés, J.M., Gallardo, J., et al., 1999. Geología y estratigrafía del relleno de Galería de la Sierra de Atapuerca (Burgos) en: Carbone-11, E. In: Roura, E.C., González, A.R., Fernández-Lomana, J.C.D. (eds). Atapuerca: Ocupaciones Humanas y Paleoecología del Yacimiento de Galería. Junta de Castilla y León: Valladolid. pp. 31–42.
[15] Campaña, I., Benito-Calvo, A., Pérez-González, A., et al., 2023. Reconstructing depositional environments through cave interior facies: The case of Galería Complex (Sierra de Atapuerca, Spain). Geomorphology. 440, 108864. DOI: https://doi.org/10.1016/j.geomorph.2023.108864
[16] Jordanova, D., Grygar, T., Jordanova, N., et al., 2006. Palaeoclimatic significance of hematite/goethite ratio in Bugarian loess-paleosol sediments deduced by DRS and rock magnetic measurements. In: Petrovský, E., Ivers, D., Harinarayana, T., et al. (eds). The Earth’s Magnetic Interior. Springer: Dordrecht. pp. 399–412. DOI: https://doi.org/10.1007/978-94-007-0323-0_26
[17] Liu, Q., Torrent, J., Maher, B.A., et al., 2005. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research: Solid Earth. 110(B11), B11102. DOI: https://doi.org/10.1029/2005JB003726
[18] Bloemendal, J., Liu, X., Sun, Y., et al., 2008. An assessment of magnetic and geochemical indicators of weathering and pedogenesis at two contrasting sites on the Chinese Loess plateau. Palaeogeography, Palaeoclimatology, Palaeoecology. 257(1–2), 152–168. DOI: https://doi.org/10.1016/j.palaeo.2007.09.017
[19] Parés, J.M., Pérez-González, A., Arsuaga, J.L., et al., 2010. Characterizing the sedimentary history of cave deposits, using Archaeomagnetism and rock magnetism, Atapuerca (Northern Spain). Archaeometry. 52(5), 882–898. DOI: https://doi.org/10.1111/j.1475-4754.2010.00533.x
[20] Ortega, A.I., 2009. La evolución geomorfológica del karst de la Sierra de Atapuerca (Burgos) y su relación con los yacimientos Pleistocenos que contiene [PhD thesis]. Burgos: Universidad de Burgos. p. 200. DOI: https://doi.org/10.36443/10259/7143
[21] Ortega, A.I., Benito-Calvo, A., Pérez-González, A., et al., 2013. Evolution of multilevel caves in the Sierra de Atapuerca (Burgos, Spain) and its relation to human occupation. Geomorphology. 196, 122–137. DOI: https://doi.org/10.1016/j.geomorph.2012.05.031
[22] Pérez-González, A., Aleixandre, T., Pinilla, A., et al., 1995. An approach to the Galería stratigraphy in the Sierra de Atapuerca trench (Burgos). In: de Castro, J.M.B., Carbonell, E., Arsuaga, J.L. (eds). Human Evolution in Europe and the Atapuerca Evidence. Junta de Castilla y León: Valladolid. pp. 99–122.
[23] Pérez-González, A., Parés, J.M., Carbonell, E., et al., 2001. Géologie de la Sierra de Atapuerca et stratigraphie des remplissages karstiques de Galería et Dolina (Burgos, Espagne). L’Anthropologie. 105(1), 27–43. DOI: https://doi.org/10.1016/S0003-5521(01)80004-2
[24] Bermejo, L., Ortega, A.I., Guérin, R., et al., 2017. 2D and 3D ERT imaging for identifying karst morphologies in the archaeological sites of Gran Dolina and Galería Complex (Sierra de Atapuerca, Burgos, Spain). Quaternary International. 433, 393–401. DOI: https://doi.org/10.1016/j.quaint.2015.12.031
[25] Parés, J.M., Álvarez, C., Sier, M., et al., 2018. Chronology of the cave interior sediments at Gran Dolina archaeological site, Atapuerca (Spain). Quaternary Science Reviews. 186, 1–16. DOI: https://doi.org/10.1016/j.quascirev.2018.02.004
[26] Campaña, I., Benito-Calvo, A., Pérez-González, A., et al., 2022. Revision of TD1 and TD2 stratigraphic sequence of Gran Dolina cave (Sierra de Atapuerca, Spain). Journal of Iberian Geology. 48(4), 425–443. DOI: https://doi.org/10.1007/s41513-022-00200-8
[27] Ortega, A.I., Benito, A., Pérez-González, A., et al., 2014. Atapuerca karst and its palaeoanthropological sites. In: Gutiérrez, F., Gutiérrez, M. (eds). Landscapes and Landforms of Spain. Springer: Dordrecht. pp. 101–110. DOI: https://doi.org/10.1007/978-94-017-8628-7_8
[28] Cáceres, I., 2002. Tafonomia de yacimientos antrópicos en karst. Complejo Galería (Sierra de Atapuerca, Burgos), Vanguard Cave (Gibraltar) y Abric Romaní (Capellades, Barcelona) [PhD thesis]. Tarragona: Universitat Rovira i Virgili. p. 100.
[29] Ollé, A., Cáceres, I., Vergès, J.M., 2005. Human occupations at Galería site (Sierra de Atapuerca, Burgos, Spain) after the technological and taphonomical data. In: Molines, N., Moncel, M.H., Monnier, J.L. (eds). Les Premiers Peuplements en Europe. Colloque International: Données Récentes sur les Modalités de Peuplement et sur le Cadre Chronostratigraphique, Géologique et Paléogéographique des Industries du Paléolithique Ancien et Moyen en Europe (Rennes, 22–25 Septembre 2003). John and Erika Hedges Ltd: Oxford. pp. 269–280.
[30] Cáceres, I., Huguet, R., Rosell, J., et al., 2010. El yacimiento de Galería (Sierra de Atapuerca, Burgos, España): un enclave para la obtención de recursos cárnicos en el Pleistoceno Medio. Zona arqueológica. 13, 186–196.
[31] García-Medrano, P., Cáceres, I., Ollé, A., et al., 2017. The occupational pattern of the Galería site (Atapuerca, Spain): A technological perspective. Quaternary International. 433, 363–378. DOI: https://doi.org/10.1016/j.quaint.2015.11.013
[32] Bermúdez de Castro, J.M., Rosas, A., 1992. A human mandibular fragment from the Atapuerca Trench (Burgos, Spain). Journal of Human Evolution. 22(1), 41–46. DOI: https://doi.org/10.1016/0047-2484(92)90028-8
[33] Head, M.J., Pillans, B., Farquhar, S.A., 2008. The Early—Middle Pleistocene Transition: characterization and proposed guide for the defining boundary. Episodes. 31(2), 255–259. DOI: https://doi.org/10.18814/epiiugs/2008/v31i2/014
[34] Head, M.J., Gibbard, P.L., 2015. Early–Middle Pleistocene transitions: Linking terrestrial and marine realms. Quaternary International. 389, 7–46. DOI: https://doi.org/10.1016/j.quaint.2015.09.042
[35] Ollé, A., Huguet, R., 1999. Secuencia arqueoestratigráfica del yacimiento de Galería, Atapuerca. In: Roura, E.C., González, A.R., Fernández-Lomana, J.C.D. (eds). Atapuerca: Ocupaciones humanas y paleoecología del yacimiento de Galería. Junta de Castilla y León: Valladolid. pp. 55–62.
[36] Vallverdú, P., 1999. Microfacies y micromorfología de GII y GIII de Trinchera Galería. In: Roura, E.C., González, A.R., Fernández-Lomana, J.C.D. (eds). Atapuerca: Ocupaciones humanas y paleoecología del yacimiento de Galería. Junta de Castilla y León: Valladolid. pp. 43–55.
[37] Galindo-Pellicena, M.A., Cuenca-Bescós, G., Arsuaga, J.L., 2011. Los micromamíferos (Rodentia, Soricomorpha, Erinaceomorfa, Lagomorpha y Chiroptera) del Pleistoceno Medio de la Covacha de los Zarpazos (Sierra de Atapuerca, Burgos, España). Boletín de la Real Sociedad Española de Historia Natural. Sección Geológica. 105(1–4), 87–97.
[38] Rosas, A., Bermúdez de Castro, J.M., 1999. Descripción y posición evolutiva de la mandíbula AT76-T1H del yacimiento de Galería (Sierra de Atapuerca). In: Roura, E.C., González, A.R., Fernández-Lomana, J.C.D. (eds). Atapuerca: Ocupaciones Humanas y Paleoecología del Yacimiento de Galería. Consejería de Educación y Cultura: Valladolid. pp. 237–244.
[39] Arsuaga, J.L., Gracia, A., Lorenzo, C., et al., 1999. Resto craneal humano de Galería/Cueva de los Zarpazos (Sierra de Atapuerca). In: Roura, E.C., González, A.R., Fernández-Lomana, J.C.D. (eds). Atapuerca: Ocupaciones Humanas y Paleoecología del Yacimiento de Galería. Consejería de Educación y Cultura: Valladolid. pp. 233–236.
[40] Rosas, A., Carbonell, E., Ollé, A., et al., 1999. Contribución del yacimiento de Galería (Sierra de Atapuerca) al Cuaternario Ibérico. In: Roura, E.C., González, A.R., Fernández-Lomana, J.C.D. (eds). Atapuerca: Ocupaciones Humanas y Paleoecología del Yacimiento de Galería. Consejería de Educación y Cultura: Valladolid. pp. 377–390.
[41] Néel, L., 1949. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Géophysique 5, 99–136.
[42] Egli, R., 2009. Magnetic susceptibility measurements as a function of temperature and frequency I: inversion theory. Geophysical Journal International. 177(2), 395–420. DOI: https://doi.org/10.1111/j.1365-246X.2009.04081.x
[43] Dearing, J.A., Dann, R.J.L., Hay, K., et al., 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International. 124(1), 228–240. DOI: https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
[44] Stober, J.C., Thompson, R., 1979. Magnetic remanence acquisition in Finnish lake sediments. Geophysical Journal International. 57(3), 727–739. DOI: https://doi.org/10.1111/j.1365-246X.1979.tb06786.x
[45] Liu, Q., Roberts, A.P., Torrent, J., et al., 2007. What do the HIRM and S-ratio really measure in environmental magnetism? Geochemistry, Geophysics, Geosystems. 8, Q09011. DOI: https://doi.org/10.1029/2007GC001717
[46] Kruiver, P.P., Dekkers, M.J., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth and Planetary Science Letters. 189(3–4), 269–276. DOI: https://doi.org/10.1016/S0012-821X(01)00367-3
[47] Egli, R., 2003. Analysis of the field dependence of remanent magnetization curves. Journal of Geophysical Research: Solid Earth. 108(B2), 2081. DOI: https://doi.org/10.1029/2002JB002023
[48] Roberts, A.P., Reynolds, R.L., Verosub, K.L., et al., 1996. Environmental magnetic implications of Greigite (Fe3S4) Formation in a 3 m.y. lake sediment record from Butte Valley, northern California. Geophysical Research Letters. 23(20), 2859–2862. DOI: https://doi.org/10.1029/96gl02831
[49] Kodama, K.P., Hinnov, L.A., 2014. Rock Magnetic Cyclostratigraphy, 1st ed. John Wiley & Sons: USA. DOI: https://doi.org/10.1002/9781118561294.ch2
[50] Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors. 13(4), 260–267. DOI: https://doi.org/10.1016/0031-9201(77)90108-X
[51] Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetites data. Journal of Geophysical Research: Solid Earth. 107(B3). DOI: https://doi.org/10.1029/2001jb000486
[52] King, J., Banerjee, S.K., Marvin, J., et al., 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth and Planetary Science Letters. 59(2), 404–419. DOI: https://doi.org/10.1016/0012-821X(82)90142-X
[53] Zhang, X., Li, X.L., Garzanti, E., et al., 2021. Sedimentary geochemistry response to climate change on a millennial timescale in the Qiantang River incised-valley system, eastern China. Chemical Geology. 586, 120587. DOI: https://doi.org/10.1016/j.chemgeo.2021.120587
[54] Dankers, P., 1981. Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal International. 64(2), 447–461. DOI: https://doi.org/10.1111/j.1365-246X.1981.tb02676.x
[55] Chaparro, M.A.E., Sinito, A.M., Bidegain, J.C., et al., 2006. Magnetic studies of natural goethite samples from Tharsis, Huelva, Spain. Geofísica Internacional. 45(4), 219–230. DOI: https://doi.org/10.22201/igeof.00167169p.2006.45.4.159
[56] Özdemir, Ö., Dunlop, D.J., 2014. Hysteresis and coercivity of hematite. Journal of Geophysical Research: Solid Earth. 119(4), 2582–2594. DOI: https://doi.org/10.1002/2013jb010739
[57] Ahmadzadeh, M., Romero, C., McCloy, J., 2017. Magnetic analysis of commercial hematite, magnetite, and their mixtures. AIP Advances, 8(5). DOI: https://doi.org/10.1063/1.5006474
[58] Peters, C., Dekkers, M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, Parts A/B/C. 28(16–19), 659–667. DOI: https://doi.org/10.1016/S1474-7065(03)00120-7
[59] Rosenbaum, J.G., Reynolds, R., Adam, D.P., et al., 1996. Record of Middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon-Evidence from sediment magnetism, trace-element geochemistry, and pollen. Geological Society of America Bulletin. 108(10), 1328–1341. DOI: https://doi.org/10.1130/0016-7606(1996)108<1328:ROMPCC>2.3.CO;2
[60] Sokol, E.V., Kozlikin, M.B., Kokh, S.N., et al., 2022. Phosphate Record in Pleistocene-Holocene Sediments from Denisova Cave: Formation Mechanisms and Archaeological Implications. Minerals. 12(5), 553. DOI: https://doi.org/10.3390/min12050553
[61] Parker, A., 1970. An Index of Weathering for Silicate Rocks. Geological Magazine. 107(6), 501–504. DOI: https://doi.org/10.1017/s0016756800058581
[62] Yang, S., Jung, H.S., Li, C., 2004. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology. 164(1–2), 19–34. DOI: https://doi.org/10.1016/j.sedgeo.2003.08.001
[63] Garzanti, E., Padoan, M., Setti, M., et al., 2014. Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology. 366, 61–74. DOI: https://doi.org/10.1016/j.chemgeo.2013.12.016
[64] Kehl, M., Eckmeier, E., Franz, S.O., et al., 2014. Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial. Climate of the Past. 10(5), 1673–1692. DOI: https://doi.org/10.5194/cp-10-1673-2014
[65] Mora, G., Martínez, J.I., 2005. Sedimentary metal ratios in the Colombia Basin as indicators for water balance change in northern South America during the past 400.000 years. Paleoceanography. 20(4). DOI: https://doi.org/10.1029/2005pa001132
[66] Gehring, A.U., Fischer, H., Louvel, M., et al., 2009. High temperature stability of natural maghemite: a magnetic and spectroscopic study. Geophysical Journal International. 179(3), 1361–1371. DOI: https://doi.org/10.1111/j.1365-246x.2009.04348.x
[67] Jordanova, N., 2017. Soil magnetism: Applications in Pedology, Environmental Science and Agriculture. Academic Press: UK.
[68] Rankey, E.C., Farr, M.R. 1997. Preserved pedogenic mineral magnetic signature, pedogenesis, paleoclimate change: Pennsylvanian Roca Shale (Virgilian, Asselian), central Kansas, USA. Sedimentary Geology. 114(1–4), 11–32. DOI: https://doi.org/10.1016/S0037-0738(97)00102-4
[69] Maher, B.A., Karloukovski, V.V., Mutch, T.J., 2004. High-field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts. Earth and Planetary Science Letters. 226(3–4), 491–505. DOI: https://doi.org/10.1016/j.epsl.2004.05.042
[70] Tămaş, T., Kristály, F., Barbu-Tudoran, L., 2011. Mineralogy of Iza Cave (Rodnei Mountains, N. Romania). International Journal of Speleology. 40(2), 171–179. DOI: https://doi.org/10.5038/1827-806x.40.2.9
[71] Maher, B.A., 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal International. 94(1), 83–96. DOI: https://doi.org/10.1111/j.1365-246x.1988.tb03429.x
[72] Evans, M.E., Heller, F., 2003. Environmental magnetism: Principles and Applications of Enviromagnetics. Academic Press: USA. DOI: https://doi.org/10.1016/j.quascirev.2004.05.004
[73] Casey, T., 2009. Iron and manganese in water. Aquavarra Research R&D Publications. Paper 3.
[74] Usman, U.A., Yusoff, I., Raoov, M., et al., 2021. Natural sources of iron and manganese in groundwater of the lower Kelantan River Basin, North-eastern coast of Peninsula Malaysia: water quality assessment and an adsorption-based method for remediation. Environmental Earth Sciences. 80(12), 425. DOI: https://doi.org/10.1007/s12665-021-09717-0
[75] Torrent, J., Guzman, R., 1982. Crystallization of Fe(III)-Oxides from ferrihydrite in salt solutions: osmotic and specific ion effects. Clay Minerals. 17(4), 463–469. DOI: https://doi.org/10.1180/claymin.1982.017.4.09
[76] Maher, B., 1986. Characterisation of soils by mineral magnetic measurements. Physics of the Earth and Planetary Interiors. 42(1–2), 76–92. DOI: https://doi.org/10.1016/S0031-9201(86)80010-3
[77] Maher, B.A., Thompson, R., 1995. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research. 37(2), 155–170. DOI: https://doi.org/10.1016/0033-5894(92)90079-X
[78] Shahack-Gross, R., Berna, F., Karkanas, P., et al., 2004. Bat guano and preservation of archaeological remains in cave sites. Journal of Archaeological Science. 31(9), 1259–1272. DOI: https://doi.org/10.1016/j.jas.2004.02.004
[79] Dumitraş, D.G., Marincea, Ş., Fransolet, A.M., 2004. Brushite in the bat guano deposit from the "dry" Cioclovina Cave (Sureanu Mountains, Romania). Neues Jahrbuch Für Mineralogie, Abhandlungen. 180(1), 45–64. DOI: https://doi.org/10.1127/0077-7757/2004/0180-0045