Fisheries management with marine reserves: perspectives from equilibriums to transients

Renfei Chen

Shanxi Normal University

DOI: https://doi.org/10.36956/sms.v6i2.987

Received: 8 July 2024 | Revised: 14 August 2024 | Accepted: 16 September 2024 | Published Online: 25 September 2024

Copyright © 2024 Renfei Chen. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

Although debates exist, marine reserves play an important role in fisheries management. Based on stable equilibrium state, theoretical frameworks of various systems suggest that fisheries management with the implementation of marine reserves has obvious advantage in achieving multiple goals such as improving the target fisheries yields as well as maintaining species persistence in comparison with strategy of traditional fishing effort control. More recently, ecologists pay attention to the transient dynamics of fisheries yields when marine reserves are established. Simulation results suggest that the relative advantages between different fisheries management strategies (the implementation of marine reserves vs. traditional fishing effort control) depend on not only life histories but also the measurement metrics of fisheries yields (measured by number vs. measured by weight). Further research on transient dynamic pattern of fisheries yields can help fishery managers adjust relevant policies at an appropriate ecological time scale to achieve both conservation and economic goals, which provide a theoretical foundation for adaptive marine reserve management.

Keywords: marine protected area; fisheries management; population persistence; transient dynamics


References

[1] Game, E. T., M. Bode, E. McDonald‐Madden, H. S. Grantham, and H. P. Possingham. 2009. Dynamic marine protected areas can improve the resilience of coral reef systems. Ecology Letters 12:1336-1346. DOI: 10.1111/j.1461-0248.2009.01384.x

[2] Gaines, S. D., C. White, M. H. Carr, and S. R. Palumbi. 2010. Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci U S A 107:18286-18293. DOI: https://doi.org/10.1073/pnas.090647310

[3] Cohen, P. J., and S. J. Foale. 2013. Sustaining small-scale fisheries with periodically harvested marine reserves. Marine Policy 37:278-287. DOI: https://doi.org/10.1016/j.marpol.2012.05.010

[4] Chen, R., M. L. Baskett, and A. Hastings. 2020. Fishing the line depends on reserve benefits, individual losing at boundary and movement preference. bioRxiv. DOI: https://doi.org/10.1101/2020.09.15.299032

[5] Hastings, A., and L. W. Botsford. 1999. Equivalence in Yield from Marine Reserves and Traditional Fisheries Management. Science 284:1537-1538. DOI: 10.1126/science.284.5419.1537

[6] Gaylord, B., S. D. Gaines, D. A. Siegel, and M. H. Carr. 2005. Marine reserves exploit population structure and life history in potentially improving fisheries yields. Ecological Applications 15:2180-2191. DOI: https://www.jstor.org/stable/4543515

[7] White, C., and B. E. Kendall. 2007. A reassessment of equivalence in yield from marine reserves and traditional fisheries managament. Oikos 116:2039-2043. DOI: https://www.jstor.org/stable/40235041

[8] Aalto, E. A., and M. L. Baskett. 2013. Quantifying the balance between bycatch and predator or competitor release for nontarget species. Ecological Applications 23. DOI: 10.1890/12-1316.1

[9] Komoroske, L. M., and R. L. Lewison. 2015. Addressing fisheries bycatch in a changing world. Frontiers in Marine Science 2:1-11. DOI: https://doi.org/10.3389/fmars.2015.00083

[10] Scales, K. L., E. L. Hazen, M. G. Jacox, F. Castruccio, S. M. Maxwell, R. L. Lewison, and S. J. Bograd. 2018. Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proceedings of the National Academy of Sciences, USA 115:7362-7367. DOI: https://doi.org/10.1073/pnas.1801270115

[11] Welch, H., R. Pressey, and A. Reside. 2018. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. Journal for Nature Conservation 41:106-115. DOI: https://doi.org/10.1016/j.jnc.2017.12.003

[12] Hastings, A., S. D. Gaines, and C. Costello. 2017. Marine reserves solve an important bycatch problem in fisheries. Proceedings of the National Academy of Sciences, USA 114:8927-8934. DOI: https://doi.org/10.1073/pnas.1705169114

[13] Balbar, A. C., and A. Metaxas. 2019. The current application of ecological connectivity in the design of marine protected areas. Global Ecology and Conservation 17:e00569. DOI: https://doi.org/10.1016/j.gecco.2019.e00569

[14] Pagès-Escolà, M., B. Hereu, A. Medrano, E. Aspillaga, P. Capdevila, and C. Linares. 2020. Unravelling the population dynamics of the Mediterranean bryozoan Pentapora fascialis to assess its role as an indicator of recreational diving for adaptive management of marine protected areas. Ecological Indicators 109:105781. DOI: 10.1016/j.ecolind.2019.105781

[15] Rouphael, A. B. 2020. Adaptive management in context of MPAs: Challenges and opportunities for implementation. Journal for Nature Conservation:125864. DOI: https://doi.org/10.1016/j.jnc.2020.125864

[16] White, J. W., L. W. Botsford, A. Hastings, M. L. Baskett, D. M. Kaplan, and L. A. Barnett. 2013. Transient responses of fished populations to marine reserve establishment. Conservation Letters 6:180-191. DOI: doi: 10.1111/j.1755-263X.2012.00295.x

[17] Kaplan, K. A., L. Yamane, L. W. Botsford, M. L. Baskett, A. Hastings, S. Worden, and J. Wilson White. 2019. Setting expected timelines of fished population recovery for the adaptive management of a marine protected area network. Ecological Applications 29:e01949. DOI: https://doi.org/10.1002/eap.1949

[18] Nickols, K. J., J. W. White, D. Malone, M. H. Carr, R. M. Starr, M. L. Baskett, A. Hastings, and L. W. Botsford. 2019. Setting ecological expectations for adaptive management of marine protected areas. Journal of Applied Ecology 56:2376-2385. DOI: https://doi.org/10.1111/1365-2664.13463

[19] Hastings, A. 2004. Transients: the key to long-term ecological understanding? Trends in Ecology & Evolution 19:39-45. DOI: https://doi.org/10.1016/j.tree.2003.09.007

[20] Hastings, A. 2010. Timescales, dynamics, and ecological understanding. Ecology 91:3471-3480. DOI: https://doi.org/10.1890/10-0776.1

[21] Hastings, A., K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y.-C. Lai, A. Morozov, S. Petrovskii, K. Scranton, and M. L. Zeeman. 2018. Transient phenomena in ecology. Science 361:eaat6412. DOI: 10.1126/science.aat6412

[22] Morozov, A., K. Abbott, K. Cuddington, T. Francis, G. Gellner, A. Hastings, Y.-C. Lai, S. Petrovskii, K. Scranton, and M. L. Zeeman. 2020. Long transients in ecology: theory and applications. Physics of Life Reviews 32:1-40. DOI: https://doi.org/10.1016/j.plrev.2019.09.004

[23] Chen, R., C. Tu, and Q.-X. Liu. 2022. Transient perturbations reveal distinct strategies for reserve benefits in life history-dependent ecosystems. Ecological Modelling. DOI: https://doi.org/10.1016/j.ecolmodel.2022.109895

[24] Chen, R. 2020. Transient inconsistency between population density and fisheries yields without bycatch species extinction. Ecology and Evolution 0:1-13. DOI: https://doi.org/10.1002/ece3.6868