Vibration Isolation Characteristics of Impedance-balanced Ship Equipment Foundation under Unbalanced Excitation

Yuxuan Qin

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China

Yinbing Wang

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China

Fuzhen Pang

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China

Zhiqi Fu

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China

Haichao Li

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China

DOI: https://doi.org/10.36956/sms.v5i1.856

Received: 29 April 2023; Revised: 10 June 2023; Accepted: 25 June 2023; Published: 30 June 2023

Copyright © 2023 Yuxuan Qin; Yinbing Wang; Fuzhen Pang; Zhiqi Fu; Haichao Li. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

A new type of impedance-balanced ship equipment foundation structure based on the principle of impedance balancing using a “discontinuous panel-vibration isolation liquid layer-foundation structure” is proposed to solve the problem of poor low-frequency vibration isolation of the foundation under unbalanced excitation of shipboard equipment. Based on the finite element method, the influence of characteristic parameters of the foundation panel structure on its vibration reduction characteristics under unbalanced excitation is explored. The results show that the vibration isolation level of the impedance-balanced foundation is 10 dB higher than the traditional foundation in the low-frequency band of 10-500 Hz when subjected to combined excitation of concentrated force and moment. Increasing the thickness of the impedance-balanced foundation panel can enhance the isolation effect. Increasing the number of sub-panels can effectively reduce the vibration response of the foundation panel and enhance the isolation performance of the foundation. The connection stiffness between sub-panels has a small effect on the isolation performance of the foundation.

Keywords: Ship equipment foundation, Impedance-balanced design, Vibration isolation and reduction methods


References

[1] Yao, Y.R., Zhu, Sh.J., 2003. Li yong pin lv xiang ying han shu qiu she bei dui ji zuo de ji li (Chinese) [On determination of the exciting force of the equipment from the frequency-response function]. Chuan Hai Gong Cheng. (3), 5-8.

[2] Česnik, M., Slavič, J., Čermelj, P., et al., 2013. Frequency-based structural modification for the case of base excitation. Journal of Sound and Vibration. 332(20), 5029-5039. DOI: https://doi.org/10.3390/MACHINES11020229

[3] Zhao, F., Li, H., Li, H., et al., 2023. Experimental investigation of vibration reduction effect of high-pressure air compressor using composite damping base. Machines. 11(2), 229. DOI: https://doi.org/10.3390/MACHINES11020229

[4] Tan, X.X., 2022. qian shui zhuang bei nei bu ji zuo zu kang fen xi ji you hua she ji yan jiu (Chinese) [Research on impedance analysis and optimization design of diving equipment internal foundation] [Master’s thesis]. Chengdu: University of Electronic Science and Technology. DOI: https://doi.org/10.27005/d.cnki.gdzku.2022.001819

[5] Peng, D.W., 2020. Chuan bo ji zuo zu kang pi pei she ji yan jiu (Chinese) [Research on impedance matching design of ship foundation] [Master’s thesis]. Harbin: Harbin Engineering University. DOI: https://doi.org/10.27060/d.cnki.ghbcu.2020.000083

[6] Li, H., 2022. Da gong lü jian chuan yong chi lun xiang xiang ti jie gou de jian zhen jiang zao fang fa yan jiu (Chinese) [Research on vibration and noise reduction method for high power marine gearbox housing structure] [Master’s thesis]. Harbin: Harbin Institute of Technology. DOI: https://doi.org/10.27061/d.cnki.ghgdu.2020.001018

[7] Wang, G.Zh., Hu, Y.Ch., Chou, Y.W., 2012. Ji zuo can shu dui jian chuan jie gou zhen dong yu sheng fu she de ying xiang (Chinese) [Effects of the foundation parameters on ship structural vibration and acoustic radiation]. Jiang Su Ke Ji Da Xue Xue Bao (Zi Ran Ke Xue Ban). 26(03), 222-225.

[8] Yang, D.Q., Yang, K., Wang, B.H., 2020. Gang du-zhi liang-zu ni zong he you hua de chuan bo jian zhen tong yi zu kang mo xing fa (Chinese) [A unified impedance modeling method for ship structural dynamics synthetic layout optimization design]. Zhen Dong Gong Cheng Xue Bao. 33(3), 485-493. DOI: https://doi.org/10.16385/j.cnki.issn.1004-4523.2020.03.006

[9] Yang, K., Yang, D.Q., Wu, B.H., 2019. gao chuan di sun shi ji zuo zu kang you hua she ji fa (Chinese) [Impedance optimization design of foundation structures with high transmission loss]. Zhen Dong Yu Chong Ji. 38(6), 7-14. DOI: https://doi.org/10.13465/j.cnki.jvs.2019.06.002

[10] Lin, Y.Sh., Wu, W.G., 2015. Zu zhen zhi liang zu yi jie gou sheng chuan di fen xi fang fa ji bo zu te xing (Chinese) [Method for solving problems about impeding structure-borne sound transmission from blocking masses and wave impedance characteristics]. Hua Zhong Ke Ji Da Xue Xue Bao (Zi Ran Ke Xue Ban). 43(10), 30-36. DOI: https://doi.org/10.13245/j.hust.151007

[11] Liu, J.H., Jin, X.D., Li, Z., 2003. Zu zhen zhi liang zu yi jie gou sheng de chuan di (Chinese) [Impediment to structure-borne sound propagation from vibration isolation mass]. Shanghai Jiao Tong Da Xue Xue Bao. 37(8), 1201-1204. DOI: https://doi.org/10.16183/j.cnki.jsjtu.2003.08.015

[12] Yuan, C., Zhu, X., Zhang, G., et al., 2007. Indirect engineering estimation of force excited by machinery vibration sources of ship. Journal of Ship Mechanics. 11(6), 961.

[13] Chen, R., Liu, Sh.J., 2015. Dai fen bu shi dong li xi zhen qi ji zuo zhen dong chuan di te xing yan jiu (Chinese) [Study on vibration transmission characteristics of foundation system with distributed dynamic absorbers]. Chuan Bo Gong Cheng. 37(06), 50-53+74. DOI: https://doi.org/10.13788/j.cnki.cbgc.2015.06.050

[14] Ye, L.C., Xiao, W.Q., Shen, J.P., et al., 2021. Ji yu li zi zu ni de dong li zhuang zhi ji zuo jian zhen you hua she ji yan jiu (Chinese) [Vibration reduction optimization design of power plant installation foundation based on particle damping]. Zhen Dong Yu Chong Ji. 40(03), 40-47. DOI: https://doi.org/10.13465/j.cnki.jvs.2021.03.006

[15] Wu G.X., Jia, X.G., Zhang, Y., et al., 2022. Ji yu zhi hui fei xian xing ji zuo jie gou de jian chuan di pin xian pu zhong gou shi yan yan jiu (Chinese) [Low frequency line spectrum reconstruction tests of ship vibration based on hysteretic nonlinear foundation structure]. Zhen Dong Yu Chong Ji. 41(19), 122-128. DOI: https://doi.org/10.13465/j.cnki.jvs.2022.19.016

[16] Gong, Y.F., Peng, W.C., Zhang, J.J., et al. (editors), 2019. Research on the impediment to vibration wave propagation of pipe from a vibration isolation mass. 2019 5th Asia Conference on Mechanical Engineering and Aerospace Engineering; 2019 Jun 1-3; Wuhan, China. 288, 01002. DOI: https://doi.org/10.1051/matecconf/201928801002

[17] Qi, L.B., Zou, M.S., Liu, S.X., et al., 2019. Use of impedance mismatch in the control of coupled acoustic radiation of the submarine induced by propeller-shaft system. Marine Structures. 65, 249-258. DOI: https://doi.org/10.1016/j.marstruc.2019.02.001

[18] Pei, Y., Liu, Y., Zuo, L., 2018. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting. Journal of Sound and Vibration. 423, 1-17. DOI: https://doi.org/10.1016/j.jsv.2018.02.041

[19] Chen, Y.Q., Shuai, Ch.G., Xu, G.M., 2021. Qi nang ge zheng qi nai ya qiang du yan jiu (Chinese) [Research on the strength of air spring isolator]. Journal of Ship Mechanics. 25(07), 956-962.

[20] Du, X., Li, M., 2021. Nonlinear vibration mechanism of the marine rotating machinery with airbag isolation device under heaving motion. Shock and Vibration. 1-15. DOI: https://doi.org/10.1155/2021/8816723

[21] Bu, W.J., Shi, L., He, L., et al., 2019. Multi-objective coordinated attitude control method fordual layer air spring vibration isolation mounting. Journal of National University of Defense Technology. 41(06), 70-74.

[22] Yin, L.H., Xu, W., Liu, S., et al., 2022. Ji yu you xian yuan de fu he jie gou qi nang ge zhen qi jing tai te xing yan jiu (Chinese) [Research on static characteristics of compound structure air spring based on finite element]. Chuan Jian Ke Xue Ji Shu. 44(04), 38-42.

[23] Li, Y., Li, J., Tian, T., et al., 2013. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Materials and Structures. 22(9), 095020. DOI: https://doi.org/10.1088/0964-1726/22/9/095020

[24] Wu, W.H., Xiang, Y., Luo, W., et al., 2019. Fu za ji xie ge zhen xi tong zu kang yu chuan di sun shi guan lian xing yan jiu (Chinese) [Research on correlation between transmission loss and impedance of complex mechanical isolation systems]. Zao Sheng Yu Zheng Dong Kong Zhi. 39(1), 224-229.

[25] Ye, Zh.X., 2019. Ji zuo she ji dui ge zhen xiao guo de ying xiang fen xi yu you hua fang fa yan jiu (Chinese) [The influence and optimization of foundation design to the performance of vibration isolation system]. Chuan Jian Ke Xue Ji Shu. 41(17), 48-51.

[26] De Domenico, D., Ricciardi, G., 2018. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI). Earthquake Engineering & Structural Dynamics. 47(5), 1169-1192. DOI: https://doi.org/10.1002/eqe.3011

[27] Maciejewski, I., Zlobinski, M., Krzyzynski, T., 2021. Optimal design of vibration-isolation systems by means of a numerical simulation. Journal of Mechanical Science and Technology. 35, 3887-3894. DOI: https://doi.org/10.1007/S12206-021-0802-Y

[28] Li, X.Zh., Lu, J., Li, M.Zh., 2022. Ban ke jie gou hou du dui zu kang te xing ying xiang fen xi yan jiu (Chinese) [Analysis and research on influence of plate-shell structure thickness on impedance characteristics]. He Dong Li Gong Cheng. 43(S1), 137-141. DOI: https://doi.org/10.13832/j.jnpe.2022.S1.0137