Applications of Peridynamics in Marine Structures

Erkan Oterkus

PeriDynamics Research Centre, Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow

DOI: https://doi.org/10.36956/sms.v4i1.475

Copyright © 2022 nass sms. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


References

[1] Silling, S.A., 2000. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids. 48(1), 175- 209.

[2] Silling, S.A., Askari, E., 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures. 83(17-18), 1526-1535.

[3] Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E., 2007. Peridynamic states and constitutive modeling. Journal of Elasticity. 88(2), 151-184.

[4] Madenci, E., Oterkus, E., 2014. Peridynamic Theory and Its Applications. Springer, New York, NY.

[5] Vazic, B., Oterkus, E., Oterkus, S., 2020. In-plane and out-of plane failure of an ice sheet using peridynamics. Journal of Mechanics. 36(2), 265-271.

[6] Lu, W., Li, M., Vazic, B., Oterkus, S., Oterkus, E., Wang, Q., 2020. Peridynamic modelling of fracture in polycrystalline ice. Journal of Mechanics. 36(2), 223-234.

[7] Vazic, B., Oterkus, E., Oterkus, S., 2020. Peridynamic model for a Mindlin plate resting on a Winkler elastic foundation. Journal of Peridynamics and Nonlocal Modeling. pp. 1-10.

[8] Liu, M., Wang, Q., Lu, W., 2017. Peridynamic simulation of brittle-ice crushed by a vertical structure. International Journal of Naval Architecture and Ocean Engineering. 9(2), 209-218.

[9] Diyaroglu, C., Oterkus, E., Madenci, E., Rabczuk, T., Siddiq, A., 2016. Peridynamic modeling of composite laminates under explosive loading. Composite Structures. 144, 14-23.

[10] Oterkus, E., Madenci, E., 2012. Peridynamic analysis of fiber-reinforced composite materials. Journal of Mechanics of Materials and Structures. 7(1), 45-84.

[11] Kilic, B., Agwai, A., Madenci, E., 2009. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Composite Structures. 90(2), 141-151.

[12] De Meo, D., Oterkus, E., 2017. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Engineering. 135, 76-83.

[13] De Meo, D., Russo, L., Oterkus, E., 2017. Modeling of the onset, propagation, and interaction of multiple cracks generated from corrosion pits by using peridynamics. Journal of Engineering Materials and Technology. 139(4), 041001.

[14] De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A., 2016. Modelling of stress-corrosion cracking by using peridynamics. International Journal of Hydrogen Energy. 41(15), 6593-6609.

[15] Silling, S.A., Askari, A., 2014. Peridynamic model for fatigue cracking. SAND2014-18590. Albuquerque: Sandia National Laboratories.

[16] Hong, K., Oterkus, S., Oterkus, E., 2021. Peridynamic analysis of fatigue crack growth in fillet welded joints. Ocean Engineering. 235, 109348.

[17] Nguyen, C.T., Oterkus, S., Oterkus, E., 2021. An energy-based peridynamic model for fatigue cracking. Engineering Fracture Mechanics. 241, 107373.

[18] Zhu, N., Kochan, C., Oterkus, E., Oterkus, S., 2021. Fatigue analysis of polycrystalline materials using Peridynamic Theory with a novel crack tip detection algorithm. Ocean Engineering. 222, 108572.

[19] Wang, H., Oterkus, E., Oterkus, S., 2018. Peridynamic modelling of fracture in marine lithium-ion batteries. Ocean Engineering. 151, 257-267.

[20] Wang, H., Oterkus, E., Celik, S., Toros, S., 2017. Thermomechanical analysis of porous solid oxide fuel cell by using peridynamics. AIMS Energy. 5(4), 585-600.