Underwater Acoustic Communication: Technology Advances for Practical Marine Applications
Botao Xie
China National Offshore Oil Corporation Research Institute, 100024 Beijing, China
China National Offshore Oil Corporation Research Institute, 100024 Beijing, China
Tao Liu
China National Offshore Oil Corporation Research Institute, 100024 Beijing, China
Jiwen Song
China National Offshore Oil Corporation Information Technology, 100010 Beijing, China
Feida Zhao
China National Offshore Oil Corporation Information Technology, 100010 Beijing, China
DOI: https://doi.org/10.36956/sms.v7i4.2522
Received: 24 July 2025 | Revised: 22 August 2025 | Accepted: 27 August 2025 | Published Online: 3 November 2025
Copyright © 2025 Botao Xie, Bigui Huang, Tao Liu, Jiwen Song, Feida Zhao. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
Key areas such as marine resource exploration, real-time monitoring of ecological environments, and national defense security systems urgently require reliable underwater information transmission capabilities as a foundation. Underwater acoustic communication (UAC), leveraging its unique advantages as the most effective method for long-range data transfer in aquatic environments, has become an indispensable enabling technology for supporting these core applications. This review systematically examines recent advancements in UAC technology and their critical role in enabling modern marine initiatives. The analysis covers key developments in both non-coherent and coherent communication systems, including single-carrier and multi-carrier modulation schemes such as OFDM. It highlights their respective advantages in terms of robustness and high-data-rate transmission. The significant impact of challenging underwater channel characteristics, notably severe multipath fading, time-varying Doppler shifts, limited bandwidth, and environmental noise, is discussed alongside corresponding mitigation strategies. Furthermore, the integration of machine learning for sophisticated channel estimation, adaptive equalization, and intelligent system optimization is explored as a promising frontier. Emerging technologies like spread-spectrum, full-duplex, and covert UAC are also evaluated for their potential in specialized and high-stakes applications. The paper concludes by identifying persistent challenges, including regulatory constraints, physical-layer security issues, interoperability across platforms, and energy efficiency demands. Finally, it outlines future research directions aimed at developing more intelligent, secure, and efficient next-generation underwater networks.
Keywords: Underwater Acoustic Communication; Marine Applications; Channel Characteristics; Coherent Communication; Multi-carrier Modulation
References
[1] Suárez-de Vivero, J.L., Rodríguez Mateos, J.C., 2017. Forecasting Geopolitical Risks: Oceans as Source of Instability. Marine Policy. 75, 19–28. DOI: https://doi.org/10.1016/j.marpol.2016.10.009
[2] OECD, 2016. The Ocean Economy in 2030. OECD Publishing: Paris, France.
[3] European Commission, 2012. Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions — Blue Growth: Opportunities for Marine and Maritime Sustainable Growth’ Com(2012) 494 Final. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012AE2274 (cited 20 July 2025).
[4] Vögele, S., Alvre, J., Ross, A.G., et al., 2025. Challenges for Energy Transition: Incorporating Maritime and Geopolitical Risks. The World Economy. 48(8), 1850–1862. DOI: https://doi.org/10.1111/twec.13722
[5] Lehman, J., 2016. A Sea of Potential: The Politics of Global Ocean Observations. Political Geography. 55, 113–123. DOI: https://doi.org/10.1016/j.polgeo.2016.09.006
[6] Moroni, D., Salvetti, O., 2021. Signals and Images in Sea Technologies. Journal of Marine Science and Engineering. 9(1), 41. DOI: https://doi.org/10.3390/jmse9010041
[7] S, A.S., Dhongdi, S.C., 2022. Review of Underwater Mobile Sensor Network for Ocean Phenomena Monitoring. Journal of Network and Computer Applications. 205, 103418. DOI: https://doi.org/10.1016/j.jnca.2022.103418
[8] Wang, Q.Y., Cai, M.C., Guo, Z., et al., 2024. Investigation of Navigation Information Correction Techniques for Master-Slave AUV Formations in Unstable Communication Environments. Measurement. 229, 114462. DOI: https://doi.org/10.1016/j.measurement.2024.114462
[9] Shovon, I.I., Shin, S., 2022. Survey on Multi-Path Routing Protocols of Underwater Wireless Sensor Networks: Advancement and Applications. Electronics. 11(21), 3467. DOI: https://doi.org/10.3390/electronics11213467
[10] Zhufeng, L., Xiaofang, L., Na, W., et al., 2022. Present Status and Challenges of Underwater Acoustic Target Recognition Technology: A Review. Frontiers in Physics. 10, 1044890. DOI: https://doi.org/10.3389/fphy.2022.1044890
[11] Mary, D.R.K., Ko, E., Yoon, D.J., et al., 2022. Energy Optimization Techniques in Underwater Internet of Things: Issues, State-of-the-Art, and Future Directions. Water. 14(20), 3240. DOI: https://doi.org/10.3390/w14203240
[12] Niu, Q., Zhang, Q., Shi, W., 2022. Waveform Design and Signal Processing Method for Integrated Underwater Detection and Communication System. IET Radar, Sonar & Navigation. 17(4), 617–627. DOI: https://doi.org/10.1049/rsn2.12365
[13] Mahmud, M., Islam, M.S., Ahmed, A., et al., 2022. Cross-Medium Photoacoustic Communications: Challenges, and State of the Art. Sensors. 22(11), 4224. DOI: https://doi.org/10.3390/s22114224
[14] Liu, S., Khan, M.A., Bilal, M., et al., 2025. Low Probability Detection Constrained Underwater Acoustic Communication: A Comprehensive Review. IEEE Communications Magazine. 63(2), 21–30. DOI: https://doi.org/10.1109/mcom.001.2400008
[15] Zeng, Z., Fu, S., Zhang, H., et al., 2017. A Survey of Underwater Optical Wireless Communications. IEEE Communications Surveys & Tutorials. 19(1), 204–238. DOI: https://doi.org/10.1109/comst.2016.2618841
[16] Qu, Z.H., Lai, M.Q., 2024. A Review on Electromagnetic, Acoustic, and New Emerging Technologies for Submarine Communication. IEEE Access. 12, 12110–12125. DOI: https://doi.org/10.1109/access.2024.3353623
[17] Li, Z., Chitre, M., Stojanovic, M., 2025. Underwater Acoustic Communications. Nature Reviews Electrical Engineering. 2, 83–95. DOI: https://doi.org/10.1038/s44287-024-00122-w
[18] Rice, J., Creber, B., Fletcher, C., et al., 2000. Evolution of Seaweb Underwater Acoustic Networking. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, RI, USA, 11–14 September 2000; pp. 2007–2017.
[19] Rice, J., Green, D., 2008. Underwater Acoustic Communications and Networks for the US Navy's Seaweb Program. In Proceedings of the Second International Conference on Sensor Technologies and Applications (SENSORCOMM 2008); Cap Esterel, France, 25–29 August 2008; pp. 715–722.
[20] Wang, Y., Zhang, Y., 2024. High Covertness Camouflage Covert Underwater Acoustic Communication Based on Masking Technique. Signal Processing. 225, 109632. DOI: https://doi.org/10.1016/j.sigpro.2024.109632
[21] Wang, K., Gao, H., Xu, X.L., et al., 2016. An Energy-Efficient Reliable Data Transmission Scheme for Complex Environmental Monitoring in Underwater Acoustic Sensor Networks. IEEE Sensors Journal. 16(11), 4051–4062. DOI: https://doi.org/10.1109/jsen.2015.2428712
[22] Jahanbakht, M., Xiang, W., Hanzo, L., et al., 2021. Internet of Underwater Things and Big Marine Data Analytics: A Comprehensive Survey. IEEE Communications Surveys and Tutorials. 23(2), 904–956. DOI: https://doi.org/10.1109/comst.2021.3053118
[23] Mohsan, S.A.H., Li, Y.L., Sadiq, M., et al., 2023. Recent Advances, Future Trends, Applications and Challenges of Internet of Underwater Things (IoUT): A Comprehensive Review. Journal of Marine Science and Engineering. 11(1), 124. DOI: https://doi.org/10.3390/jmse11010124
[24] Yang, Y., Xiao, Y., Li, T.S., 2021. A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. IEEE Communications Surveys and Tutorials. 23(2), 815–841. DOI: https://doi.org/10.1109/comst.2021.3059998
[25] Ahmed, Z., Ayaz, M., Hijji, M.A., et al., 2022. AUV-Based Efficient Data Collection Scheme for Underwater Linear Sensor Networks. International Journal on Semantic Web and Information Systems. 18(1), 963–981. DOI: https://doi.org/10.4018/ijswis.299858
[26] Han, G.J., Gong, A.N., Wang, H., et al., 2021. Anonymous Cluster-Based Source Location Protection in Underwater Pipeline Monitoring Operations. IEEE Transactions on Vehicular Technology. 70(12), 13377–13389. DOI: https://doi.org/10.1109/tvt.2021.3124492
[27] Stojanovic, M., Catipovic, J., Proakis, J.G., 1993. Adaptive Multichannel Combining and Equalization for Underwater Acoustic Communications. The Journal of the Acoustical Society of America. 94, 1621–1631. DOI: https://doi.org/10.1121/1.408135
[28] Baggeroer, A., Koelsch, D., von der K., et al., 1981. DATS – A Digital Acoustic Telemetry System for Underwater Communications. In Proceedings of the OCEANS 81, Boston, MA, USA, 16–18 September 1981; pp. 55–60.
[29] Stojanovic, M., Catipovic, J.A., Proakis, J.G., 1994. Phase-Coherent Digital Communications for Underwater Acoustic Channels. IEEE Journal of Oceanic Engineering. 19(1), 100–111. DOI: https://doi.org/10.1109/48.289455
[30] Kuperman, W.A., Hodgkiss, W.S., Song, H.C., et al., 1998. Phase Conjugation in the Ocean: Experimental Demonstration of an Acoustic Time-Reversal Mirror. The Journal of the Acoustical Society of America. 103, 25–40. DOI: https://doi.org/10.1121/1.423233
[31] Chen, R., Wu, W., Zeng, Q., et al., 2023. Construction and Application of Polar Codes in OFDM Underwater Acoustic Communication. Applied Acoustics. 211, 109473. DOI: https://doi.org/10.1016/j.apacoust.2023.109473
[32] Hara, S., Prasad, R., 1997. Overview of Multicarrier CDMA. IEEE Communications Magazine. 35(12), 126–133. DOI: https://doi.org/10.1109/35.642841
[33] Zhao, Z., Sun, Z., 2023. Short-Block-Length Low-Density Parity-Check Codes-Based Underwater Acoustic Spread-Spectrum Communication System. Electronics. 12(18), 3884. DOI: https://doi.org/10.3390/electronics12183884
[34] Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L., 2001. Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes. IEEE Transactions on Information Theory. 47(2), 619–637. DOI: https://doi.org/10.1109/18.910578
[35] Wang, X.H., Su, Y.S., Yang, S.D., et al., 2024. An OFDMA Downlink Acoustic Communication Scheme for AUV-Based Mobile Underwater Sensor Network. IEEE Sensors Journal. 24(7), 11527–11536. DOI: https://doi.org/10.1109/jsen.2024.3361152
[36] Chitre, M., Shahabudeen, S., Freitag, L., et al., 2008. Recent Advances in Underwater Acoustic Communications and Networking. In Proceedings of the OCEANS 2008, Quebec City, Canada, 15–18 September 2008; pp. 1–10.
[37] Wibisono, A., Piran, M.J., Song, H.K., et al., 2023. A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions. Sensors. 23(17), 7321. DOI: https://doi.org/10.3390/s23177321
[38] Babu, T.P.S., Ameer, P.M., Koilpillai, R.D., 2023. Synchronization Techniques for Underwater Acoustic Communications. International Journal of Communication Systems. 36(15), e5563. DOI: https://doi.org/10.1002/dac.5563
[39] Stojanovic, M., Preisig, J., 2009. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Communications Magazine. 47(1), 84–89. DOI: https://doi.org/10.1109/mcom.2009.4752682
[40] Cui, J.H., Kong, J., Gerla, M., et al., 2006. The Challenges of Building Scalable Mobile Underwater Wireless Sensor Networks for Aquatic Applications. IEEE Network. 20(3), 12–18. DOI: https://doi.org/10.1109/MNET.2006.1637927
[41] Chitre, M., 2007. A High-Frequency Warm Shallow Water Acoustic Communications Channel Model and Measurements. Journal of the Acoustical Society of America. 122, 2580–2586. DOI: https://doi.org/10.1121/1.2782884
[42] Ge, H., Zhao, S., Dai, B., et al., 2025. Acoustic Triboelectric Nanogenerator for Underwater Acoustic Communication. Nano Energy. 136, 110738. DOI: https://doi.org/10.1016/j.nanoen.2025.110738
[43] Zhang, X., Cui, J.H., Das, S., et al., 2016. Underwater Wireless Communications and Networks: Theory and Application: Part 2 [Guest Editorial]. IEEE Communications Magazine. 54(2), 30–31. DOI: https://doi.org/10.1109/mcom.2016.7402257
[44] Gupta, A.S., 2019. Adapting Underwater Acoustic Communication Networks to Changing Oceanic Conditions Using Opportunistic Multipath Signaling Schemes. Journal of the Acoustical Society of America. 146, 3059. DOI: https://doi.org/10.1121/1.5137618
[45] Jiang, W., Diamant, R., 2023. Long-Range Underwater Acoustic Channel Estimation. IEEE Transactions on Wireless Communications. 22(9), 6267–6282. DOI: https://doi.org/10.1109/twc.2023.3241230
[46] Sun, L., Li, H., 2023. Multiple-Input-Multiple-Output Filtered Multitone Time Reversal Acoustic Communications Using Direct Adaptation-Based Turbo Equalization. Sensors. 23(13), 6081. DOI: https://doi.org/10.3390/s23136081
[47] Qiao, G., Bilal, M., Liu, S., et al., 2019. Symmetry Oriented Covert Acoustic Communication by Mimicking Humpback Whale Song. Symmetry. 11(6), 752. DOI: https://doi.org/10.3390/sym11060752
[48] Zhang, R., Lampe, L., Zhao, H., 2018. Sparsity-Based Shipping Noise Analysis and Cancellation in Underwater Acoustic Communication. Journal of the Acoustical Society of America. 144, 1732. DOI: https://doi.org/10.1121/1.5067682
[49] Au, W.W.L., Banks, K., 1998. The Acoustics of the Snapping Shrimp Synalpheus parneomeris in Kaneohe Bay. Journal of the Acoustical Society of America. 103, 41–47. DOI: https://doi.org/10.1121/1.423234
[50] Cai, X.M., Xu, W.K., Wang, L., et al., 2022. Joint Energy and Correlation Detection Assisted Non-Coherent OFDM-DCSK System for Underwater Acoustic Communications. IEEE Transactions on Communications. 70(6), 3742–3759. DOI: https://doi.org/10.1109/tcomm.2022.3169227
[51] Kilfoyle, D.B., Baggeroer, A.B., 2000. The State of the Art in Underwater Acoustic Telemetry. IEEE Journal of Oceanic Engineering. 25(1), 4–27. DOI: https://doi.org/10.1109/48.820733
[52] Kim, H., Kim, S., Choi, J.W., et al., 2019. Bidirectional Equalization Based on Error Propagation Detection in Long-Range Underwater Acoustic Communication. Japanese Journal of Applied Physics. 58, ab1130. DOI: https://doi.org/10.7567/1347-4065/ab1130
[53] Eyuboglu, M.V., Qureshi, S.U.H., 1989. Reduced-State Sequence Estimation for Coded Modulation of Intersymbol Interference Channels. IEEE Journal on Selected Areas in Communications. 7(6), 989–995. DOI: https://doi.org/10.1109/49.29621
[54] Chevillat, P.R., Eleftherious, E., 1988. Decoding of Trellis-Encoded Signals in the Presence of Intersymbol Interference and Noise. IEEE Transactions on Communications. 37(7), 694–699. DOI: https://doi.org/10.1109/26.31158
[55] Douillard, C., Jézéquel, M., Berrou, C., et al., 2008. Iterative Correction of Intersymbol Interference: Turbo-Equalization. European Transactions on Telecommunications. 6(5), 507–511. DOI: https://doi.org/10.1002/ett.4460060506
[56] Sozer, E.M., Proakis, J.G., Blackmon, F., 2001. Iterative Equalization and Decoding Techniques for Shallow Water Acoustic Channels. In Proceedings of the MTS/IEEE Oceans 2001: An Ocean Odyssey, Honolulu, HI, USA, 5–8 November 2001; pp. 2201–2208.
[57] Laot, C., Glavieux, A., Labat, J., 2001. Turbo Equalization: Adaptive Equalization and Channel Decoding Jointly Optimized. IEEE Journal on Selected Areas in Communications. 19(9), 1744–1752. DOI: https://doi.org/10.1109/49.947038
[58] He, C., Jing, L., Xi, R., et al., 2019. Time-Frequency Domain Turbo Equalization for Single-Carrier Underwater Acoustic Communications. IEEE Access. 7, 73324–73335. DOI: https://doi.org/10.1109/ACCESS.2019.2919757
[59] Xi, J., Yan, S., Xu, L., 2018. Direct-Adaptation Based Bidirectional Turbo Equalization for Underwater Acoustic Communications: Algorithm and Undersea Experimental Results. Journal of the Acoustical Society of America. 143(5), 2715. DOI: https://doi.org/10.1121/1.5036730
[60] Peng, H., Li, J., 2010. Turbo Equalization in Blind Receiver. In Proceedings of the 2010 International Conference on Communications and Intelligence Information Security, Nanning, China, 13–15 October 2010; pp. 172–175.
[61] Zheng, Y.R., Wu, J., Xiao, C., 2015. Turbo Equalization for Single-Carrier Underwater Acoustic Communications. IEEE Communications Magazine. 53(11), 79–87. DOI: https://doi.org/10.1109/MCOM.2015.7321975
[62] Berger, C.R., Zhou, S., Preisig, J.C., et al., 2010. Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing. IEEE Transactions on Signal Processing. 58(3), 1708–1721. DOI: https://doi.org/10.1109/TSP.2009.2038424
[63] Huang, J., Zhou, S., Huang, J., et al., 2011. Progressive Inter-Carrier Interference Equalization for OFDM Transmission Over Time-Varying Underwater Acoustic Channels. IEEE Journal of Selected Topics in Signal Processing. 5(8), 1524–1536. DOI: https://doi.org/10.1109/JSTSP.2011.2160040
[64] Lu, Q., Hu, X., Wang, D., et al., 2017. Parallel Combinatory Multicarrier Modulation in Underwater Acoustic Communications. IET Communications. 11(9), 1331–1337. DOI: https://doi.org/10.1049/iet-com.2016.0475
[65] Ma, L., Zhou, S., Qiao, G., et al., 2017. Superposition Coding for Downlink Underwater Acoustic OFDM. IEEE Journal of Oceanic Engineering. 42(1), 175–187. DOI: https://doi.org/10.1109/JOE.2016.2540741
[66] Amar, A., Avrashi, G., Stojanovic, M., 2017. Low Complexity Residual Doppler Shift Estimation for Underwater Acoustic Multicarrier Communication. IEEE Transactions on Signal Processing. 65(8), 2063–2076. DOI: https://doi.org/10.1109/TSP.2016.2630039
[67] Li, B., Zhou, S., Stojanovic, M., et al., 2007. Non-Uniform Doppler Compensation for Zero-Padded OFDM Over Fast-Varying Underwater Acoustic Channels. In Proceedings of the OCEANS 2007 – Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–6.
[68] Lu, M., Li, M., Liu, S., et al., 2022. A Multi-Beam Space Diversity Method for Long-Range Underwater Acoustic OFDM Communication in Deep Water. Acta Acustica. 47(5), 579–590. DOI: https://doi.org/10.15949/j.cnki.0371-0025.2022.05.015
[69] Ebihara, T., Mizutani, K., 2014. Underwater Acoustic Communication with an Orthogonal Signal Division Multiplexing Scheme in Doubly Spread Channels. IEEE Journal of Oceanic Engineering. 39(1), 47–58. DOI: https://doi.org/10.1109/JOE.2013.2245273
[70] Amini, P., Chen, R.R., Farhang-Boroujeny, B., 2015. Filterbank Multicarrier Communications for Underwater Acoustic Channels. IEEE Journal of Oceanic Engineering. 40(1), 115–130. DOI: https://doi.org/10.1109/JOE.2013.2291139
[71] Fettweis, G., Krondorf, M., Bittner, S., 2009. GFDM – Generalized Frequency Division Multiplexing. In Proceedings of the IEEE 69th Vehicular Technology Conference (VTC Spring 2009), Barcelona, Spain, 26–29 April 2009; pp. 1–4.
[72] Hebbar, R.P., Poddar, P.G., 2017. Generalized Frequency Division Multiplexing for Acoustic Communication in Underwater Systems. In Proceedings of the 2017 International Conference on Circuits, Controls, and Communications (CCUBE), Bengaluru, India, 15–16 December 2017; pp. 86–90.
[73] Schniter, P., 2004. Low-Complexity Equalization of OFDM in Doubly Selective Channels. IEEE Transactions on Signal Processing. 52(4), 1002–1011. DOI: https://doi.org/10.1109/TSP.2004.823503
[74] Han, J., Zhang, L., Zhang, Q., et al., 2019. Low-Complexity Equalization of Orthogonal Signal-Division Multiplexing in Doubly-Selective Channels. IEEE Transactions on Signal Processing. 67(4), 915–929. DOI: https://doi.org/10.1109/TSP.2018.2887191
[75] Su, H., Chen, J., Li, A., et al., 2024. Z-OFDM: A New High-Performance Solution for Underwater Acoustic Communication. Electronics. 13(17), 3543. DOI: https://doi.org/10.3390/electronics13173543
[76] Jing, L., Xue, Z., He, C., et al., 2024. A Mobile Underwater Acoustic Communication Method Based on Orthogonal Time Frequency Space Modulation. Acta Acustica. 49(2), 308–317. DOI: https://doi.org/10.12395/0371-0025.2022190 (in Chinese)
[77] Qiao, G., Zhao, Y., Liu, S., et al., 2019. Doppler Scale Estimation for Varied Speed Mobile Frequency-Hopped Binary Frequency-Shift Keying Underwater Acoustic Communication. Journal of the Acoustical Society of America. 146(2), 998. DOI: https://doi.org/10.1121/1.5119263
[78] Konstantakos, D.P., Adams, A.E., Sharif, B.S., 2004. Multicarrier Code Division Multiple Access (MC-CDMA) Technique for Underwater Acoustic Communication Networks Using Short Spreading Sequences. IEE Proceedings – Radar, Sonar and Navigation. 151(4), 231–239.
[79] Wan, L., Zhu, J., Cheng, E., et al., 2022. Joint CFO, Gridless Channel Estimation and Data Detection for Underwater Acoustic OFDM Systems. IEEE Journal of Oceanic Engineering. 47(4), 1215–1230. DOI: https://doi.org/10.1109/JOE.2022.3162025
[80] Zhai, Y.S., Li, J.L., Feng, H.H., et al., 2023. Application Research of Polar Coded OFDM Underwater Acoustic Communications. Eurasip Journal on Wireless Communications and Networking. 2023(1), 2236–2250. DOI: https://doi.org/10.1186/s13638-023-02236-5
[81] Duan, W., Tao, J., Zheng, Y.R., 2018. Efficient Adaptive Turbo Equalization for Multiple-Input–Multiple-Output Underwater Acoustic Communications. IEEE Journal of Oceanic Engineering. 43(3), 792–804. DOI: https://doi.org/10.1109/JOE.2017.2707285
[82] Qin, Z., Tao, J., Wang, X., et al., 2019. Direct Adaptive Equalization Based on Fast Sparse Recursive Least Squares Algorithms for Multiple-Input Multiple-Output Underwater Acoustic Communications. Journal of the Acoustical Society of America. 145(4), EL277. DOI: https://doi.org/10.1121/1.5096630
[83] Qu, F., Yang, H., Yu, G., et al., 2017. In-Band Full-Duplex Communications for Underwater Acoustic Networks. IEEE Network. 31(5), 59–65. DOI: https://doi.org/10.1109/MNET.2017.1600267
[84] Ling, J., He, H., Li, J.A., et al., 2010. Covert Underwater Acoustic Communications. Journal of the Acoustical Society of America. 128(5), 2898–2909. DOI: https://doi.org/10.1121/1.3493454
[85] Sun, H., He, C., Wang, J., et al., 2023. Anti-Malicious Interference Technology for Underwater Wireless Sensor Networks: Applications and Recent Advances. Journal of Unmanned Undersea Systems. 31(1), 128–142.
[86] Jamshidi, A., 2011. Direct Sequence Spread Spectrum Point-to-Point Communication Scheme in Underwater Acoustic Sparse Channels. IET Communications. 5(4), 456–466. DOI: https://doi.org/10.1049/iet-com.2010.0031
[87] Lee, G., Park, W., Kang, T., et al., 2018. Chirp-Based FHSS Receiver With Recursive Symbol Synchronization for Underwater Acoustic Communication. Sensors. 18(12), 4498. DOI: https://doi.org/10.3390/s18124498
[88] Feng, Z., Yin, Y., Gang, Q., 2017. Burst Mode Spread Spectrum Technology for Covert Underwater Acoustic Communication. Acta Acustica. 42(1), 37–47. DOI: https://doi.org/10.15949/j.cnki.0371-0025.2017.01.005 (in Chinese)
[89] Renner, B.C., Heitmann, J., Steinmetz, F., 2020. ahoi: Inexpensive, Low-Power Communication and Localization for Underwater Sensor Networks and μAUVs. ACM Transactions on Sensor Networks. 16(2), 18. DOI: https://doi.org/10.1145/3376921
[90] Huang, Y., Xiao, P., Zhou, S.L., et al., 2016. A Half-Duplex Self-Protection Jamming Approach for Improving Secrecy of Block Transmissions in Underwater Acoustic Channels. IEEE Sensors Journal. 16(11), 4100–4109. DOI: https://doi.org/10.1109/jsen.2015.2446465
[91] Yunjiang, Z., Gang, Q., Songzuo, L., et al., 2021. Research Status and Prospect of In-Band Full-Duplex Underwater Acoustic Communication Technology. Digital Ocean & Underwater Warfare. 4(3), 195–205. DOI: https://doi.org/10.19838/j.issn.2096-5753.2021.03.006 (in Chinese)
[92] Gang, Q., Songzuo, L., Zongxin, S., et al., 2013. Full-Duplex, Multi-User and Parameter Reconfigurable Underwater Acoustic Communication Modem. In Proceedings of the OCEANS 2013 – San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–8.
[93] Han, X., Yin, J., Du, P., et al., 2014. Experimental Demonstration of Underwater Acoustic Communication Using Bionic Signals. Applied Acoustics. 78, 7–10. DOI: https://doi.org/10.1016/j.apacoust.2013.10.009
[94] Jiang, J., Wang, X., Duan, F., et al., 2018. Bio-Inspired Steganography for Secure Underwater Acoustic Communications. IEEE Communications Magazine. 56(10), 156–162. DOI: https://doi.org/10.1109/MCOM.2018.1601228
[95] Ahn, J., Lee, H., Kim, Y., et al., 2020. Machine Learning Based Biomimetic Underwater Covert Acoustic Communication Method Using Dolphin Whistle Contours. Sensors. 20(21), 6166. DOI: https://doi.org/10.3390/s20216166
[96] Chen, Z., He, Z., Niu, K., et al., 2018. Neural Network-Based Symbol Detection in High-Speed OFDM Underwater Acoustic Communication. In Proceedings of the 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–5.
[97] Zhang, Y., Li, J., Zakharov, Y., et al., 2019. Deep Learning Based Underwater Acoustic OFDM Communications. Applied Acoustics. 154, 53–58. DOI: https://doi.org/10.1016/j.apacoust.2019.04.023
[98] Liu, S., Gao, L., Su, D., 2021. Deep Learning Based Underwater Acoustic Channel Estimation Exploiting Physical Knowledge on Channel Sparsity. In Proceedings of the UbiComp '21: The 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Virtual, 21–26 September 2021; pp. 655–659. DOI: https://doi.org/10.1145/3460418.3480401
[99] Gao, L., Liu, S., 2021. Underwater Acoustic Channel Estimation Based on Sparsity-Aware Deep Neural Networks. In Proceedings of the OES China Ocean Acoustics (COA), Harbin, China, 11–14 July 2021; pp. 544–549.
[100] Zhang, Y., Wang, H., Li, C., et al., 2021. Meta-Learning-Aided Orthogonal Frequency Division Multiplexing for Underwater Acoustic Communications. Journal of the Acoustical Society of America. 149(6), 4596. DOI: https://doi.org/10.1121/10.0005474
[101] Zhang, Y., Wang, H., Li, C., et al., 2022. Data Augmentation Aided Complex-Valued Network for Channel Estimation in Underwater Acoustic Orthogonal Frequency Division Multiplexing System. Journal of the Acoustical Society of America. 151(6), 4150. DOI: https://doi.org/10.1121/10.0011674
[102] Wang, D., Zhang, Y., Wu, L., et al., 2024. Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network. Journal of Marine Science and Engineering. 12, 134. DOI: https://doi.org/10.3390/jmse12010134
[103] Zhang, Y., Chang, J., Liu, Y., et al., 2023. Deep Learning and Expert Knowledge Based Underwater Acoustic OFDM Receiver. Physical Communication. 58, 102041. DOI: https://doi.org/10.1016/j.phycom.2023.102041
[104] Liu, J., Ji, F., Zhao, H., et al., 2021. CNN-Based Underwater Acoustic OFDM Communications Over Doubly-Selective Channels. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–5. DOI: https://doi.org/10.1109/VTC2021-Fall52928.2021.9625222
[105] Gola, K.K., Singh, B.M., Mridula, et al., 2023. Underwater Acoustic Sensor Networks: Concepts, Applications and Research Challenges. In: Abraham, A., Pllana, S., Casalino, G., et al. (eds.). Intelligent Systems Design and Applications. Springer Nature: Cham, Switzerland. pp. 365–373. DOI: https://doi.org/10.1007/978-3-031-35510-3_35
[106] Qi, Z., Anjum, K., Pompili, D., 2025. ACommSet: Underwater Acoustic Communications Dataset Collection and Evaluation in At-Sea Field Experiments. In Proceedings of the 18th International Conference on Underwater Networks & Systems, New York, NY, USA, 5–8 May 2025; pp. 1–8.
[107] Uyan, O.G., Akbas, A., Gungor, V.C., 2023. Machine Learning Approaches for Underwater Sensor Network Parameter Prediction. Ad Hoc Networks. 144, 103139. DOI: https://doi.org/10.1016/j.adhoc.2023.103139
[108] Kanavalli, A., Chaudhari, S.S., B, S., 2024. Trust-Based Data Fusion and Machine Learning for Underwater Sensor Networks. In Proceedings of the 4th Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 22–24 August 2024; pp. 1–6.
[109] Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 378, 686–707. DOI: https://doi.org/10.1016/j.jcp.2018.10.045
[110] International Maritime Organization (IMO), 2014. Guidelines for the Reduction of Underwater Noise From Commercial Shipping to Address Adverse Impacts on Marine Life. Available from: https://wwwcdn.imo.org/localresources/en/MediaCentre/Documents/MEPC.1-Circ.906-Rev.1%20-%20Revised%20Guidelines%20For%20The%20Reduction%20Of%20Underwater%20Radiated.pdf (cited 20 July 2025).
[111] European Commission, 2017. Commission Decision (EU) 2017/848 of 17 May 2017. Available from: https://eur-lex.europa.eu/eli/dec/2017/848/oj/eng (cited 20 July 2025).
[112] Slabbekoorn, H., Bouton, N., van Opzeeland, I., et al., 2010. A Noisy Spring: The Impact of Globally Rising Underwater Sound Levels on Fish. Trends in Ecology & Evolution. 25(7), 419–427. DOI: https://doi.org/10.1016/j.tree.2010.04.005
[113] Goldbogen, J.A., Southall, B.L., DeRuiter, S.L., et al., 2013. Blue Whales Respond to Simulated Mid-Frequency Military Sonar. Proceedings of the Royal Society B: Biological Sciences. 280(1765), 20130657. DOI: https://doi.org/10.1098/rspb.2013.0657
[114] Popper, A., Hawkins, A., 2012. The Effects of Noise on Aquatic Life. Springer: New York, NY, USA. DOI: https://doi.org/10.1007/978-1-4419-7311-5
[115] Harris, C.M., Thomas, L., Falcone, E.A., et al., 2018. Marine Mammals and Sonar: Dose-Response Studies, the Risk-Disturbance Hypothesis and the Role of Exposure Context. Journal of Applied Ecology. 55(1), 396–404. DOI: https://doi.org/10.1111/1365-2664.12955
[116] McGeehan, T., 2023. Tumult in the Deep: The Unfolding Maritime Competition Over Undersea Infrastructure. Available from: https://cimsec.org/tumult-in-the-deep-the-unfolding-maritime-competition-over-undersea-infrastructure/ (cited 20 July 2025).
[117] Goyal, S.B., Ravi, R.V., Verma, C., et al., 2022. A Lightweight Cryptographic Algorithm for Underwater Acoustic Networks. Procedia Computer Science. 215, 266–273. DOI: https://doi.org/10.1016/j.procs.2022.12.029
[118] Sklivanitis, G., Pelekanakis, K., Yıldırım, S.A., et al., 2021. Physical Layer Security Against an Informed Eavesdropper in Underwater Acoustic Channels: Reconciliation and Privacy Amplification. In Proceedings of the Fifth Underwater Communications and Networking Conference (UComms), Lerici, Italy, 1–3 September 2021; pp. 1–5.
[119] Petroccia, R., Alves, J., 2024. The JANUS Underwater Communications Standard: From Promulgation to Present. In Proceedings of the OCEANS 2024 – Singapore, Singapore, 15–18 April 2024; pp. 1–9.
[120] European Commission, 2014. SUNRISE: Using Underwater Robots for a Better Understanding of the Underwater World. Available from: https://digital-strategy.ec.europa.eu/en/news/sunrise-using-underwater-robots-better-understanding-underwater-world (cited 20 July 2025).
[121] Xu, H., Zheng, R., Yang, B., et al., 2025. Inductive Wireless Power Transfer for Autonomous Underwater Vehicles: A Comprehensive Review of Technological Advances and Challenges. Journal of Marine Science and Engineering. 13(10), 1855. DOI: https://doi.org/10.3390/jmse13101855
[122] Danielis, P., Parzyjegla, H., Ali, M.A.M., et al., 2022. Simulation Model for Energy Consumption and Acoustic Underwater Communication of Autonomous Underwater Vehicles. WMU Journal of Maritime Affairs. 21, 89–107. DOI: https://doi.org/10.1007/s13437-021-00253-z
[123] Liu, C.X., Feng, H., Dai, Z., et al., 2025. Self-Powered Underwater Acoustic Detection Sensor Based on Triboelectric Nanogenerator. Nano Energy. 141, 111099. DOI: https://doi.org/10.1016/j.nanoen.2025.111099