Monitoring Shoreline Evolution on Morocco’s Northern Atlantic Coast Using Remote Sensing and DSAS

Hatim Haddaoui

Earth Sciences Department, Scientific Institute of Rabat, Mohammed V University, Rabat 10000, Morocco

Abdelhaq Aangri

Earth Sciences Department, Faculty of Sciences of Kenitra, Ibn Tofail University, Kénitra 14000, Morocco

Smail Souiri

Earth Sciences Department, Scientific Institute of Rabat, Mohammed V University, Rabat 10000, Morocco

Mounir Hakkou

Earth Sciences Department, Scientific Institute of Rabat, Mohammed V University, Rabat 10000, Morocco

DOI: https://doi.org/10.36956/sms.v7i3.2146

Received: 13 May 2025 | Revised: 12 June 2025 | Accepted: 3 July 2025 | Published Online: 31 July 2025

Copyright © 2025 Hatim Haddaoui , Abdelhaq Aangri, Smail Souiri , Mounir Hakkou . Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

Coastal zones are dynamic interfaces responding to complex natural processes and anthropogenic pressures. Monitoring shoreline evolution is essential for sustainable coastal management, particularly given climate change, urban expansion, and sediment flux disruption. This study investigates shoreline changes along Morocco's northern Atlantic coast from 1990 to 2023, an area of strategic economic importance and environmental vulnerability. Landsat satellite imagery and geospatial techniques, including the Digital Shoreline Analysis System (DSAS v5.1) and the Normalized Difference Water Index (NDWI), provided a high-resolution, diachronic assessment. Shoreline extraction and image enhancement were conducted with ENVI software, and change detection utilized Linear Regression Rate (LRR) and End Point Rate (EPR) indicators. Results revealed significant spatial variability: sectors like northern Moulay Bousselham and Chlihat showed pronounced accretion (+3.2 to +4.7 m/year), while areas such as Tahaddart and southern Mehdia experienced severe erosion (up to −3.4 m/year). The total net eroded area exceeds 58,000 m². Trends correlate strongly with hydrodynamic forces, upstream damming, sediment extraction, and extreme weather events, notably storms in 2014 and 2017. Findings align with studies highlighting compounded effects of sediment starvation and sea-level rise. By integrating remote sensing, time-series analysis, and uncertainty quantification, this research provides insights into the primary drivers of shoreline dynamics, emphasizing the urgent need for adaptive, evidence-based coastal management strategies, including regulation of sand mining, sediment buffer restoration, and soft-engineering solutions.

Keywords: Shoreline Evolution; Erosion; Accretion; DSAS; ENVI


References

[1] Fletcher, C.H., Romine, B.M., Genz, A.S., et al., 2012. National assessment of shoreline change: Historical shoreline changes in the Hawaiian Islands. Available from: https://www.loc.gov/item/2023692538 (cited 11 May 2025).

[2] Duedall, I.W., Maul, G.A., 2005. Demography of Coastal Populations. In: Schwartz, M.L. (eds.). Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer: Dordrecht, Netherlands. pp. 368–374.

[3] Aangri, A., Hakkou, M., Krien, Y., et al., 2022. Predicting shoreline change for the Agadir and Taghazout coasts (Morocco). Journal of Coastal Research. 38(5), 937–950. DOI: https://doi.org/10.2112/JCOASTRES-D-22-00006.1

[4] Aitali, R., Snoussi, M., Kasmi, S., 2020. Coastal development and risks of flooding in Morocco: The cases of Tahaddart and Saidia coasts. Journal of African Earth Sciences. 164, 103771. DOI: https://doi.org/10.1016/j.jafrearsci.2020.103771

[5] Gens, R., 2010. Remote sensing of coastlines: Detection, extraction, and monitoring. International Journal of Remote Sensing. 31, 1819–1836. DOI: https://doi.org/10.1080/01431160902926673

[6] Hereher, M.E., 2011. Mapping coastal erosion at the Nile Delta western promontory using Landsat imagery. Environmental Earth Sciences. 64(4), 1117–1125. DOI: https://doi.org/10.1007/s12665-011-0928-9

[7] IPCC, 2022. Summary for policymakers. In: Pörtner, H.-O., et al. (eds.). Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press: Cambridge, UK. pp. 3–34.

[8] Chtioui, T., Hakkou, M., Aangri, A., et al., 2024. The risk of marine submersion along the Ain Sbâa coastline with a maximum tide and pessimistic scenario of sea level rise (Atlantic, Morocco). https://doi.org/10.1007/978-3-031-47079-0_51 (cited 19 December 2024).

[9] Aangri, A., Hakkou, M., Krien, Y., et al., 2024. Risk assessment of marine flooding along the Agadir and Taghazout coasts (Moroccan Atlantic). Journal of Coastal Research. 40(1), 179–192. DOI: https://doi.org/10.2112/JCOASTRES-D-23-00033.1

[10] Gong, P., 2012. Remote sensing of environmental change over China: A review. Chinese Science Bulletin. 57(22), 2793–2801. DOI: https://doi.org/10.1007/s11434-012-5268-y

[11] Belrhaba, T., Hakkou, M., Rey, T., et al., 2024. Shoreline change and climatic variability along the Moulay Bousselham coast (Moroccan Atlantic). Journal of Coastal Research. 40(5), 860–874. DOI: https://doi.org/10.2112/JCOASTRES-D-23-00082.1

[12] Environmental Systems Research Institute (ESRI), 2018. Understanding raster georeferencing. Available from: https://www.esri.com/about/newsroom/wp-content/uploads/2018/07/Understanding-Raster-Georeferencing.pdf (cited 15 February 2025).

[13] Ekercin, S., 2007. Coastline change assessment at the Aegean Sea coasts in Turkey using multitemporal Landsat imagery. Journal of Coastal Research. 23(3), 691–698. DOI: https://doi.org/10.2112/04-0398.1

[14] Dyer, K.R., 2021. Response of estuaries to climate change. In: Eisma, D. (eds.). Climate Change: Impact on Coastal Habitation. CRC Press: Boca Raton, FL, USA. pp. 85–110.

[15] Kovalskyy, V., Roy, D.P., 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sensing of Environment. 130, 280–293. DOI: https://doi.org/10.1016/j.rse.2012.12.003

[16] Moore, J.L., 2000. Techniques de cartographie des rivages. Journal du Littoral Recherche. 16(1), 111–124.

[17] Alesheikh, A.A., Ghorbanali, A., Nouri, N., 2007. Coastline change detection using remote sensing. Journal of Coastal Research. 4, 61–66. DOI: https://doi.org/10.1007/BF03325962

[18] Snoussi, M., & LDK Consultants Engineers & Planners SA. (n.d.). EFH-MO-5: Contribution to the development of an Integrated Coastal Zone Management Plan for the Rabat-Salé-Kénitra Region. Task 1: Diagnostic analysis of the coastal zones of the Region. SWIM-H2020. http://www.abhatoo.net.ma/maalama-textuelle/developpement-durable/environnement/milieux-marins/ecosysteme-du-littoral/zones-cotieres/efh-mo-5-contribution-a-l-elaboration-d-un-plan-de-gestion-integree-pour-les-zones-cotieres-de-la-region-de-rabat-sale-kenitra-tache-1-diagnostic-des-zones-cotieres-de-la-region-de-rabat-sale-kenitra (cited 17 November 2020).

[19] Hakkou, M., Castelle, B., Benmohammadi, A., et al., 2011. Wave climate and morphosedimentary characteristics of the Kenitra–Bouknadel sandy coast, Morocco. Environmental Earth Sciences. 64, 1729–1739. DOI: https://doi.org/10.1007/s12665-011-0977-0

[20] Klemas, V., 2011. Remote sensing techniques for studying coastal ecosystems: An overview. Journal of Coastal Research. 27(1), 2–17.

[21] Aangri, A., Hakkou, M., Krien, Y., et al., 2024. Mapping the shoreline evolution in response to sea level rise along Agadir Bay, Morocco: Geospatial and empirical approach. Available from: https://doi.org/10.1007/978-3-031-47079-0_68 (cited 24 November 2024).

[22] Chtioui, T., Hakkou, M., Aangri, A., et al., 2024. Storm's influence on long-term shoreline evolution along Casablanca-Mohammedia (Morocco). Regional Studies in Marine Science. 75, 103549. DOI: https://doi.org/10.1016/j.rsma.2024.103549

[23] Hakkou, M., Maanan, M., Belrhaba, T., et al., 2019. Assess and mapping the flooding hazards using geospatial tools and empirical models along Kenitra coast, Morocco. Ocean & Coastal Management. 169, 264–272. DOI: https://doi.org/10.1016/j.ocecoaman.2018.12.032

[24] Hakkou, M., Maanan, M., Belrhaba, T., et al., 2018. Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast, Morocco. Ocean & Coastal Management. 163, 232–239. DOI: https://doi.org/10.1016/j.ocecoaman.2018.07.003

[25] Mitasova, H., Thaxton, C., Hofierka, J., McLaughlin, R., Moore, A., Mitas, L., 2004. Path sampling method for modeling overland water flow, sediment transport, and short-term terrain evolution in Open Source GIS. Developments in Water Science. 55, 1479–1490.

[26] Hapke, C.J., Himmelstoss, E.A., Kratzmann, M.G., et al., 2011. National assessment of shoreline change: Historical shoreline change along the New England and Mid-Atlantic coasts. U.S. Geological Survey Open-File Report 2010-1118.

[27] Fletcher, C.H., Mullane, R.A., Richmond, B.M., 1997. Beach Loss along Armored Shorelines on Oahu, Hawaiian Islands. Journal of Coastal Research. 13(1), 209–215. Available from: http://www.jstor.org/stable/4298607

[28] El Habti, M.Y., Zayoun, A., Salim, F.Z., et al., 2022. Shoreline change analysis along the Tahaddart coast (NW Morocco): A remote sensing and statistics-based approach. Journal of Coastal Research. 38(6), 1116–1127. DOI: https://doi.org/10.2112/JCOASTRES-D-22-00026.1

[29] El Mrini, A., Nachite, D., & Taaouati, M. (2008, January). Interactions physico-naturelles et socio-economique sur le littoral tetouanais (maroc nord occidental). In Actes du colloque international pluridisciplinaire Le littoral: subir, dire, agir-Lille, France.

[30] Snoussi, M., Ouchani, T., & Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77(2), 206–213. https://doi.org/10.1016/j.ecss.2007.09.024

[31] Snoussi, M., Haïda, S., Imassi, S., 2002. Effects of the construction of dams on the water and sediment fluxes of the Moulouya and the Sebou Rivers, Morocco. Regional Environmental Change. 3(1), 5–12. DOI: https://doi.org/10.1007/s10113-001-0035-7

[32] Syvitski, J.P.M., Kettner, A.J., Overeem, I., et al., 2009. Sinking deltas due to human activities. Nature Geoscience. 2(10), 681–686. DOI: https://doi.org/10.1038/ngeo629

[33] Anthony, E.J., Gaudio, S.D., Héquette, A., 2014. Coastal erosion in the Mediterranean region: A review of recent events and processes. Geological Society, London, Special Publications. 388(1), 121–137. DOI: https://doi.org/10.1144/SP388.5

[34] Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L., et al., 2020. Sandy coastlines under threat of erosion. Nature Climate Change. 10(3), 215–222. DOI: https://doi.org/10.1038/s41558-020-0697-0

[35] Friedrichs, C.T., 2011. Tidal flat morphodynamics: A synthesis. In: Wolanski, E., McLusky, D. (eds.). Treatise on Estuarine and Coastal Science. Elsevier: Oxford, UK. pp. 137–170.

[36] Morton, R.A., Barras, J.A., 2011. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from southern Louisiana. Journal of Coastal Research. 27(6A), 27–43. DOI: https://doi.org/10.2112/JCOASTRES-D-10-00185.1