Recent Advances in Sustainable Concrete and Steel Alternatives for Marine Infrastructure
Kiran Napte
Department of Electronics and Telecommunication Engineering, PCET’s Pimpri Chinchwad College of Engineering and Research, Ravet, Pune 412101, Maharashtra, India
Ganesh E. Kondhalkar
Department of Mechanical Engineering, ABMSP’s Anantrao Pawar College of Engineering and Research, Parvati, Pune 411009, Maharashtra, India
Shilpa Vishal Patil
Department of Civil Engineering, Vishwakarma Institute of Technology, Pune 411048, Maharashtra, India
Pallavi Vishnu Kharat
Department of Civil Engineering, Ajeenkya D Y Patil School of Engineering, Via Lohegaon, Charoli Budruk, Pune 412105, Maharashtra, India
Snehal Mayur Banarase
Department of Civil Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune 411018, Maharashtra, India; School of Technology and Research, Dr. D. Y. Patil Dnyan Prasad University, Sant Tukaram Nagar, Pimpri, Pune 411018, Maharashtra, India
School of Technology and Research, Dr. D. Y. Patil Dnyan Prasad University, Sant Tukaram Nagar, Pimpri, Pune 411018, Maharashtra, India; Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune 411018, Maharashtra, India
Shital Yashwant Waware
School of Technology and Research, Dr. D. Y. Patil Dnyan Prasad University, Sant Tukaram Nagar, Pimpri, Pune 411018, Maharashtra, India; Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune 411018, Maharashtra, India
DOI: https://doi.org/10.36956/sms.v7i2.2072
Copyright © 2025 Kiran Napte, Ganesh E. Kondhalkar, Shilpa Vishal Patil, Pallavi Vishnu Kharat, Snehal Mayur Banarase, Anant Sidhappa Kurhade, Shital Yashwant Waware. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
Marine infrastructure is increasingly vulnerable to harsh environmental conditions that accelerate the degradation of traditional materials such as Portland cement concrete and carbon steel. This review systematically investigates recent advancements in sustainable alternatives, including geopolymer concrete, engineered cementitious composites (ECC), bio-concrete, fiber-reinforced polymers (FRPs), and bamboo, stainless steel, and steel-CFRP hybrid bars. Each material is evaluated based on marine durability, mechanical performance, environmental impact, and cost feasibility using life cycle assessment, durability modelling, and a multi-criteria decision-support framework. The results reveal that geopolymer concrete and FRP reinforcement’s exhibit superior corrosion resistance and environmental benefits, while ECC and steel-CFRP composites offer structural resilience with moderate environmental trade-offs. However, challenges remain in long-term performance validation, standardization, and market integration. The review concludes that a combined approach involving innovative materials, computational tools, and sustainability assessment is essential for advancing marine infrastructure. Outlook recommendations include focused field studies, development of regulatory guidelines, and interdisciplinary collaboration to drive the practical adoption of eco-efficient materials in coastal and offshore construction.
Keywords: Bio-Concrete Self-Healing Materials; Corrosion-Resistant Reinforcement; Fiber-Reinforced Polymer (FRP) Composites; Geopolymer Concrete; Life Cycle Assessment in Construction; Sustainable Marine Infrastructure
References
[1] Kenny, A., Rozovsky, E.O., 2023. Six-year-old ecological concrete in a marine environment: A case study. Sustainability. 15(18), 13780. DOI: https://doi.org/10.3390/su151813780
[2] Nolan, S., Rossini, M., Knight, C., et al., 2021. New directions for reinforced concrete coastal structures. Journal of Infrastructure Preservation and Resilience. 2(1). DOI: https://doi.org/10.1186/s43065-021-00015-4
[3] Morales, C., Claure, G., Emparanza, A.R., et al., 2020. Durability of GFRP reinforcing bars in seawater concrete. Construction and Building Materials. 270, 121492. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121492
[4] Yi, Y., Zhu, D., Guo, S., et al., 2020. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cement and Concrete Composites. 113, 103695. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103695
[5] Qu, F., Li, W., Dong, W., et al., 2020. Durability deterioration of concrete under marine environment from material to structure: A critical review. Journal of Building Engineering. 35, 102074. DOI: https://doi.org/10.1016/j.jobe.2020.102074
[6] del Campo, J.M., Negro, V., 2021. Nanomaterials in protection of buildings and infrastructure elements in highly aggressive marine environments. Energies. 14(9), 2588. DOI: https://doi.org/10.3390/en14092588
[7] Asrar, N., Malik, A.U., Ahmad, S., et al., 1999. Corrosion protection performance of microsilica added concretes in NaCl and seawater environments. Construction and Building Materials. 13(4), 213. DOI: https://doi.org/10.1016/s0950-0618(99)00016-1
[8] Bhat, S.D., Samaga, B.R., 2003. Performance of concrete structures in the marine environment of Karnataka, India. In Role of Cement Science in Sustainable Development: Proceedings of the International Symposium held at the University of Dundee; Scotland, UK; 3–4 September 2003. pp. 377–384. DOI: https://doi.org/10.1680/rocsisd.32460.0038
[9] Alrabiah, A., Rasheeduzzafar, Baggott, R., 1990. Durability requirements for reinforced concrete construction in aggressive marine environments. Marine Structures. 3(4), 285. DOI: https://doi.org/10.1016/0951-8339(90)90013-h
[10] Esteban-Arranz, A., Osa, A., García-Lorefice, W.E., et al., 2021. Long-term performance of nanomodified coated concrete structures under hostile marine climate conditions. Nanomaterials. 11(4), 869. DOI: https://doi.org/10.3390/nano11040869
[11] Coppola, L., Beretta, S., Bignozzi, M.C., et al., 2022. The improvement of durability of reinforced concretes for sustainable structures: A review on different approaches. Materials. 15(8), 2728. DOI: https://doi.org/10.3390/ma15082728
[12] Kappenthuler, S., Seeger, S., 2020. Holistic evaluation of the suitability of metal alloys for sustainable marine construction from a technical, economic and availability perspective. Ocean Engineering. 219, 108378. DOI: https://doi.org/10.1016/j.oceaneng.2020.108378
[13] Castro, S.A.Z., Salgado-Estrada, R., Herazo, L.C.S., et al., 2021. Sustainable development of concrete through aggregates and innovative materials: A review. Applied Sciences. 11(2), 629. DOI: https://doi.org/10.3390/app11020629
[14] Niveditha, M., Koniki, S., 2020. Effect of durability properties on geopolymer concrete – A review. E3S Web of Conferences. 184, 1092. DOI: https://doi.org/10.1051/e3sconf/202018401092
[15] Kumar, Ch.P., Ravali, N.V.N., Sutradhar, R., et al., 2022. Study on properties of geopolymer concrete using hybrid fibres. IOP Conference Series Earth and Environmental Science. 982, 012013. DOI: https://doi.org/10.1088/1755-1315/982/1/012013
[16] Shirai, K., Horii, J., Nakamuta, K., et al., 2022. Experimental investigation on the mechanical and interfacial properties of fiber-reinforced geopolymer layer on the tension zone of normal concrete. Construction and Building Materials. 360, 129568. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129568
[17] Fan, X., 2020. A brief introduction on the research status and future prospects on geopolymer concrete. IOP Conference Series Earth and Environmental Science. 508(1), 012124. DOI: https://doi.org/10.1088/1755-1315/508/1/012124
[18] Krishna, R.S., Rehman, A.U., Mishra, J., et al., 2024. Additive manufacturing of geopolymer composites for sustainable construction: Critical factors, advancements, challenges, and future directions. Progress in Additive Manufacturing. 10(2), 1003–1061. DOI: https://doi.org/10.1007/s40964-024-00703-z
[19] Cong, P., Cheng, Y., 2021. Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition). 8(3), 283. DOI: https://doi.org/10.1016/j.jtte.2021.03.004
[20] Mohammed, H., Ortoneda-Pedrola, M., Nakouti, I., et al., 2020. Experimental characterisation of non-encapsulated bio-based concrete with self-healing capacity. Construction and Building Materials. 256, 119411. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119411
[21] Juenger, M.C.G., Snellings, R., Bernal, S.A., 2019. Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research. 122, 257. DOI: https://doi.org/10.1016/j.cemconres.2019.05.008
[22] Juenger, M.C.G., Siddique, R., 2015. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research. 78, 71. DOI: https://doi.org/10.1016/j.cemconres.2015.03.018
[23] Gonzalez-Panicello, L., García-Lodeiro, I., Puertas, F., et al., 2022. Influence of accelerating admixtures on the reactivity of synthetic aluminosilicate glasses. Materials. 15(3), 818. DOI: https://doi.org/10.3390/ma15030818
[24] Juenger, M.C.G., Provis, J.L., Elsen, J., et al., 2012. Supplementary cementitious materials for concrete: Characterization needs. MRS Proceedings. 1488. DOI: https://doi.org/10.1557/opl.2012.1536
[25] Msinjili, N.S., Schmidt, W., Rogge, A., et al., 2018. Rice husk ash as a sustainable supplementary cementitious material for improved concrete properties. African Journal of Science Technology Innovation and Development. 11(4), 417. DOI: https://doi.org/10.1080/20421338.2018.1513895
[26] Ahmed, R., Jaafar, M.S., Bareq, M., et al., 2019. Effect of supplementary cementitious material on chemical resistance of concrete. IOP Conference Series Earth and Environmental Science. 357(1), 012016. DOI: https://doi.org/10.1088/1755-1315/357/1/012016
[27] Yang, K., Jung, Y., Cho, M.S., et al., 2014. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production. 103, 774. DOI: https://doi.org/10.1016/j.jclepro.2014.03.018
[28] Ingole, A., Gawande, S., Bambode, V., et al., 2020. A review of bamboo as a reinforcement material in slab panel in modern construction. International Journal of Engineering Applied Sciences and Technology. 4(9), 129. DOI: https://doi.org/10.33564/ijeast.2020.v04i09.015
[29] Hamaydeh, M.A., Afghan, F., Mithani, R., et al., 2020. Shear strength of circular beams made of geopolymer concrete and reinforced with GFRP rebars. AIP Conference Proceedings. DOI: https://doi.org/10.1063/5.0029862
[30] Reddy, R.V.S., Reddy, V.S., Rao, M.V.S., et al., 2023. Design of concrete beam reinforced with GFRP bars as per ACI codal provisions. E3S Web of Conferences. 391, 1213. DOI: https://doi.org/10.1051/e3sconf/202339101213
[31] Banthia, N., Zanotti, C., Sappakittipakorn, M., 2014. Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials. 67, 405. DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.073
[32] Abed, F., Sabbagh, M.K., Karzad, A.S., 2021. Effect of basalt microfibers on the shear response of short concrete beams reinforced with BFRP bars. Composite Structures. 269, 114029. DOI: https://doi.org/10.1016/j.compstruct.2021.114029
[33] Wang, L., Shen, N., Zhang, M., et al., 2020. Bond performance of Steel–CFRP bar reinforced coral concrete beams. Construction and Building Materials. 245, 118456. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118456
[34] Emparanza, A.R., Basalo, F.D.C.y., Kampmann, R., et al., 2018. Evaluation of the bond-to-concrete properties of GFRP rebars in marine environments. Infrastructures. 3(4), 44. DOI: https://doi.org/10.3390/infrastructures3040044
[35] Won, J.P., Park, C.G., Lee, S.J., et al., 2012. Durability of hybrid FRP reinforcing bars in concrete structures exposed to marine environments. International Journal of Structural Engineering. 4, 63. DOI: https://doi.org/10.1504/ijstructe.2013.050764
[36] Lu, J., Wijaya, S., 2013. A study of effectiveness of fiber reinforced polymer (FRP) system on the performance of concrete beams and columns. Advanced Materials Research. 687, 409. DOI: https://doi.org/10.4028/www.scientific.net/amr.687.409
[37] Pratiwi, W.D., Putra, F.D.D., Triwulan, T., et al., 2021. A review of concrete durability in marine environment. IOP Conference Series: Materials Science and Engineering. 1175(1), 012018. DOI: https://doi.org/10.1088/1757-899x/1175/1/012018
[38] Sachet, W.H., Salman, W.D., 2021. Geopolymer concrete, mortar, and paste: A review. IOP Conference Series: Materials Science and Engineering. 1076(1), 012108. DOI: https://doi.org/10.1088/1757-899x/1076/1/012108
[39] Neupane, K., Hadigheh, S.A., 2021. Sodium hydroxide-free geopolymer binder for prestressed concrete applications. Construction and Building Materials. 293, 123397. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123397
[40] Sambucci, M., Sibai, A., Valente, M., 2021. Recent advances in geopolymer technology. A potential eco-friendly solution in the construction materials industry: A review. Journal of Composites Science. 5(4), 109. DOI: https://doi.org/10.3390/jcs5040109
[41] Hassan, A., Arif, M., Shariq, M., 2019. A review of properties and behaviour of reinforced geopolymer concrete structural elements – A clean technology option for sustainable development. Journal of Cleaner Production. 245, 118762. DOI: https://doi.org/10.1016/j.jclepro.2019.118762
[42] Shehata, N., Sayed, E.T., Abdelkareem, M.A., 2020. Recent progress in environmentally friendly geopolymers: A review. Science of the Total Environment. 762, 143166. DOI: https://doi.org/10.1016/j.scitotenv.2020.143166
[43] Wangsa, F.A., Tjaronge, M.W., Djamaluddin, A.R., et al., 2017. Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar. IOP Conference Series: Materials Science and Engineering. 271, 012068. DOI: https://doi.org/10.1088/1757-899x/271/1/012068
[44] Kannangara, T., Guerrieri, M., Fragomeni, S., et al., 2021. Effects of initial surface evaporation on the performance of fly ash-based geopolymer paste at elevated temperatures. Applied Sciences. 12(1), 364. DOI: https://doi.org/10.3390/app12010364
[45] Susilorini, RrM.I.R., Iskandar, I., Santosa, B., 2022. Long-term durability of bio-polymer modified concrete in tidal flooding prone area: A challenge of sustainable concrete materials. Sustainability. 14(3), 1565. DOI: https://doi.org/10.3390/su14031565
[46] Peter, C., Karthi, L., 2023. Durability of geopolymer concrete exposed to acidic environment – A review. Sustainability Agri Food and Environmental Research. 10, 1. DOI: https://doi.org/10.7770/safer-v10n1-art2499
[47] Assaedi, H., Alomayri, T., Shaikh, F.U.A., et al., 2015. Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics. 4(4), 272. DOI: https://doi.org/10.1007/s40145-015-0161-1
[48] Singh, N.B., 2018. Fly ash-based geopolymer binder: A future construction material. Minerals. 8(7), 299. DOI: https://doi.org/10.3390/min8070299
[49] Kabir, S.M.A., Alengaram, U.J., Jumaat, M.Z., et al., 2017. Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete. Journal of Cleaner Production. 161, 477. DOI: https://doi.org/10.1016/j.jclepro.2017.05.002
[50] Kumar, V.S., Ganesan, N., Indira, P.V., 2017. Effect of molarity of sodium hydroxide and curing method on the compressive strength of ternary blend geopolymer concrete. IOP Conference Series: Earth and Environmental Science. 80, 012011. DOI: https://doi.org/10.1088/1755-1315/80/1/012011
[51] Kappenthuler, S., Seeger, S., 2021. Assessing the long-term potential of fiber reinforced polymer composites for sustainable marine construction. Journal of Ocean Engineering and Marine Energy. 7(2), 129. DOI: https://doi.org/10.1007/s40722-021-00187-x
[52] Gupta, M.K., Srivastava, R., 2015. Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Polymer-Plastics Technology and Engineering. 55(6), 626. DOI: https://doi.org/10.1080/03602559.2015.1098694
[53] Rohith, K., Shreyas, S., Appaiah, K.B.V., et al., 2019. Recent material advancement for marine application. Materials Today: Proceedings. 18, 4854. DOI: https://doi.org/10.1016/j.matpr.2019.07.476
[54] Petrakli, F., Gkika, A., Bonou, A., et al., 2020. End-of-life recycling options of (nano)enhanced CFRP composite prototypes waste—A life cycle perspective. Polymers. 12(9), 2129. DOI: https://doi.org/10.3390/polym12092129
[55] Alsayed, S.H., Al-Salloum, Y., Almusallam, T., 2000. Fibre-reinforced polymer repair materials—some facts. Proceedings of the Institution of Civil Engineers – Civil Engineering. 138(3), 131. DOI: https://doi.org/10.1680/cien.2000.138.3.131
[56] Wu, C., Xu, F., Wang, H., et al., 2023. Manufacturing technologies of polymer composites—A review. Polymers. 15(3), 712. DOI: https://doi.org/10.3390/polym15030712
[57] Bhagwat, P.M., Ramachandran, M., Raichurkar, P., 2017. Mechanical properties of hybrid glass/carbon fiber reinforced epoxy composites. Materials Today: Proceedings. 4(8), 7375. DOI: https://doi.org/10.1016/j.matpr.2017.07.067
[58] Jesthi, D.K., Nayak, A., Mohanty, S.S., et al., 2018. Evaluation of mechanical properties of hybrid composite laminates reinforced with glass/carbon woven fabrics. IOP Conference Series: Materials Science and Engineering. 377, 012157. DOI: https://doi.org/10.1088/1757-899x/377/1/012157
[59] Davies, P., 2016. Environmental degradation of composites for marine structures: new materials and new applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374(2071), 20150272. DOI: https://doi.org/10.1098/rsta.2015.0272
[60] Natrayan, L., Rao, Y.S., Prasad, P.R., et al., 2023. Biosynthesis-based Al₂O₃ nanofiller from Cymbopogon citratus leaf/jute/hemp/epoxy-based hybrid composites with superior mechanical properties. Bioinorganic Chemistry and Applications. 2023, 1. DOI: https://doi.org/10.1155/2023/9299658
[61] Mosallam, A.S., 2004. Composites: construction materials for the new era. In: Elsevier eBooks. Elsevier BV: Amsterdam, The Netherlands. p. 45. DOI: https://doi.org/10.1533/9781845690649.1.45
[62] Gedge, G., 2007. Use of duplex stainless steel plate for durable bridge construction. Report. 93, 84. DOI: https://doi.org/10.2749/222137807796119771
[63] Calderon-Uriszar-Aldaca, I., Briz, E., Larrinaga, P., et al., 2018. Bonding strength of stainless steel rebars in concretes exposed to marine environments. Construction and Building Materials. 172, 125. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.156
[64] Bourgin, C., Chauveau, É., Demelin, B., 2006. Stainless steel rebar: the choice of service life. Revue de Métallurgie. 103(2), 89. DOI: https://doi.org/10.1051/metal:2006159
[65] Lollini, F., Carsana, M., Gastaldi, M., et al., 2018. Corrosion behaviour of stainless steel reinforcement in concrete. Corrosion Reviews. 37(1), 3. DOI: https://doi.org/10.1515/corrrev-2017-0088
[66] Bertolini, L., Gastaldi, M., 2010. Corrosion resistance of low‐nickel duplex stainless steel rebars. Materials and Corrosion. 62(2), 120. DOI: https://doi.org/10.1002/maco.201005774
[67] Pérez-Quiroz, J.T., Terán, J.R.D., Herrera, M.J., et al., 2008. Assessment of stainless steel reinforcement for concrete structures rehabilitation. Journal of Constructional Steel Research. 64(11), 1317. DOI: https://doi.org/10.1016/j.jcsr.2008.07.024
[68] Gedge, G., 2008. Structural uses of stainless steel — buildings and civil engineering. Journal of Constructional Steel Research. 64(11), 1194. DOI: https://doi.org/10.1016/j.jcsr.2008.05.006
[69] Bertolini, L., Pedeferri, P., 2002. Laboratory and field experience on the use of stainless steel to improve durability of reinforced concrete. Corrosion Reviews. 20, 129. DOI: https://doi.org/10.1515/corrrev.2002.20.1-2.129
[70] Hamdi, F., Imran, H.A., 2019. Mechanical degradation of normal concrete due to seawater intrusion. IOP Conference Series: Materials Science and Engineering. 674, 012015. DOI: https://doi.org/10.1088/1757-899x/674/1/012015
[71] Yohai, L., Vázquez, M., Valcarce, M.B., 2013. Phosphate ions as corrosion inhibitors for reinforcement steel in chloride-rich environments. Electrochimica Acta. 102, 88–94. DOI: https://doi.org/10.1016/j.electacta.2013.03.180
[72] Saraswathy, V., Song, H.W., 2005. Performance of galvanized and stainless steel rebars in concrete under macrocell corrosion conditions. Materials and Corrosion. 56(10), 685–693. DOI: https://doi.org/10.1002/maco.200503888
[73] Tae, S., Kyung, J.W., Ujiro, T., 2007. Service life estimation of concrete structures reinforced with Cr-bearing rebars under macrocell corrosion conditions induced by cracking in cover concrete. ISIJ International. 47(6), 875–881. DOI: https://doi.org/10.2355/isijinternational.47.875
[74] Rubino, F., Nisticò, A., Tucci, F., et al., 2020. Marine application of fiber reinforced composites: a review. Journal of Marine Science and Engineering. 8(1), 26. DOI: https://doi.org/10.3390/jmse8010026
[75] Song, Y., Zhang, H., 2018. Research on sustainability of building materials. IOP Conference Series: Materials Science and Engineering. 452, 022169. DOI: https://doi.org/10.1088/1757-899x/452/2/022169
[76] Horvath, A., 2004. Construction materials and the environment. Annual Review of Environment and Resources. 29(1), 181–204. DOI: https://doi.org/10.1146/annurev.energy.29.062403.102215
[77] Val, D.V., Stewart, M.G., 2003. Life-cycle cost analysis of reinforced concrete structures in marine environments. Structural Safety. 25(4), 343–362. DOI: https://doi.org/10.1016/s0167-4730(03)00014-6
[78] Costa, A., Appleton, J., 2002. Case studies of concrete deterioration in a marine environment in Portugal. Cement and Concrete Composites. 24(1), 169–179. DOI: https://doi.org/10.1016/s0958-9465(01)00037-3
[79] Cejuela, E., Negro, V., del Campo, J.M., 2020. Evaluation and optimization of the life cycle in maritime works. Sustainability. 12(11), 4524. DOI: https://doi.org/10.3390/su12114524
[80] Zhang, C., 2015. The environmental impacts of fibre-reinforced polymer composites in construction. Proceedings of the Institution of Civil Engineers – Construction Materials. 168(6), 276–285. DOI: https://doi.org/10.1680/coma.14.00059
[81] Hájek, P., Fiala, C., Kynčlová, M., 2011. Life cycle assessments of concrete structures – a step towards environmental savings. Structural Concrete. 12(1), 13–22. DOI: https://doi.org/10.1002/suco.201000026
[82] Bianchi, P.F., Yepes, V., Vitório, P.C., et al., 2021. Study of alternatives for the design of sustainable low-income housing in Brazil. Sustainability. 13(9), 4757. DOI: https://doi.org/10.3390/su13094757
[83] Tecchio, P., Freni, P., Benedetti, B.D., et al., 2015. Ex-ante life cycle assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production. 112, 316–325. DOI: https://doi.org/10.1016/j.jclepro.2015.07.090
[84] Świt, G., 2018. Acoustic emission method for locating and identifying active destructive processes in operating facilities. Applied Sciences. 8(8), 1295. DOI: https://doi.org/10.3390/app8081295
[85] Huff, E.S., 1987. Standardization of construction documents. Journal of Management in Engineering. 3(3), 232–242. DOI: https://doi.org/10.1061/(asce)9742-597x(1987)3:3(232)
[86] Baharetha, S.M., Al-Hammad, A., Alshuwaikhat, H.M., 2012. Towards a unified set of sustainable building materials criteria. Construction Research Congress 2012. 62, 732–740. DOI: https://doi.org/10.1061/9780784412688.088
[87] Chen, L., Yang, M., Chen, Z., et al., 2024. Conversion of waste into sustainable construction materials: a review of recent developments and prospects. Materials Today Sustainability. 27, 100930. DOI: https://doi.org/10.1016/j.mtsust.2024.100930
[88] Rahla, K.M., Mateus, R., Bragança, L., 2021. Selection criteria for building materials and components in line with the circular economy principles in the built environment—A review of current trends. Infrastructures. 6(4), 49. DOI: https://doi.org/10.3390/infrastructures6040049
[89] Marek, M., Krejza, Z., 2024. Sustainable building: circular economy as a key factor for cost reduction. E3S Web of Conferences. 550, 1009. DOI: https://doi.org/10.1051/e3sconf/202455001009
[90] Castro, M.F.M.A., Andrade, J.B., Bragança, L., 2020. Building sustainability assessment methods: current update. IOP Conference Series: Earth and Environmental Science. 588(2), 022028. DOI: https://doi.org/10.1088/1755-1315/588/2/022028
[91] Siddiqi, K., Chatman, D., Cook, G., 2008. Role of education and industry towards more sustainable construction. International Journal of Environmental Technology and Management, 8(2), 310. DOI: https://doi.org/10.1504/IJETM.2008.017336 ResearchGate
[92] Cramer, J., Alders, G., 1999. The design of a product stewardship management system within Akzo Nobel. Eco-Management and Auditing. 6(3), 135. DOI: https://doi.org/10.1002/(SICI)1099-0925(199909)6:3<135::AID-EMA106>3.0.CO;2-C
[93] Hauke, B., Kuhnhenne, M., Lawson, M., et al., 2016. What does ‘sustainable construction' mean? An overview. In: Hauke, B., Kuhnhenne, M., Lawson, M., et al., (Eds.). Sustainable Construction. Wiley-Blackwell: Hoboken, NJ, USA, pp. 1–20. DOI: https://doi.org/10.1002/9781118740828.ch1
[94] Liu, S.H., Rahmawati, Y., Zawawi, N.A.W.A., 2019. Critical success factors of collaborative approach in delivering sustainable construction. MATEC Web of Conferences. 270, 5003. DOI: https://doi.org/10.1051/matecconf/201927005003
[95] Zhang, C., Canning, L., 2011. Application of non-conventional materials in construction. Proceedings of the Institution of Civil Engineers - Construction Materials. 164(4), 165–172. DOI: https://doi.org/10.1680/coma.900061
[96] Neyestani, B., 2017. A review on sustainable building (green building). SSRN Electronic Journal. DOI: https://doi.org/10.2139/ssrn.2968885
[97] Roque, A.J., Paleologos, E.K., O'Kelly, B.C., et al., 2021. Sustainable environmental geotechnics practices for a green economy. Environmental Geotechnics. 9(2), 68–84. DOI: https://doi.org/10.1680/jenge.21.00091
[98] Kumar, R., Aggarwal, V., Surinder, M.G., 2021. Sustainable materials and techniques in affordable high-rise buildings - A case study. E3S Web of Conferences. 309, 1080. DOI: https://doi.org/10.1051/e3sconf/202130901080
[99] Iluyomade, T.D., Okwandu, A.C., 2024. Innovative materials in sustainable construction: A review. International Journal of Science and Research Archive. 12(1), 2435–2442. DOI: https://doi.org/10.30574/ijsra.2024.12.1.1048
[100] Abera, Y.A., 2024. Sustainable building materials: A comprehensive study on eco-friendly alternatives for construction. Composites and Advanced Materials. 33, 1–14. DOI: https://doi.org/10.1177/26349833241255957
[101] Ahn, C.R., Lee, S.H., Peña-Mora, F., et al., 2010. Toward environmentally sustainable construction processes: The U.S. and Canada's perspective on energy consumption and GHG/CAP emissions. Sustainability. 2(1), 354–370. DOI: https://doi.org/10.3390/su2010354
[102] Wyk, L.V., Mapiravana, J., Ampofo-Anti, N.L., 2012. Sustainable materials in building and architecture. In: Wyk, L.V., Mapiravana, J., Ampofo-Anti, N.L. (Eds.). Sustainable Materials in Building and Architecture. The Royal Society of Chemistry: London, UK. pp. 668–685. DOI: https://doi.org/10.1039/bk9781849734073-00668
[103] Naik, T.R., 2008. Sustainability of concrete construction. Practice Periodical on Structural Design and Construction. 13(2), 98–103. DOI: https://doi.org/10.1061/(ASCE)1084-0680(2008)13:2(98)
[104] Wernli, M., Springston, P.S., 2007. Design of sustainable marine concrete structures: A case study. In: Wernli, M., Springston, P.S. (Eds.). Ports 2022. American Society of Civil Engineers: Reston, VA, USA. pp. 81–88. DOI: https://doi.org/10.1061/40834(238)81
[105] Chan, A.P.C., Darko, A., Olanipekun, A.O., et al., 2017. Critical barriers to green building technologies adoption in developing countries: The case of Ghana. Journal of Cleaner Production. 172, 1067–1079. DOI: https://doi.org/10.1016/j.jclepro.2017.10.235
[106] Ochieng, E.G., Wynn, T.S., Zoufa, T., et al., 2014. Integration of sustainability principles into construction project delivery. Journal of Architectural Engineering Technology. 3(1), 116. DOI: https://doi.org/10.4172/2168-9717.1000116
[107] Govalkar, U.B., Rao, R., 2024. Energy efficiency, water conservation and waste management. In: Noble Science Press eBooks. Noble Science Press: Palm Coast, FL, USA. pp. 256–269. DOI: https://doi.org/10.52458/9788196897444.nsp2024.eb.ch-15
[108] Uttam, K., Balfors, B., Faith-Ell, C., 2014. Green public procurement (GPP) of construction and building materials. In: Elsevier eBooks. Elsevier BV: Amsterdam, The Netherlands. pp. 166–182. DOI: https://doi.org/10.1533/9780857097729.1.166
[109] Reis, C., Carpinteiro, E., Braga, P., et al., 2019. Sustainable safety measures applied in construction. Studies in Systems, Decision and Control. Springer International Publishing: Cham, Switzerland. pp. 125–138. DOI: https://doi.org/10.1007/978-3-030-14730-3_14
[110] Węglarz, A., Gilewski, P., 2019. Innovative technologies in construction sector that meet criteria of sustainable development. IOP Conference Series: Materials Science and Engineering. 661(1), 12058. DOI: https://doi.org/10.1088/1757-899X/661/1/012058
[111] Ramani, P., Reji, V., Sathish Kumar, V., et al., 2025. Deep learning-based detection and classification of moss and crack damage in rock structures for geo-mechanical preservation. Journal of Mines, Metals & Fuels. 73(3), 345–352.
[112] Chippalkatti, S., Chekuri, R.B., Ohol, S.S., et al., 2025. Enhancing heat transfer in micro-channel heat sinks through geometrical optimization. Journal of Mines, Metals & Fuels. 73(3), 353–361.
[113] Kurhade, A.S., Siraskar, G.D., Chekuri, R.B., et al., 2025. Biodiesel blends: A sustainable solution for diesel engine performance improvement. Journal of Mines, Metals & Fuels. 73(3), 362–370.
[114] Kurhade, A.S., Bhavani, P., Patil, S.A., et al., 2025. Mitigating environmental impact: A study on the performance and emissions of a diesel engine fueled with biodiesel blend. Journal of Mines, Metals & Fuels. 73(4), 981–989.
[115] Wakchaure, G.N., Vijayarao, P., Jadhav, T.A., et al., 2025. Performance evaluation of trapezoidal ducts with delta wing vortex generators: An experimental investigation. Journal of Mines, Metals & Fuels. 73(4), 991–1003.
[116] Wakchaure, G.N., Jagtap, S.V., Gandhi, P., et al., 2025. Heat transfer characteristics of trapezoidal duct using delta wing vortex generators. Journal of Mines, Metals & Fuels. 73(4), 1053–1056.
[117] Chougule, S.M., Murali, G., Kurhade, A.S., 2025. Failure investigation of the driving shaft in an industrial paddle mixer. Journal of Mines, Metals & Fuels. 73(5), 1247–1256.
[118] Kurhade, A.S., Sugumaran, S., Kolhalkar, N.R., et al., 2025. Thermal management of mobile devices via PCM. Journal of Mines, Metals & Fuels. 73(5), 1313–1320.
[119] Chougule, S.M., Murali, G., Kurhade, A.S., 2025. Finite element analysis and design optimization of a paddle mixer shaft. Journal of Mines, Metals & Fuels. 73(5), 1343–1354.
[120] Waware, S.Y., Ahire, P.P., Napate, K., et al., 2025. Advancements in heat transfer enhancement using perforated twisted tapes: A comprehensive review. Journal of Mines, Metals & Fuels. 73(5), 1355–1363.
[121] Patil, Y., Tatiya, M., Dharmadhikari, D.D., et al., 2025. The role of AI in reducing environmental impact in the mining sector. Journal of Mines, Metals & Fuels, 73(5), 1365–1378.