Constructal Design Applied to an Overtopping Wave Energy Converter Locate on Paraná Coast in Brazil
Paranaguá Campus, Paraná Federal Institute of Education, Science and Technology (IFPR), Paranaguá, 83215-750, PR, Brazil.
School of Engineering, Federal University of Rio Grande (FURG), Rio Grande, 96201-900, RS, Brazil.
School of Engineering, Federal University of Rio Grande (FURG), Rio Grande, 96201-900, RS, Brazil.
School of Engineering, Federal University of Rio Grande (FURG), Rio Grande, 96201-900, RS, Brazil.
Interdisciplinary Department, Federal University of Rio Grande do Sul (UFRGS), Tramandaí, 95590-000, RS, Brazil.
School of Engineering, Federal University of Rio Grande (FURG), Rio Grande, 96201-900, RS, Brazil.
Paranaguá Campus, Paraná Federal Institute of Education, Science and Technology (IFPR), Paranaguá, 83215-750, PR, Brazil.
DOI: https://doi.org/10.36956/sms.v6i2.1113
Received: 14 December 2023 | Revised: 26 January 2024 | Accepted: 26 February 2024 | Published Online: 5 September 2024
Copyright © 2023 Sthefany Amaral da Silva , Jaifer Corrêa Martins , Elizaldo Domingues dos Santos , Luiz Alberto Oliveira Rocha , Bianca Neves Machado , Liércio André Isoldi , Mateus das Neves Gomes. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
This research aims a numerical and geometrical investigation about an Overtopping Device Wave Energy Converter (OTD-WEC). Constructal Design method was employed to perform a geometric evaluation of this OTD-WEC submitted to ocean waves with similar characteristics of the coastal region of Paraná State – Pontal do Paraná city in southern Brazil, located 41 km from the coast and 30 m water deep. It was analyzed two different significant wave heights, HS1 = 1.25 m and HS2 = 1.50 m. In each set, it were simulated 10 cases with different ramp angles, totaling 20 numerical simulations. The main goal was to evaluate the influence of the ramp angle on the water mass flow rate entering the reservoir. Therefore, through the Construtal Design, the degree of freedom (DOF) H1/L1 (ratio between the height and length of the ramp) was varied, considering a constant area of the ramp. For the numerical analysis, a two-dimensional computational model was employed using the commercial software Ansys Fluent, which is based on the Finite Volume Method (FVM). The multiphase Volume of Fluid (VOF) model was applied to tackle with the water-air interaction. The results showed that the best geometric configurations happened for those cases with smaller ramp angles. In addition, a reconfiguration of the ramp angles, keeping the area fixed, allowed a significant improvement in the OTD-WEC available power.
Keywords: Numerical Simulation; Geometric Analysis; Sea Wave Energy Converter; Overtopping Device; Ansys Fluent
References
[1] Hinrichs, R.A., Kleinbach, M., 2014. Energia e Meio Ambiente, 3rd ed.; Cengage Learning Editores: São Paulo. pp. 1–784.
[2] Lei, X., Alharthi, M., Ahmad, I., et al., 2022. Importance of international relations for the promotion of renewable energy, preservation of natural resources and environment: Empirics from SEA nations. Renewable Energy. 196, 1250–1257. DOI: https://doi.org/10.1016/j.renene.2022.07.083
[3] Chaoyi, C., Mehmet P., Thanasis, S., 2021. Determinants of renewable energy consumption: Importance of democratic institutions. Renewable Energy. 179, 75–83. DOI: https://doi.org/10.1016/j.renene.2021.07.030
[4] Gael, A., João, A., Fortes, C., et al., 2022. Energy assessment of potential locations for OWC instalation at the Portuguese coast. Renewable Energy. 200, 37–47. DOI: https://doi.org/10.1016/j.renene.2022.09.082
[5] Tolmasquim, M.T., 2016. Energia Renovável: Hidráulica, Biomassa, Eólica, Oceânica. Empresa de Pesquisa Energética: Rio de Janeiro. pp. 1–452.
[6] Kofoed, J., Frigaard, P., Friis-Madsen, E., et al., 2006. Prototype testing of the wave energy converter wave dragon. Renewable Energy. 31, 181–189. DOI: https://doi.org/10.1016/j.renene.2005.09.005
[7] Margheritini, L., Vicinanza, D., Frigaard, P., 2009. SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device. Renewable Energy. 34, 1371–1380. DOI: https://doi.org/10.1016/j.renene.2008.09.009
[8] Nemes, D., Marone, E., 2013. Characterization of surface waves on the inner shelf of the Paraná State. Boletim Paranaense de geociências. Paraná: Geociência. 68–69, 12–25.
[9] Rusu, L., Rusu, E., 2021. Evaluation of the WorldwideWave Energy Distribution Based on ERA5 Data and Altimeter Measurements. Energies. 14. DOI: https://doi.org/10.3390/en14020394
[10] Paiva, M., Silveira, L., Isoldi, L., et al., 2021. Bibliometric Study Applied to the Overtopping Wave Energy Converter Device. Sustainable Marine Structures. 2(1), 35–45. DOI: https://doi.org/10.36956/sms.v2i1.306
[11] Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225. DOI: https://doi.org/10.1016/0021-9991(81)90145-5
[12] Liu, Z., Hyun, B.S., Jin, J., 2008. Numerical Prediction for Overtopping Performance of OWEC. IEEE. 2008.
[13] Iahnke, S.L.P., Gomes, M.N., Isoldi, L.A., et al., 2009. Energia das Ondas do Mar: Modelagem Computacional de um Dispositivo de Galgamento. Vetor. 19.
[14] Peng, Z., Zou, Q., 2011. Spatial distribution of wave overtopping water behind coastal structures. Coastal Engineering. 58(6), 489–498. DOI: https://doi.org/10.1016/j.coastaleng.2011.01.010
[15] Musa, M., Roslan, M., Ahmad, M., et al., 2020. The Influence of Ramp Shape Parameters on Performance of Overtopping Breakwater for Energy Conversion. Journal of Marine Science Energy. 8, 875. DOI: https://doi.org/10.3390/jmse8110875
[16] Bejan, A., 2000. Shape and Structure: From Engineering to Nature. Cambridge University Press: Cambridge, UK. pp. 1–362.
[17] Bejan, A., Lorente, S., 2008. Design with Constructal Design. 1. ed. Hoboken: John Wiley & Sons. pp. 1–560.
[18] Bejan, A., Zane, J., 2012. Design in Nature, Doubleday, EUA. pp. 1–304.
[19] Bejan, A., Lorente, S., 2013. Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society. Journal of Applied Physics. 113. DOI: https://doi.org/10.1063/1.4798429
[20] Machado, B., 2012. Modelagem Computacional e Otimização Geométrica de um dispositivo de Galgamento para a conversão da energia das ondas do mar em energia elétrica [Master Thesis]. Federal University of Rio Grande, Brazil. pp. 1–92.
[21] Santos, E., Machado, B., Lopes, N., et al., 2013. Constructal Design of Wave Energy Converters. In: Rocha, L.A.O., Lorente, S., Bejan, A., Constructal Law and the Unifying Principle of Design, 1st Ed. Springer. pp. 275–294.
[22] Dos Santos, E., Machado, B., Zanella, M., et al., 2014. Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design. Defect and Diffusion Forum. 348, 232–244. DOI: https://doi.org/10.4028/www.scientific.net/DDF.348.232
[23] Gomes, M.N., Lara, M.F.E., Iahnke, S.L.P., et al., 2015. Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate. Defect and Diffusion Forum. 362, 115–171. DOI: https://doi.org/10.4028/www.scientific.net/DDF.362.115
[24] Machado, B., 2016. Estudo numérico tridimensional de um dispositivo de galgamento para conversão de energia das ondas do mar em energia elétrica aplicando o método Constructal Design [PhD Thesis]. Federal University of Rio Grande do Sul, Brazil. pp. 1–143.
[25] Martins, J.C., Goulart, M.M., Gomes, M.N., et al., 2018. Geometric Evaluation of the Main Operational Principle of an Overtopping Wave Energy Converter by Means of Constructal Design. Renewable Energy. 727–741. DOI: https://doi.org/10.1016/j.renene.2017.11.061
[26] Martins, J.C., Fragassa, C., Goulart, M.M., et al., 2022. Constructal Design of an Overtopping Wave Energy Converter Incorporated in a Breakwater. Journal of Marine Science and Engineering. 10(4), 1–27. DOI: https://doi.org/10.3390/jmse10040471
[27] Chakrabarti, S.K., 2005. Handbook of Offshore Engineering. Elsevier: Amsterdan. pp. 1–661.
[28] Zhang, Y., Zou, Q., Greaves, D., 2012. Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renewable Energy. 159–170. DOI: https://doi.org/10.1016/j.renene.2011.10.011
[29] Lv, X., Zou, Q., Reeve, D., 2011. Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method. Advances in Water Resources. 34(10), 1320–1334. DOI: https://doi.org/10.1016/j.advwatres.2011.06.009
[30] Schlichting, H., 1979. Boundary-layer theory, 7th ed. McGraw-Hill: New York, USA.
[31] Versteeg, H.K., Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. Pearson Education: London, UK.
[32] Goulart, M.M., 2014. Estudo Numérico da Geometria de um Dispositivo de Galgamento Onshore em Escala Real Empregando Constructal Design [Master’s Thesis]. Universidade Federal do Rio Grande, Rio Grande, RS.
[33] Mavriplis, D.J., 1997. Unstructured Grid Techniques, Annual Reviews Fluid Mechanics. 29, 473–514.
[34] Ferziger, J.H., Peric, M., 2002. Computacional Methods for Fluid Dynamics. 3rd. ed. Springer: Berlim.
[35] Goulart, M.M., 2022. Validação de um modelo numérico de um dispositivo de galgamento e investigação numérica e experimental da geometria aplicando o método design construtal [PhD Thesis]. Federal University of Rio Grande, Brazil. pp. 1–144.
[36] Marjani, A.E., Ruiz, F.C., Rodriguez, M.A., et al., 2008. Numerical Modeling in Wave Energy Conversion Systems. Energy. 33, 1246–1256.