Knowledge Maps from Scientometric Review on Composite Marine Risers
Department of Construction Management, Global Banking School, Manchester M12 6JH, UK; School of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YR, UK; Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia
Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; Department of Civil Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Kajang 43000, Selangor, Malaysia
Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; Department of Civil Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Kajang 43000, Selangor, Malaysia
Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; Department of Civil Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Kajang 43000, Selangor, Malaysia
Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; Department of Civil Engineering, Ahmadu Bello University, Zaria, Kaduna 810107, Nigeria
Department of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255000, China
Offshore Oil Engineering Co., Ltd., Tianjin 300451, China
School of Engineering, University of Aberdeen, Aberdeen, Scotland AB24 3FX, UK
Department of Construction Management, Global Banking School, Manchester M12 6JH, UK; Department of Estate Management, University of Benin, Benin City, Edo 300287, Nigeria
DOI: https://doi.org/10.36956/sms.v7i1.1067
Received: 9 January 2025 | Revised: 12 February 2025 | Accepted: 25 February 2025 | Published Online: 4 March 2025
Copyright © 2025 Chiemela Victor Amaechi, Ahmed Reda , Salmia Binti Beddu, Daud Bin Mohamed, Agusril Syamsir, Idris Ahmed Ja’e, Bo Huang , Chunguang Wang , Xuanze Ju , Jelson Cassavela, Abiodun Kolawole Oyetunji. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
With the increasing exploration of oil and gas into deep waters, the necessity for material development increases for lighter conduits such as composite marine risers, in the oil and gas industry. To understand the research knowledge on this novel area, there is a need to have a bibliometric analysis on composite marine risers. A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977-2023. Then, VOSviewer was used to visualize the knowledge maps. This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers. This scientometric analysis on the subject shows current advances, geographical activities by countries, authorship records, collaborations, funders, affiliations, co-occurrences, and future research areas. It was observed that the research trends recorded the highest publication volume in the U.S.A., but less cluster affiliated, as it was followed by countries like the U.K., China, Nigeria, Australia and Singapore. Also, this field has more conference papers than journal papers due to the challenge of adaptability, acceptance, qualification, and application of composite marine risers in the marine industry. Hence, there is a need for more collaborations on composite marine risers and more funding to enhance the research trend.
Keywords: Composite Risers; Marine Risers; Marine Structure; Scientometric Review; Bibliometric Analysis; Composite Material; Knowledge Map
References
[1] Amaechi, C.V., Reda, A., Beddu, S.B., et al., 2025. Bibliometric review and meta-analysis for research trends on composite marine risers. Structures. 73, 108208. DOI: https://doi.org/10.1016/j.istruc.2025.108208
[2] Tian, D., Fan, H., Leira, B.J., et al., 2020. Study on the static behavior of installing a deep-water drilling riser on a production platform. Journal of Petroleum Science and Engineering. 185, 106652. DOI: https://doi.org/10.1016/j.petrol.2019.106652
[3] Chen, Y., Tan, L.B., Jaiman, R.K., et al., 2013. Global-local analysis of a full-scale composite riser during vortex-induced vibration. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering; June 9–14, 2013; Nantes, France. pp. V007T08A084. DOI: https://doi.org/10.1115/OMAE2013-11632
[4] Wang, C., Sun, M., Shankar, K., et al., 2018. CFD simulation of vortex induced vibration for FRP composite riser with different modeling methods. Applied Sciences. 8(5), 684. DOI: https://doi.org/10.3390/app8050684
[5] Ai, S., Xu, Y., Kang, Z., et al., 2019. Performance comparison of stress-objective and fatigue-objective optimisation for steel lazy wave risers. Ships and Offshore Structures. 14(6), 534-544. DOI: https://doi.org/10.1080/17445302.2018.1522054
[6] Khan, R.A., Ahmad, S., 2020. Nonlinear dynamic and bilinear fatigue performance of composite marine risers in deep offshore fields. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering; August 3–7, 2020; Virtual, Online. pp. V02AT02A032. DOI: https://doi.org/10.1115/OMAE2020-18127
[7] Islam, A.S. 2018. Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser. Ocean Systems Engineering. 8(1), 21-32. DOI: https://doi.org/10.12989/ose.2018.8.1.021
[8] Saad, P., Salama, M.M., Jahnsen, O., 2002. Application of Composites to Deepwater Top Tensioned Riser Systems. Proceedings of the ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering; June 23–28, 2002; Oslo, Norway. pp. 255-261. DOI: https://doi.org/10.1115/OMAE2002-28325
[9] Karayaka, M., Wu, S., Wang, S.S., et al., 1998. Composite production riser dynamics and its effects on tensioners, stress joints, and size of deep water tension leg platform. Proceedings of the Offshore Technology Conference; May 4-7, 1998; Houston, Texas, United States. DOI: https://doi.org/10.4043/8666-MS
[10] Johnson, D.B., Salama, M.M., Long, J.R., et al., 1998. Composite Production Riser-Manufacturing Development and Qualification Testing. Proceedings of the Offshore Technology Conference; May 4-7 1998; Houston, Texas, United States. DOI: https://doi.org/10.4043/8665-MS
[11] Drey, M.D., Salama, M.M., Long, J.R., et al., 1997. Composite production riser-testing and qualification. Proceedings of the Offshore Technology Conference; May 25-30, 1997; Houston, Texas, United States. DOI: https://doi.org/10.2118/50971-PA
[12] Wang, C., Shankar K., Morozov E.V., 2015. Tailored local design of deep sea FRP composite risers. Advanced Composite Materials. 24(4), 375-397. DOI: https://doi.org/10.1080/09243046.2014.898438
[13] Wang, C., Shankar K., Morozov E.V., 2017. Global design and analysis of deep sea FRP composite risers under combined environmental loads. Advanced Composite Materials. 26(1), 79-98. DOI: https://doi.org/10.1080/09243046.2015.1052187
[14] Amaechi, C.V. 2022. Local tailored design of deep water composite risers subjected to burst, collapse and tension loads. Ocean Engineering. 250, 110196. DOI: https://doi.org/10.1016/j.oceaneng.2021.110196
[15] Liu, H., Li, M., Shen, Y. 2023. Numerical analysis of mechanical behaviors of composite tensile armored flexible risers in deep-sea oil and gas. Journal of Marine Science and Engineering. 11(3), 619. DOI: https://doi.org/10.3390/jmse11030619
[16] Rubino, F., Nisticò, A., Tucci, F., ET AL., 2020. Marine application of fiber reinforced composites: A review. Journal of Marine Science and Engineering. 8(1), 26. DOI: https://doi.org/10.3390/jmse8010026
[17] Nammi, S.K., Gupta, R., Pancholi, K., 2022. Comparative strength and stability analysis of conventional and lighter composite flexible risers in ultra-deep water subsea environment. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering; May 25, 2022; Online. pp. 09544089221144394. DOI: https://doi.org/10.1177/09544089221144394
[18] Lambert, A., Do, A., Felix-Henry, A., et al., 2012. Qualification of unbonded dynamic riser with carbon fiber composite armours. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering; July 1–6, 2012; Rio de Janeiro, Brazil. pp. 117-125. DOI: https://doi.org/10.4043/23281-MS
[19] Amaechi, C.V., Reda, A., Shahin, M.A., et al., 2023. State-of-the-art review of composite marine risers for floating and fixed platforms in deep seas. Applied Ocean Research. 138, 103624. DOI: DOI: https://doi.org/10.1016/j.apor.2023.103624
[20] Al Christopher, C., Da Silva, Í.G., Pangilinan, K.D., et al., 2021. High performance polymers for oil and gas applications. Reactive and Functional Polymers. 162, 104878. DOI: https://doi.org/10.1016/j.reactfunctpolym.2021.104878
[21] Oladele, I.O., Omotosho, T.F., Adediran, A.A., 2020. Polymer-based composites: An indispensable material for present and future applications. International Journal of Polymer Science. 2020(1), 8834518. DOI: https://doi.org/10.1155/2020/8834518
[22] Ye, J., Cai, H., Liu, L., et al., 2021. Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part Ⅰ: Experimental tests. Composite Structures. 262, 113369. DOI: https://doi.org/10.1016/j.compstruct.2020.113369
[23] Pham D.C., Sridhar N., Qian X., et al., 2016. A review on design, manufacture and mechanics of composite risers. Ocean Engineering. 112, 82-96. DOI: http://dx.doi.org/10.1016/j.oceaneng.2015.12.004
[24] Toh W., Taan L.B., Jaiman R.K., et al., 2018. A comprehensive study on composite risers: Material solution, local end fitting design and global response. Marine Structures. 61, 155–169. DOI: https://doi.org/10.1016/j.marstruc.2018.05.005
[25] Roberts, D., Hatton, S., Rumsey, L., et al., 2013. Development and Qualification of End Fittings for Composite Riser Pipe. Proceedings of the Offshore Technology Conference; May 6–9, 2013; Houston, Texas, United States. pp. OTC 23977. DOI: https://doi.org/10.4043/23977-MS
[26] Meniconi, L.C.M., Reid S.R., Soden P.D., 2001. Preliminary design of composite riser stress joints. Composites Part A Applied Science and Manufacturing. 32(5), 597-605. DOI: https://doi.org/10.1016/S1359-835X(00)00165-2
[27] Zhang, H., Tong, L., Addo, M.A., 2021. Mechanical analysis of flexible riser with carbon fiber composite tension armor. Journal of Composites Science. 5(1), 3. DOI: https://doi.org/10.3390/jcs5010003
[28] Tan, L.B., Chen, Y., Jaiman, R.K., et al., 2015. Coupled fluid–structure simulations for evaluating a performance of full-scale deepwater composite riser. Ocean Engineering. 94, 19-35. DOI: https://doi.org/10.1016/j.oceaneng.2014.11.007
[29] Chang, X.P., Qu, C.J., Song, Q., et al., 2022. Coupled cross-flow and in-line vibration characteristics of frequency-locking of marine composite riser subjected to gas-liquid multiphase internal flow. Ocean Engineering. 266, 113019. https://doi.org/10.1016/j.oceaneng.2022.113019
[30] Loureiro Junior, W.C., dos Santos Junior, F.C., et al. 2013. Strategy concerning composite flowlines, risers and pipework in offshore applications. Proceedings of the Offshore Technology Conference; May 6–9, 2013; Houston, Texas, United States. pp. OTC 24049. DOI: https://doi.org/10.4043/24049-MS
[31] Amaechi C.V., Gillet N., Odijie, A.C., et al., 2019. Composite risers for deep waters using a numerical modelling approach, compos. Composite Structures. 210, 486-499. DOI: https://doi.org/10.1016/j.compstruct.2018.11.057
[32] Ochoa, O.O., Salama, M.M. 2005. Offshore composites: Transition barriers to an enabling technology. Composites Science and Technology. 65(15–16), 2588-2596. DOI: https://doi.org/10.1016/j.compscitech.2005.05.019
[33] Yoo, Y., Jae, H., Park, S., et al., 2014. Structural integrity monitoring of the marine riser with composite structure. Journal of the Korean Society for Advanced Composite Structures. 5(4), 44-51. DOI: https://doi.org/10.11004/kosacs.2014.5.4.044
[34] Amaechi, C.V., Chesterton, C., Butler, H.O., et al., 2022. Review of composite marine risers for deep-water applications: Design, development and mechanics. Journal of Composites Science. 6(3), 96. DOI: https://doi.org/10.3390/jcs6030096
[35] Pham, D.C., Sridhar, N., Qian, X., et al., 2015. Composite riser design and development – a review. In: Guedes Soares, C., Shenoi, R.A. (eds.). Analysis and Design of Marine Structures V, 1st ed. CRC Press: Boca Raton, United States. pp. 84–101. DOI: https://doi.org/10.1201/b18179-84
[36] Amaechi C.V., Wang F., Hou X., et al., 2019. Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on the CALM buoy. Ocean Engineering, 171, 429–442. DOI: https://doi.org/10.1016/j.oceaneng.2018.11.010
[37] Amaechi, C.V., Gillet, N., Ja’e, I.A., et al., 2022. Tailoring the local design of deep water composite risers to minimise structural weight. Journal of Composites Science. 6(4), 103. DOI: https://doi.org/10.3390/jcs6040103
[38] Picard, D., Hudson, W., Bouquier, L., et al., 2007. Composite Carbon Thermoplastic Tubes for Deepwater Applications. Proceedings of the Offshore Technology Conference; April 30 - May 3 2007; Houston, Texas, United States. pp. 1-6. DOI: https://doi.org/10.4043/19111-MS
[39] Ragheb, H., Sobey, A., 2021. Effects of extensible modelling on composite riser mechanical responses. Ocean Engineering. 220, 108426. DOI: https://doi.org/10.1016/j.oceaneng.2020.108426
[40] Andersen, W.F., Anderson, J.J., Mickelson, C.S., et al., 1997. The application of advanced composite technology to marine drilling riser systems: Design, manufacturing and test. Proceedings of the Offshore Technology Conference; May 25-30, 1997; Houston, Texas, United States. pp. 1-5. DOI: https://doi.org/10.4043/8433-MS
[41] Wang, C., Shankar, K., Morozov, E.V., 2011. Local Design of composite riser under burst, tension, and collapse cases. Proceedings of the 18th International Conference on Composite Materials (ICCM18); August 21–26, 2011; Jeju Island, Korea. pp. 1-6. URL: https://iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug22(Monday)/M04%20Applications%20of%20Composites/M4-1-IF0161.pdf
[42] Wang, S.S., Fitting, D.W., 1993. Composite Materials for Offshore Operations: Proceedings of the First International Workshop; October 26–28, 1993; Houston, Texas, United States. NIST Special Publication 887. pp. 1-388. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication887.pdf
[43] Yu K., Morozov E.V., Ashraf M.A., et al., 2017. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. Journal of Reinforced Plastics and Composites. 36(20), 1514–1530. DOI: https://doi.org/10.1177/0731684417713666
[44] Bhudolia, S.K., Fischer, S., He, P.G., et al., 2015. Design, manufacturing and testing of filament wound composite risers for marine and offshore applications. Materials Science Forum. 813, 337-343. DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.813.337
[45] da Silva, R.F., Teófilo, F.A.F., Parente Jr, E., et al., 2013. Optimization of composite catenary risers. Marine Structures. 33, 1-20. DOI: https://doi.org/10.1016/j.marstruc.2013.04.002
[46] Chen, Y., Seemann, R., Krause, D., et al., 2016. Prototyping and testing of composite riser joints for deepwater application. Journal of Reinforced Plastics and Composites. 35(2), 95-110. DOI: https://doi.org/10.1177/0731684415607392
[47] Amaechi, C.V., Adefuye, E.F., Kgosiemang, I.M., et al., 2022. Scientometric Review for Research Patterns on Additive Manufacturing of Lattice Structures. Materials. 15(15), 5323. DOI: https://doi.org/10.3390/ma15155323
[48] Waltman, L., Van Eck, N.J., Noyons, E.C.M., 2010. A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics. 4(4), 629-635. DOI: http://dx.doi.org/10.1016/j.joi.2010.07.002
[49] Wong, D., 2018. VOSviewer. Technical Services Quarterly. 35(2), 219-220. DOI: https://doi.org/10.1080/07317131.2018.1425352
[50] Van Eck, N.J., Waltman, L., Dekker, R., et al., 2010. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology. 61(12), 2405-2416. DOI: http://dx.doi.org/10.1002/asi.21421
[51] Van Eck, N.J., Waltman, L., 2007. VOS: a new method for visualizing similarities between objects. In: Lenz, H.-J., Decker, R. (eds.). Advances in Data Analysis: Proceedings of the 30th Annual Conference of the German Classification Society, 1st ed. Springer: Berlin, Germany. pp. 299-306. DOI: https://doi.org/10.1007/978-3-540-70981-7_34
[52] Van Eck, N.J., Waltman, L., 2009. How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology. 60(8), 1635-1651. DOI: http://dx.doi.org/10.1002/asi.21075
[53] Van Eck, N.J., Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84(2), 523-538. DOI: http://dx.doi.org/10.1007/s11192-009-0146-3
[54] Van Eck, N.J., Waltman, L., 2014. Visualizing bibliometric networks. In: Ding, Y., Rousseau, R., Wolfram, D. (eds.). Measuring Scholarly Impact: Methods and Practice, 1st ed. Springer: Cham, Switzerland. pp. 285-320. DOI: https://doi.org/10.1007/978-3-319-10377-8_13
[55] Perianes-Rodriguez, A., Waltman, L., Van Eck, N.J., 2016. Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics. 10(4), 1178-1195. DOI: http://dx.doi.org/10.1016/j.joi.2016.10.006
[56] Amaechi, C.V., 2022. Novel Design, Hydrodynamics and Mechanics of Marine Hoses in Oil/Gas Applications [PhD Thesis]. Lancaster, United Kingdom: Lancaster University. pp. 1-200. DOI: DOI: https://doi.org/10.17635/lancaster/thesis/1773
[57] Kim, W.K., 2007. Composite Production Riser Assessment [PhD Thesis]. College Station, Texas: Texas A&M University. pp. 1-144. URL: https://core.ac.uk/download/pdf/4272879.pdf
[58] Alexander, C.R., 2009. Development of a Composite Repair System for Reinforcing Offshore Risers [PhD Thesis]. College Station, Texas: Texas A&M University. pp. 1-211. URL: https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2534
[59] Chan, P.H., 2015. Design Study of Composite Repair System for Offshore Riser Applications [PhD Thesis]. Nottingham, United Kingdom: The University of Nottingham. pp. 1-200. URL: ttps://eprints.nottingham.ac.uk/id/eprint/33455
[60] Wang, C., 2013. Tailored Design of Composite Risers for Deep Water Applications [PhD Thesis]. Sydney, Australia: University of New South Wales. pp. 1-185. DOI: https://doi.org/10.26190/unsworks/16172
[61] Chandarana, N., 2019. Combining Passive and Active Methods for Damage Mode Diagnosis in Tubular Composites [PhD Thesis]. Manchester, United Kingdom: University of Manchester. pp. 1-412. URL: https://pure.manchester.ac.uk/ws/portalfiles/portal/184632302/FULL_TEXT.PDF
[62] Ragheb, H.A., 2023. Virtual Testing of Composite Risers [PhD Thesis]. Southampton, United Kingdom: University of Southampton. pp. 1-177. URL: https://eprints.soton.ac.uk/478513/
[63] Amaechi, C.V., Reda, A., Beddu, S.B., et al., 2024. Research on publication trends for Asset management of offshore facilities between 1992 to 2022 using Scientometric analysis. Sustainable Marine Structures. 6(1), 71-95. DOI: https://doi.org/10.36956/sms.v6i1.1016
[64] Amaechi, C.V., Ja’e, I.A., Reda, A., et al., 2022. Scientometric review and thematic areas for the research trends on marine hoses. Energies. 15, 7723. DOI: https://doi.org/10.3390/en15207723
[65] Junjia, Y., Alias, A.H., Haron, N.A., et al., 2024. Trend analysis of marine construction disaster prevention based on text mining: Evidence from China. Sustainable Marine Structures. 6(1), 20–32. DOI: https://doi.org/10.36956/sms.v6i1.1026
[66] Paiva, M., da S., Silveira, L., et al., 2021. Bibliometric study applied to the overtopping wave energy converter device. Sustainable Marine Structures. 2(1), 35–45. DOI: https://doi.org/10.36956/sms.v2i1.306
[67] Ragheb, H.A., Goodridge, M., Pham, D.C., et al., 2021. Extreme response based reliability analysis of composite risers for applications in deepwater. Marine Structures. 78, 103015. DOI: https://doi.org/10.1016/j.marstruc.2021.103015
[68] Amaechi, C.V., Reda, A., Kgosiemang, I.M., et al., 2022. Guidelines on asset management of offshore facilities for monitoring, sustainable maintenance, and safety practices. Sensors. 22, 7270. DOI: https://doi.org/10.3390/s22197270
[69] Amaechi, C.V., Reda, A., Ja’e, I.A., et al., 2022. Guidelines on composite flexible risers: Monitoring techniques and design approaches. Energies. 15, 4982. DOI: https://doi.org/10.3390/en15144982
[70] Reda, A., Amaechi, C.V., Diaz Jimenez, L.F., et al., 2024. Guideline for the decommissioning/abandonment of subsea pipelines. Journal of Marine Science and Engineering. 12(1), 8. DOI: https://doi.org/10.3390/jmse12010008
[71] Jing, J., Shan, H., Zhu, X., et al., 2023. The effect of string mechanical properties degradation on wellhead growth of offshore HPHT wells. Petroleum Science and Technology. 42(19), 2608-2632. DOI: https://doi.org/10.1080/10916466.2023.2180035
[72] Singh, M., Ahmad, S., Jain, A.K., 2020. S-N Curve Model for Assessing Cumulative Fatigue Damage of Deep-Water Composite Riser. Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering; August 3–7, 2020; Virtual, Online. pp. V001T01A024. DOI: https://doi.org/10.1115/OMAE2020-18555
[73] Singh, M., Ahmad, S., 2015. Fatigue life calculation of deep water composite production risers by rain flow cycle counting method. Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering; May 31–June 5, 2015; St. John’s, Newfoundland, Canada. pp. V05BT04A010. DOI: https://doi.org/10.1115/OMAE2015-41223
[74] Singh, M., Ahmad, S., 2015. Probabilistic analysis and risk assessment of deep water composite production riser against fatigue limit state. Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering; May 31–June 5, 2015; St. John’s, Newfoundland, Canada. pp. V003T02A062. DOI: https://doi.org/10.1115/OMAE2015-41576
[75] Singh, M., Ahmad, S., 2014. Bursting capacity and debonding of ultra deep composite production riser: A safety assessment. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering; June 8–13, 2014; San Francisco, California, United States. pp. V06AT04A056. DOI: https://doi.org/10.1115/OMAE2014-23872
[76] Singh, M., Ahmad, S., 2014. Local stress analysis of composite production riser under random sea. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering; June 8–13, 2014; San Francisco, CA, USA. p. V04BT02A013. DOI: https://doi.org/10.1115/OMAE2014-23983
[77] Singh, M., Singh, R.K., Ratna, S., et al., 2024. Nonlinear static and dynamic analysis of composite riser. In: Tyagi, R.K., Gupta, P., Das, P., Prakash, R. (eds.). Advances in Engineering Materials, 1st ed. Springer: Singapore. pp. 369–379. DOI: https://doi.org/10.1007/978-981-99-4758-4_33