3D Printing of a Tidal Turbine Blade Using Two Methods of SLS and FFF of a Reinforced PA12 Composite: A Comparative Study

Marwane Rouway

ENSTA Bretagne, IRDL, UMR CNRS 6027, Brest, F-29200, France; Faculty of Sciences Aïn Chock, LPMAT Laboratory, Hassan II University, Casablanca, 20000, Morocco

Mourad Nachtane

S Vertical Company, Paris, F-92290, France

Mostapha Tarfaoui

ENSTA Bretagne, IRDL, UMR CNRS 6027, Brest, F-29200, France

Sara Jamoudi Sbai

LIMAT Laboratory, FSBM, FSAC, Hassan II University, Casablanca, 20000, Morocco

DOI: https://doi.org/10.36956/sms.v6i1.1002

Received: 14 December 2023; Revised: 26 January 2024; Accepted: 26 February 2024; Published Online: 6 March 2024

Copyright © 2024 Marwane Rouway, Mourad Nachtane, Mostapha Tarfaoui, Sara Jamoudi Sbai. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

This study scrutinizes the thermomechanical dynamics of 3D-printed hydrofoil blades utilizing a carbon and glass bead-reinforced thermoplastic polymer. Comparative analyses underscore the pivotal role of polymer reinforcement in augmenting mechanical strength and mitigating deformation and residual stress. The investigation elucidates the expeditious and cost-efficient manufacturing potential of low-cost Fused Filament Fabrication (FFF) printers for small-scale blades, revealing exemplary mechanical performance with nominal deflection and warping in the PA12-CB/GB printed blade. A comprehensive juxtaposition between Selective Laser Sintering (SLS) and FFF printing methods favors SLS due to its isotropic properties, notwithstanding remediable warping. Emphasizing the rigorous marine environment, the study cautions against the anisotropic properties of FFF-printed blades, despite their low mechanical warping. These discernments contribute to hydrofoil design optimization through numerical analysis, shedding light on additive manufacturing’s potential for small blades in renewable energy, while underscoring the imperative for further research to advance these techniques.

Keywords: 3D printing, Tidal blade, Selective laser sintering (SLS), Fused filament fabrication (FFF)


References

[1] Tarfaoui, M., Nachtane, M., Amry, Y., et al., 2018. From renewable to marine energies sources for sustainable development and energy transition in Morocco: Current status and scenario. Preprints. DOI: https://doi.org/10.20944/preprints201811.0568.v1

[2] Mourad, N., Mostapha, T., Dennoun, S., et al. (editors), 2018. Promotion of renewable marines energies in Morocco: Perspectives and strategies. 20th International Conference on Energy Management and Renewable Energy; 2018 Jan; Dubai, UAE.

[3] Nachtane, M., Tarfaoui, M., Saifaoui, D., et al., 2018. Evaluation of durability of composite materials applied to renewable marine energy: Case of ducted tidal turbine. Energy Reports. 4, 31–40. DOI: https://doi.org/10.1016/j.egyr.2018.01.002

[4] Nachtane, M., 2019. Marine renewable energies and study of the performance of composite materials: case of a tidal current turbine [Ph.D. thesis]. Rennes: Loire Bretagne University. (in French).

[5] Nachtane, M., Tarfaoui, M., Goda, I., et al., 2020. A review on the technologies, design considerations and numerical models of tidal current turbines. Renewable Energy. 157, 1274–1288. DOI: https://doi.org/10.1016/j.renene.2020.04.155

[6] Nachtane, M., Tarfaoui, M., Mohammed, M.A., et al., 2020. Effects of environmental exposure on the mechanical properties of composite tidal current turbine. Renewable Energy. 156, 1132–1145. DOI: https://doi.org/10.1016/j.renene.2020.04.126

[7] Nachtane, M., Tarfaoui, M., Saifaoui, D., et al., 2020. Hydrodynamic performance evaluation of a new hydrofoil design for marine current turbines. Materials Today: Proceedings. 30, 889–898. DOI: https://doi.org/10.1016/j.matpr.2020.04.346

[8] Tarfaoui, M., Nachtane, M., Goda, I., et al., 2020. 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic. Materials. 13(15), 3339. DOI: https://doi.org/10.3390/ma13153339

[9] El Moumen, A., Tarfaoui, M., Lafdi, K., 2019. Modelling of the temperature and residual stress fields during 3D printing of polymer composites. The International Journal of Advanced Manufacturing Technology. 104, 1661–1676.DOI: https://doi.org/10.1007/s00170-019-03965-y

[10] Tarfaoui, M., Qureshi, Y., Chihi, M., et al., 2023. Mechanical characterisation of Aerosil-polycarbonate-based ceramic nanocomposites: 3D printing versus injection moulding technology. Journal of Composite Materials. 57(29), 4615–4634. DOI: https://doi.org/10.1177/00219983231214556

[11] Daly, M., Tarfaoui, M., Chihi, M., et al., 2023. FDM technology and the effect of printing parameters on the tensile strength of ABS parts. The International Journal of Advanced Manufacturing Technology. 126, 5307–5323. DOI: https://doi.org/10.1007/s00170-023-11486-y

[12] Nachtane, M., Tarfaoui, M., Ledoux, Y., et al., 2020. Experimental investigation on the dynamic behavior of 3D printed CF-PEKK composite under cyclic uniaxial compression. Composite Structures. 247, 112474. DOI: https://doi.org/10.1016/j.compstruct.2020.112474

[13] Rouway, M., Nachtane, M., Tarfaoui, M., et al., 2021. 3D printing: Rapid manufacturing of a new small-scale tidal turbine blade. The International Journal of Advanced Manufacturing Technology. 115, 61–76. DOI: https://doi.org/10.1007/s00170-021-07163-7

[14] Rouway, M., Tarfaoui, M., Chakhchaoui, N., et al., 2023. Additive manufacturing and composite materials for marine energy: Case of tidal turbine. 3D Printing and Additive Manufacturing. 10(6), 1309–1319. DOI: https://doi.org/10.1089/3dp.2021.0194

[15] Shchegolkov, A.V., Nachtane, M., Stanishevskiy, Y.M., et al., 2022. The effect of multi-walled carbon nanotubes on the heat-release properties of elastic nanocomposites. Journal of Composites Science. 6(11), 333. DOI: https://doi.org/10.3390/jcs6110333

[16] El Bahi, A., Rouway, M., Tarfaoui, M., et al., 2023. Mechanical homogenization of transversely isotropic CNT/GNP reinforced biocomposite for wind turbine blades: Numerical and analytical study. Journal of Composites Science. 7(1), 29. DOI: https://doi.org/10.3390/jcs7010029

[17] Beloufa, H.I., Tarfaoui, M., Lafdi, K., et al., 2023. Graphene nanosheets as novel nanofillers in an epoxy matrix for improved mechanical properties. Advances in nanosheets—Preparation, properties and applications. IntechOpen: London.

[18] Rouway, M., Nachtane, M., Tarfaoui, M., et al., 2021. Mechanical properties of a biocomposite based on carbon nanotube and graphene nanoplatelet reinforced polymers: Analytical and numerical study. Journal of Composites Science. 5(9), 234. DOI: https://doi.org/10.3390/jcs5090234

[19] Momeni, F., Sabzpoushan, S., Valizadeh, R., et al., 2019. Plant leaf-mimetic smart wind turbine blades by 4D printing. Renewable Energy. 130, 329–351. DOI: https://doi.org/10.1016/j.renene.2018.05.095

[20] Galvez, G.M., Olivar, K.A.M., Tolentino, F.R.G., et al., 2022. Finite element analysis of different infill patterns for 3D printed tidal turbine blade. Sustainability. 15(1), 713. DOI: https://doi.org/10.3390/su15010713

[21] Ramírez-Elías, V.A., Damian-Escoto, N., Choo, K., et al., 2022. Structural analysis of carbon fiber 3D-printed ribs for small wind turbine blades. Polymers. 14(22), 4925. DOI: https://doi.org/10.3390/polym14224925

[22] Arivalagan, S., Sappani, R., Čep, R., et al., 2023. Optimization and experimental investigation of 3D printed micro wind turbine blade made of PLA material. Materials. 16(6), 2508. DOI: https://doi.org/10.3390/ma16062508

[23] Wang, B., Ming, Y., Zhu, Y., et al., 2020. Fabrication of continuous carbon fiber mesh for lightning protection of large-scale wind-turbine blade by electron beam cured printing. Additive Manufacturing. 31, 100967. DOI: https://doi.org/10.1016/j.addma.2019.100967

[24] Ming, Y., Duan, Y., Zhang, S., et al., 2020. Self-heating 3D printed continuous carbon fiber/epoxy mesh and its application in wind turbine deicing. Polymer Testing. 82, 106309. DOI: https://doi.org/10.1016/j.polymertesting.2019.106309

[25] Kim, S.I., Jung, H.Y., Yang, S., et al., 2022. 3D Printing of a miniature turbine blade model with an embedded fibre Bragg grating sensor for high-temperature monitoring. Virtual and Physical Prototyping. 17(2), 156–169. DOI: https://doi.org/10.1080/17452759.2021.2017545

[26] Nachtane, M., Meraghni, F., Chatzigeorgiou, G., et al., 2022. Multiscale viscoplastic modeling of recycled glass fiber-reinforced thermoplastic composites: Experimental and numerical investigations. Composites Part B: Engineering. 242, 110087. DOI: https://doi.org/10.1016/j.compositesb.2022.110087

[27] Rahimizadeh, A., Kalman, J., Fayazbakhsh, K., et al., 2021. Mechanical and thermal study of 3D printing composite filaments from wind turbine waste. Polymer Composites. 42(5), 2305–2316. DOI: https://doi.org/10.1002/pc.25978

[28] Rahimizadeh, A., Kalman, J., Fayazbakhsh, K., et al., 2019. Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Composites Part B: Engineering. 175, 107101. DOI: https://doi.org/10.1016/j.compositesb.2019.107101

[29] Tahir, M., Rahimizadeh, A., Kalman, J., et al., 2021. Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste. Polymer Composites. 42(9), 4533–4548. DOI: https://doi.org/10.1002/pc.26166

[30] Jha, D., Singh, M., Thakur, A.N., 2021. A novel computational approach for design and performance investigation of small wind turbine blade with extended BEM theory. International Journal of Energy and Environmental Engineering. 12, 563–575. DOI: https://doi.org/10.1007/s40095-021-00388-y

[31] Leong, K.F., Liu, D., Chua, C.K., 2014. Tissue engineering applications of additive manufacturing. Comprehensive materials processing. Elsevier: Oxford.

[32] Yang, L., Hsu, K., Baughman, B., et al., 2017. Additive manufacturing of metals: The technology, materials, design and production. Springer International Publishing: Cham.

[33] Study of Laser Microprinting of Biological Elements for Bone Tissue Engineering [Internet] [cited 2020 Apr 8]. Available from: http://www.theses.fr/2010BOR14108 (in French).

[34] Sturm, L.D., Williams, C.B., Camelio, J.A., et al., 2017. Cyber-physical vulnerabilities in additive manufacturing systems: A case study attack on the .STL file with human subjects. Journal of Manufacturing Systems. 44, 154–164. DOI: https://doi.org/10.1016/j.jmsy.2017.05.007

[35] Shanthar, R., Chen, K., Abeykoon, C., 2023. Powder‐based additive manufacturing: A critical review of materials, methods, opportunities, and challenges. Advanced Engineering Materials. 25(19), 2300375. DOI: https://doi.org/10.1002/adem.202300375

[36] Kim, D., Oh, S., 2018. Optimizing the design of a vertical ground heat exchanger: measurement of the thermal properties of bentonite-based grout and numerical analysis. Sustainability. 10(8), 2664. DOI: https://doi.org/10.3390/su10082664

[37] Jacobs, P.F., 1992. Rapid prototyping & manufacturing: Fundamentals of stereolithography. Society of Manufacturing Engineers: Southfield.

[38] Dong, L., Makradi, A., Ahzi, S., et al., 2007. Finite element analysis of temperature and density distributions in selective laser sintering process. Materials science forum. Trans Tech Publications Ltd.: Bäch. pp. 75–80.

[39] Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., et al., 2014. Highly oriented carbon fiber-polymer composites via additive manufacturing. Composites Science and Technology. 105, 144–150. DOI: https://doi.org/10.1016/j.compscitech.2014.10.009

[40] Shofner, M.L., Lozano, K., Rodríguez‐Macías, F.J., et al., 2003. Nanofiber‐reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science. 89(11), 3081–3090. DOI: https://doi.org/10.1002/app.12496

[41] Zawaski, C., Williams, C., 2020. Design of a low-cost, high-temperature inverted build environment to enable desktop-scale additive manufacturing of performance polymers. Additive Manufacturing. 33, 101111. DOI: https://doi.org/10.1016/j.addma.2020.101111

[42] Li, Y., Zhou, K., Tan, P., et al., 2018. Modeling temperature and residual stress fields in selective laser melting. International Journal of Mechanical Sciences. 136, 24–35. DOI: https://doi.org/10.1016/j.ijmecsci.2017.12.001

[43] Bähr, F., Westkämper, E., 2018. Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP. 72, 1214–1219. DOI: https://doi.org/10.1016/j.procir.2018.03.048

[44] Christiyan, K.G.J., Chandrasekhar, U., Venkateswarlu, K., 2016. A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. IOP Conference Series: Materials Science and Engineering. 114(1), 012109. DOI: https://doi.org/10.1088/1757-899X/114/1/012109

[45] Yilbas, B.S., Arif, A.F.M., 2001. Material response to thermal loading due to short pulse laser heating. International Journal of Heat and Mass Transfer. 44(20), 3787–3798. DOI: https://doi.org/10.1016/S0017-9310(01)00026-6

[46] Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids. Clarendon Press: Oxford.

[47] Armillotta, A., Bellotti, M., Cavallaro, M., 2018. Warpage of FDM parts: Experimental tests and analytic model. Robotics and Computer-Integrated Manufacturing. 50, 140–152. DOI: https://doi.org/10.1016/j.rcim.2017.09.007

[48] Wang, T.M., Xi, J.T., Jin, Y., 2007. A model research for prototype warp deformation in the FDM process. The International Journal of Advanced Manufacturing Technology. 33, 1087–1096. DOI: https://doi.org/10.1007/s00170-006-0556-9

[49] Nachtane, M., Tarfaoui, M., Saifaoui, D., et al., 2020. Hydrodynamic performance evaluation of a new hydrofoil design for marine current turbines. Materials Today: Proceedings. 30, 889–898. DOI: https://doi.org/10.1016/j.matpr.2020.04.346

[50] Ferreira, R.T.L., Amatte, I.C., Dutra, T.A., et al., 2017. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B: Engineering. 124, 88–100. DOI: https://doi.org/10.1016/j.compositesb.2017.05.013

[51] Msallem, B., Sharma, N., Cao, S., et al., 2020. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. Journal of Clinical Medicine. 9(3), 817. DOI: https://doi.org/10.3390/jcm9030817

[52] Tully, J.J., Meloni, G.N., 2020. A scientist's guide to buying a 3D printer: How to choose the right printer for your laboratory. Analytical Chemistry. 92(22), 14853–14860. DOI:https://doi.org/10.1021/acs.ana lchem.0c03299

[53] A. Lifton, V., Lifton, G., Simon, S., 2014. Options for additive rapid prototyping methods (3D printing) in MEMS technology. Rapid Prototyping Journal. 20(5), 403–412. DOI: https://doi.org/10.1108/RPJ-04-2013-0038

[54] Mwania, F.M., Maringa, M., van der Walt, J.G., 2022. Investigating the recyclability of laser PP CP 75 polypropylene powder in laser powder bed fusion (L-PBF). Polymers. 14(5), 1011. DOI: https://doi.org/10.3390/polym14051011

[55] Zhang, W., Wu, A.S., Sun, J., et al., 2017. Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Composites Science and Technology. 150, 102–110. DOI: https://doi.org/10.1016/j.compscitech.2017.07.017