Rice Deficit Projections for Indonesia’s New Capital: A System Dynamics Analysis | Research on World Agricultural Economy

Rice Deficit Projections for Indonesia’s New Capital: A System Dynamics Analysis

Arman

Agribusiness Department, University of Trilogi, South Jakarta 12760, Indonesia

Budhi Purwandaya

Agribusiness Department, University of Trilogi, South Jakarta 12760, Indonesia

Boedi Tjahjono

Soil Science and Land Resource Department, IPB University, Bogor 16680, Indonesia

Heny Agustin

Agribusiness Department, University of Trilogi, South Jakarta 12760, Indonesia

Ginna Soniya Permata Hati

Soil Science and Land Resource Department, IPB University, Bogor 16680, Indonesia

P Setia Lenggono

Agribusiness Department, University of Trilogi, South Jakarta 12760, Indonesia

DOI: https://doi.org/10.36956/rwae.v6i3.1981

Received: 10 April 2025 | Revised: 23 May 2025 | Accepted:4 June 2025 | Published Online: 23 July 2025

Copyright © 2025 Arman, Budhi Purwandaya , Boedi Tjahjono, Heny Agustin, Ginna Soniya Permata Hati, P Setia Lenggono. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

The aims of this study are (1) to predict the demand and supply of rice in Ibu Kota Nusantara or IKN and (2) to integrate rice food policy formulation through soil quality assessment and the projection of rice supply and demand. This study presents a novel integration of the system dynamics model with a soil quality model to assess future rice supply and demand, providing a policy-oriented tool for addressing food security in the context of IKN. The data obtained through the Focus Group Discussion process, in-depth interviews and rice field visits.  Secondary data comes from the Central Statistics Agency at the national and regional levels, Regional Development Agencies at the provincial and district/city levels. In addition, soil samples in the paddy field were taken and tested in the laboratory to determine the quality of the soil. The results of the model simulation indicate that the IKN region is projected to experience a rice surplus between 2025 and 2032. However, starting in 2033, the region is expected to face a rice deficit. To control rice production, the government needs to control land conversion and illegal mining. The government should implement mitigation policies during the deficit period by improving land quality, expanding rice planting areas, providing water dams, building irrigation, and training as well as educating the farmers.

Keywords: Availability; Deficit; Policy; Rice


References

[1] The Ministry of National Development Planning Indonesia (Bappenas), 2019. Study on the Relocation of the National Capital. Interactive Dialogue "Relocation of the National Capital: Urgency and Implementation" [in Indonesian]. Bappenas: Balikpapan, Indonesia.

[2] Oldeman, L.R., Las, I., Mulasi, M., 1980. The agroclimatic maps of Kalimantan, Maluku, Irian Jaya and Bali, West and East Nusa Tenggara. Central Research Institute for Agriculture: Hyderabad, Andhra Pradesh, India.

[3] Susanti, E., Surmaini, E., Pramudia, A., et al., 2021. Updating of the Agro-climate Resources Map of Indonesia to Support Agricultural Planning [in Indonesian]. Jurnal Tanah dan Iklim. 45(1), 47–58. DOI: http://dx.doi.org/10.21082/jti.v45n1.2021.47-58

[4] Petersen, L., 1991. Soils of Kalimantan, Indonesia. In: MØberg, J.P., Madsen, H.B. (eds.). Soil Research in Denmark. Folia Geographica Danica: Copenhagen, Denmark. pp. 173–187.

[5] Sukarman, N., Suryani, E., Husnain, H., 2021. Land Suitability and Direction of Strategic Agricultural Commodities in East Kalimantan to Support the Development of the New Nation’s Capital of Republic of Indonesia. Jurnal Sumberdaya Lahan. 15(1), 1–12. DOI: https://doi.org/10.21082/jsdl.v15n1.2021.1-12

[6] Wibowo, A.D., Moeis, A.O., Wiguna, C.B., et al., 2015. Policy Model of Production and Price of Rice in Kalimantan Selatan. Agriculture and Agricultural Science Procedia. 3, 266–273. DOI: https://doi.org/10.1016/j.aaspro.2015.01.051

[7] Supriadi, A., 2021. Could East Kalimantan Achieve Food Self Sufficiency in 2025? [in Indonesian]. Buletin LOUPE. 17(1), 15–20.

[8] Adi, A., Rachmina, D., Krisnamurthi, Y.B., 2021. Balance of Rice Availability in East Kalimantan as Candidate for the New Capital of Indonesia with a Dynamic System Approach [in Indonesian]. Analisis Kebijakan Pertanian. 19(2), 207–218. DOI: http://dx.doi.org/10.21082/akp.v19n2.2021.207-218

[9] Sadaruddin, 2021. Agricultural Development [in Indonesian]. In: Saragih, B., R.U., P.A. (eds.). Increasing Upland Rice Production to Support Food Security in Kalimantan Province [in Indonesian]. Deepublish: Samarinda, Kalimantan Timur, Indonesia. pp. 80–88.

[10] Candra, K.P., 2021. Agricultural Development [in Indonesian]. In: Saragih, B., R.U., P.A. (eds.). Revitalization of Agriculture Based on Food Security in the Framework of Optimizing Regional Economic Development in East Kalimantan [in Indonesian]. deeppublish: Samarinda, Kalimantan Timur, Indonesia. pp. 130–135.

[11] Prasetyo, O.R., Amelia, R.R., Khasanah, I.N., et al., 2020. Paddy Harvested Area and Production in Indonesia 2019 [in Indonesian]. Badan Pusat Statistik: Jakarta, Indonesia . Available from: https://www.bps.go.id/id/publication/2020/12/01/21930121d1e4d09459f7e195/luas-panen-dan-produksi- (8/8/2023).

[12] Prasetyo, O.R., Khasanah, I.N., Poerwaningsih, R., et al., 2021. Paddy Harvested Area and Production in Indonesia 2020 BPS-Statistics Indonesia. [in Indonesian]. Available from: https://www.bps.go.id/id/publication/2021/07/12/b21ea2ed9524b784187be1ed/luas-panen-dan-produksi-padi-di-indonesia-2020.html (8/8/2023).

[13] Khasanah, I.N., Bimarta, Y., Wirawati, I., et al., 2022. Paddy Harvested Area and Production in Indonesia 2021 [in Indonesian]. Badan Pusat Statistik: Jakarta, Indonesia. Available from: https://www.bps.go.id/id/publication/2022/07/12/c52d5cebe530c363d0ea4198/luas-panen-dan-produksi-padi-di-indonesia (8/8/2023).

[14] Khasanah, I.N., Amelia, R.R., Rahmadhani, N., et al., 2023. Paddy Harvested Area and Production in Indonesia [in Indonesian]. Badan Pusat Statistik: Jakarta, Indonesia. Available from: https://www.bps.go.id/id/publication/2023/08/03/a78164ccd3ad09bdc88e70a2/luas-panen-dan-produksi-padi-di-indonesia-2022.html (2/7/2024).

[15] Majid, M.A., Mardhiah, A., 2022. Paddy Harvested Area and Production in Kalimantan Timur 2021 [in Indonesian]. Badan Pusat Statistik: Samarinda, Kalimantan Timur, Indonesia.

[16] Majid, M.A., Mahdalena, Kusuma, D.I.T., 2023. Paddy Harvested Area and Production in Kalimantan Timur Province 2022 [in Indonesian]. Badan Pusat Statistik: Samarinda, Kalimantan Timur, Indonesia.

[17] Pusat Penelitian Tanah Bogor, 1995. Combined Soil Chemical Characteristics and fertility Status [in Indonesian]. Pusat Penelitian Tanah Bogor: Bogor, Indonesia.

[18] Thanawong, K., Perret, S.R., Basset-Mens, C., 2014. Eco-efficiency of paddy rice production in Northeastern Thailand: a comparison of rain-fed and irrigated cropping systems. Journal of Cleaner Production. 73, 204–217. DOI: https://doi.org/10.1016/j.jclepro.2013.12.067

[19] Li, D., Nanseki, T., Chomei, Y., et al., 2018. Production efficiency and effect of water management on rice yield in Japan: two-stage DEA model on 110 paddy fields of a large-scale farm. Paddy and Water Environment. 16(4), 643–654. DOI: https://doi.org/10.1007/s10333-018-0652-0

[20] De Bauw, P., Vandamme, E., Senthilkumar, K., et al., 2019. Combining phosphorus placement and water saving technologies enhances rice production in phosphorus-deficient lowlands. Field Crops Research. 236, 177–189. DOI: https://doi.org/10.1016/j.fcr.2019.03.021

[21] Schaller, J., Wu, B., Amelung, W., et al., 2022. Silicon as a potential limiting factor for phosphorus availability in paddy soils. Scientific reports. 12(1), 16329. DOI: https://doi.org/10.1038/s41598-022-20805-4

[22] Russel, D., Turnpenny, J., 2009. The Politics of Sustainable Development in UK Government: What Role for Integrated Policy Appraisal? Environment and Planning C: Government and Policy. 27(2), 340–354. DOI: https://doi.org/10.1068/c0810j

[23] Radaelli, C.M., 2009. Measuring policy learning: regulatory impact assessment in Europe. Journal of European Public Policy. 16(8), 1145–1164. DOI: https://doi.org/10.1080/13501760903332647

[24] Timmer, C.P., 1996. Does Bulog Stabilise Rice Prices in Indonesia? Should It Try? Bulletin of Indonesian Economic Studies. 32(2), 45–74. DOI: https://doi.org/10.1080/00074919612331336938

[25] Rejekiningrum, P., Apriyana, Y., Sutardi, et al., 2022. Optimising Water Management in Drylands to Increase Crop Productivity and Anticipate Climate Change in Indonesia. Sustainability. 14(18), 11672. DOI: https://doi.org/10.3390/su141811672

[26] Darsani, Y.R., Annisa, W., 2019. Management optimization technology of acid sulphate tidal swampland for improving farmers income (case study of Sidomulyo Village Tamban Catur District Kapuas Sub-district). In: Sulaeman, Y., Poggio, L., Minasny, B., et al. (eds.). Tropical Wetlands-Innovation in Mapping and Management. CRC Press: London, UK. pp. 140–146. DOI: https://doi.org/10.1201/9780429264467

[27] Fahmid, I.M., Wahyudi, Agustian, A., et al., 2022. The Potential Swamp Land Development to Support Food Estates Programmes in Central Kalimantan, Indonesia. Environ. Urban. Environment and Urbanization ASIA. 13(1), 44–55. DOI: https://doi.org/10.1177/09754253221078178

[28] Faoziyah, U., Rosyaridho, M.F., Panggabean, R., 2024. Unearthing Agricultural Land Use Dynamics in Indonesia: Between Food Security and Policy Interventions. Land. 13(12), 2030. DOI: https://doi.org/10.3390/land13122030

[29] Septanti, K.S., Yofa, R.D., Mulyono, J., et al., 2024. Analysis of rice supply in the Nusantara Capital City. BIO Web of Conferences. 119, 02006. DOI: https://doi.org/10.1051/bioconf/202411902006

[30] Van der Laan, C., Wicke, B., Verweij, P.A., et al., 2017. Mitigation of unwanted direct and indirect land‐use change – an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia. GCB Bioenergy. 9(2), 429–444. DOI: https://doi.org/10.1111/gcbb.12353

[31] Nugroho, H.Y.S.H., van der Veen, A., Skidmore, A.K., et al., 2018. Expansion of traditional land-use and deforestation: a case study of an adat forest in the Kandilo Subwatershed, East Kalimantan, Indonesia. Journal of forestry research. 29(2), 495–513. DOI: https://doi.org/10.1007/s11676-017-0449-9

[32] McCarthy, J.F., Obidzinski, K., 2017. Framing the food poverty question: Policy choices and livelihood consequences in Indonesia. Journal of Rural Studies. 54, 344–354. DOI: https://doi.org/10.1016/j.jrurstud.2017.06.004

[33] Syaban, A.S.N., Appiah-Opoku, S., 2024. Unveiling the Complexities of Land Use Transition in Indonesia’s New Capital City IKN Nusantara: A Multidimensional Conflict Analysis. Land. 13(5), 606. DOI: https://doi.org/10.3390/land13050606

[34] Pramujati, M.W., 2018. Spatial-Temporal Crop Yield Analysis in East Kalimantan Indonesia: Spatial Disaggregation of Crop Yield Data and Estimation of Future Production [Master's thesis]. Universidade NOVA de Lisboa: Lisbon, Portugal.

[35] Otorita Ibu Kota Negara, 2023. Blueprint for the Development of Nusantara as a Smart City [in Indonesian]. Otorita Ibu Kota Negara: Jakarta, Indonesia.

[36] Sterman, J.D., 2000. Business Dynamics: System Thinking and Modeling for a Complex World. McGraw-Hill: New York, NY, USA.

[37] Li, F.J., Dong, S.C., Li, F., 2012. A system dynamics model for analyzing the eco-agriculture system with policy recommendations. Ecological Modelling. 227, 34–45. DOI: https://doi.org/10.1016/j.ecolmodel.2011.12.005

[38] Queenan, K., Sobratee, N., Davids, R., et al., 2020. A Systems Analysis and Conceptual System Dynamics Model of the Livestock-derived Food System in South Africa: A Tool for Policy Guidance. Journal of agriculture, food systems, and community development. 9(4), 021. DOI: https://doi.org/10.5304/jafscd.2020.094.021

[39] Monasterolo, I., Pasqualino, R., Mollona, E., 2015. The role of System Dynamics modelling to understand food chain complexity and address challenges for sustainability policies. Proceedings of the SYDIC (System Dynamics Society) and the FAO “Meeting Urban Food Needs” project, First Mediterranean Conference on Food Supply and Distribution Systems in Urban Environments; 6–7 July 2015; Rome, Italy. pp. 1–15. Available from: https://www.fao.org/fileadmin/templates/ags/docs/MUFN/CALL_FILES_EXPERT_2015/CFP3-06_Full_Paper.pdf

[40] Oyo, B., Kalema, B.M., 2016. A System Dynamics Model for Subsistence Farmers’ Food Security Resilience in Sub-Saharan Africa. International Journal of System Dynamics Applications (IJSDA). 5(1), 17–30. DOI: https://doi.org/10.4018/IJSDA.2016010102

[41] Guma, I.P., Rwashana, A.S., Oyo, B., 2016. Household Food Security Policy Analysis: A System Dynamics Perspective. International Journal of Scientific & Technology Research. 5(7), 278–285.

[42] Antle, J.M., Stoorvogel, J.J., 2006. Incorporating systems dynamics and spatial heterogeneity in integrated assessment of agricultural production systems. Environment and Development Economics. 11(1), 39–58. DOI: https://doi.org/10.1017/S1355770X05002639

[43] Johnson, T.G., Bryden, J., Refsgaard, K., et al., 2008. A System Dynamics Model Of Agriculture And Rural Development: The Topmard Core Model. Proceedings of the 107th EAAE Seminar "Modelling of Agricultural and Rural Development Policies; January 29th–February 1st, 2008; Sevilla, Spain. pp. 1–12. DOI: https://doi.org/10.22004/ag.econ.6497

[44] BBSDLP, 2020. Innovations to Enhance Land Resource Potential [in Indonesian]. Kementerian Pertanian: Jakarta, Indonesia.

[45] Balai Penelitian Tanah, 1983. Criteria for Evaluating Soil Chemical Analysis Data [in Indonesian]. Balai Penelitian dan Pengembangan Pertanian Departemen Pertanian: Bogor, Indonesia.

[46] Syahputra, E., Fauzi, F., Razali, R., 2015. The Characteristics of the Chemichal Properties of Ultisols Sub Groups in Some Areas of Northern Sumatra. Jurnal Agroekoteknologi. 4(1), 1796–1803.

[47] Balai Penelitian Tanah, 2009. Technical Guidelines for Chemical Analysis of Soil, Plants, Water, and Fertilizers [in Indonesian]. Balai Penelitian dan Pengembangan Pertanian Departemen Pertanian: Bogor, Indonesia.

[48] Putri, O.H., Utami, S.R., Kurniawan, S., 2019. Soil Chemical Properties in Various Land Uses of UB Forest [in Indonesian]. Jurnal Tanah Dan Sumberdaya Lahan. 6(1), 1075–1081. DOI: https://doi.org/10.21776/ub.jtsl.2019.006.1.6

[49] Shinjo, H., Takata, Y., 2021. Correction to: Soil Classification and Distribution. In: Hatano, R., Shinjo, H., Takata, Y. (eds.). The Soils of Japan. World Soils Book Series. Springer, Singapore. pp. C1–C7. DOI: https://doi.org/10.1007/978-981-15-8229-5_11

[50] Kadir, S., PRIATNA, S.J., 2001. Characteristics of Ultisols under Different Wildfire History in South Sumatra, Indonesia: I. Physico-chemical Properties. Tropics. 10(4), 565–580. DOI: https://doi.org/10.3759/tropics.10.565

[51] He, Y., Gu, F., Xu, C., et al., 2019. Assessing of the influence of organic and inorganic amendments on the physical-chemical properties of a red soil (Ultisol) quality. CATENA. 183, 104231. DOI: https://doi.org/10.1016/j.catena.2019.104231

[52] Prasetyo, B., Suriadikarta, D., 2006. Characteristics, Potential and Management Technologies of Ultisol Soils for the Development of Dryland Agriculture in Indonesia [in Indonesian]. Litbang Pertanian: Bogor, Indonesia.

[53] Yususf, M., 2023. Penajam Paser Utara Regency in Figure [in Indonesian]. Badan Pusat Statistik Penajam Paser Utara: Penajam Paser Utara, Indonesia.

[54] Sutrisno, R., Rahmah, H., Efendi, I., 2023. Samboja Subdistrict in Figure 20221 [in Indonesian]. Badan Pusat Statistik Kabupaten Kutai Kartanegara: Tenggarong, Kutai Kartanegara, Indonesia.

[55] Amrullah, R., 2023. Muara Jawa Subdistrict in Figure 2023 [in Indonesian]. Badan Pusat Statistik Kabupaten Kutai Kartanegara: Kutai Kartanegara, Indonesia.

[56] Tey, Y.S., Brindal, M., 2015. Factors Influencing Farm Profitability. In: Lichtfouse, E. (ed.). Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 15. Springer, Cham, Switzerland. pp. 235–255. DOI: https://doi.org/10.1007/978-3-319-09132-7_5

[57] Shi, J., An, G., Weber, A.P.M., et al., 2023. Prospects for rice in 2050. Plant, Cell & Environment. 46(4), 1037–1045. DOI: https://doi.org/10.1111/pce.14565

[58] Smale, M., Thériault, V., Mason, N.M., 2020. Does subsidizing fertilizer contribute to the diet quality of farm women? Evidence from rural Mali. Food Security. 12(6), 1407–1424. DOI: https://doi.org/10.1007/s12571-020-01097-w

[59] Triwidodo, H., 2020. Brown Planthoppers Infestations and Insecticides Use Pattern in Java, Indonesia. AGRIVITA Journal of Agricultural Science. 42(2). DOI: https://doi.org/10.17503/agrivita.v0i0.2501

[60] Akbar, A.R., Wibowo, A.D., Rahmi, A., et al., 2018. The dynamic of rice production in Kalimantan Selatan: A policies study. Proceedings of the International Conference on Industrial Engineering and Operations Management; 6–8 March 2018; Bandung, Indonesia. IEOM Society International: Bandung, Indonesia. pp. 1151–1156.

[61] Akbar, A.R., Wibowo, A.D., Rahmi, A., et al., 2019. Rice Supply Patterns in Kalimantan Selatan: Part of solution for regional food security. INSIST. 4(1), 214. DOI: https://doi.org/10.23960/ins.v4i1.214

[62] Lindawati, Emalisa, Zulfida, I., 2022. Causal Loop Diagram approach of rice supply in anticipation of rice shortage in North Sumatera. IOP Conference Series: Earth and Environmental Science. 977(1), 012062. DOI: https://doi.org/10.1088/1755-1315/977/1/012062

[63] Molenaar, R., Lengkey, L., Nurali, E., 2023. Improved Dynamic Model of The North Sulawesi Province Food Security System. BIO Web of Conferences. 69, 04017. DOI: https://doi.org/10.1051/bioconf/20236904017

[64] Aprillya, M.R., Suryani, E., Dzulkarnain, A., 2019. System Dynamics Simulation Model to Increase Paddy Production for Food Security. Journal of Information Systems Engineering and Business Intelligence. 5(1), 67–75. DOI: https://doi.org/10.20473/jisebi.5.1.67-75

[65] Bhandari, H., Mishra, A.K., 2018. Impact of demographic transformation on future rice farming in Asia. Outlook on Agriculture. 47(2), 125–132. DOI: https://doi.org/10.1177/0030727018769676

[66] Dirmayanti, N.I., Ayuningtyas, I., Istiqomah, N., 2023. East Kalimantan Provincial Economic Report 2023 [in Indonesian]. Badan Pusat Statistik Provinsi Kalimantan Timur: Samarinda, Kalimantan Timur, Indonesia.

[67] Sheng, Y., Song, L., 2019. Agricultural production and food consumption in China: A long-term projection. China Economic Review. 53, 15–29. DOI: https://doi.org/10.1016/j.chieco.2018.08.006

[68] Bin Rahman, A.R., Zhang, J., 2023. Trends in rice research: 2030 and beyond. Food and Energy Security. 12(2), e390. DOI: https://doi.org/10.1002/fes3.390

[69] Zhou, Z., Jin, J., Liu, J., et al., 2023. Covering rice demand in Southern China under decreasing cropping intensities and considering multiple climate and population scenarios. Sustainable Production and Consumption 40, 13–29. DOI: https://doi.org/10.1016/j.spc.2023.06.008

[70] Sirikanchanarak, D., Tungtrakul, T., Sriboonchitta, S., 2018. The Future of Global Rice Consumption: Evidence from Dynamic Panel Data Approach. In: Kreinovich, V., Sriboonchitta, S., Chakpitak, N. (eds.). Predictive Econometrics and Big Data. Springer International Publishing: Cham, Switzerland. pp. 629–642. DOI: https://doi.org/10.1007/978-3-319-70942-0_45

[71] Wang, F., Rose, T., Jeong, K., et al., 2016. The knowns and unknowns of phosphorus loading into grains, and implications for phosphorus efficiency in cropping systems. Journal of experimental botany. 67(5), 1221–1229. DOI: https://doi.org/10.1093/jxb/erv517

[72] Zhao, W., Li, J.Y., Deng, K.Y., et al., 2020. Effects of crop straw biochars on aluminum species in soil solution as related with the growth and yield of canola (Brassica napus L.) in an acidic Ultisol under field condition. Environmental Science and Pollution Research. 27(24), 30178–30189. DOI: https://doi.org/10.1007/s11356-020-09330-x

[73] Yang, C., Lu, S., 2022. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Science of the Total Environment. 805, 150325. DOI: https://doi.org/10.1016/j.scitotenv.2021.150325

[74] He, X., Jiang, J., Hong, Z., et al., 2020. Effect of aluminum modification of rice straw–based biochar on arsenate adsorption. Journal of Soils and Sediments. 20(8), 3073–3082. DOI: https://doi.org/10.1007/s11368-020-02595-2

[75] Samal, P., Babu, S.C., Mondal, B., et al., 2022. The global rice agriculture towards 2050: An inter-continental perspective. Outlook on Agriculture. 51(2), 164–172. DOI: https://doi.org/10.1177/00307270221088338

Online ISSN: 2737-4785, Print ISSN: 2737-4777, Published by Nan Yang Academy of Sciences Pte. Ltd.