Improving Accuracy in Agricultural Forecasts: Evaluation of SARIMA and Forecast Models for Artichoke Prices

Axel Zevallos-Aquije

Vice-Rectorate of Research, Cesar Vallejo University, Trujillo 13001, Peru

Anneliese Zevallos-Aquije

Faculty of Human Medicine, Ricardo Palma University, Lima 15039, Peru

Karen Palomino-Salcedo

Faculty of Business and Communication, Universidad Internacional de La Rioja (UNIR), Logroño 26006, Spain

Rosa Alejandra Salas-Bolaños

Vice-Rectorate of Research, Cesar Vallejo University, Trujillo 13001, Peru

DOI: https://doi.org/10.36956/rwae.v6i3.1880

Received: 21 March 2025 | Revised: 15 April 2025 | Accepted: 16 April 2025 | Published Online: 15 July 2025

Copyright © 2025 Axel Zevallos-Aquije, Anneliese Zevallos-Aquije, Karen Palomino-Salcedo, Rosa Alejandra Salas-Bolaños. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

The volatility of agricultural prices in Peru poses a critical challenge to food security and economic stability, particularly for key crops such as artichoke, whose price fluctuations directly affect producers’ incomes and the accessibility of food for the population. This study evaluates the accuracy of several time series forecasting models—namely, SARIMA, ARIMA, Holt-Winters, Holt, and Naive—in predicting the average monthly price of artichoke in Lima, using historical data collected between January 2021 and December 2024. A comprehensive methodological approach was implemented that combines automated parameter optimization (using the Akaike Information Criterion, AIC), a 12-month retrospective validation, and the assessment of percentage errors against actual price values observed in January and February 2025. The results indicate that the SARIMA model ((0,0,1)(0,1,0),12) achieved the lowest average error of 12.16%, and it demonstrated exceptional accuracy in February, with only a 5.62% deviation. This superior performance is attributed to its ability to capture complex seasonal patterns inherent in the data. In contrast, the Holt-Winters model exhibited the poorest performance, recording an average error of 17.41% and a particularly high error of 32.99% in February, which underscores its limitations in managing nontraditional seasonal fluctuations. Additionally, while the Naive model proved highly accurate for very short-term forecasts in January (0.50% error), it was found to be unsuitable for extended forecasting horizons, as evidenced by a 28.94% error in February. Residual analysis further confirmed that SARIMA generates more robust predictions, with residual correlations that closely approximate white noise.

Keywords: Agricultural Forecasting; Artichoke Prices; Time Series Analysis; SARIMA; Python


References

[1] Silva, L.S.e., Ospina, C.A.M., Fabi, C., 2024. Food price inflation nowcasting and monitoring. Statistical Journal of the IAOS. 40(2), 325–339. DOI: https://doi.org/10.3233/sji-230083

[2] Hassen, T.B., Bilali, H.E., 2022. Impacts of the Russia-Ukraine war on global food security: Towards more sustainable and resilient food systems? Foods, 11(15), 2301. DOI: https://doi.org/10.3390/foods11152301

[3] Sivarajasingham, S., Applanaidu, S., Hassan, S., 2015. Transmission of global food prices to domestic prices: Evidence from Sri Lanka. Asian Social Science. 11(12), 215–228. DOI: https://doi.org/10.5539/ass.v11n12215

[4] Fan, S., Si, W., Zhang, Y., 2020. How to prevent a global food and nutrition security crisis under COVID-19? China Agricultural Economic Review. 12(3), 471–480. DOI: https://doi.org/10.1108/caer-04-2020-0065

[5] Kavallari, A., Fellmann, T., Gay, S.H., 2014. Shocks in economic growth = Shocking effects for food security?. Food Security. 6(4), 567–583. DOI: https://doi.org/10.1007/s12571-014-0368-y

[6] Kalkuhl, M., 2014. How strong do global commodity prices influence domestic food prices in developing countries? A global price transmission and vulnerability mapping analysis. SSRN Electronic Journal. DOI: https://doi.org/10.2139/ssrn.2437443

[7] Alom, F., Ward, B.D., Hu, B., 2013. Macroeconomic effects of world oil and food price shocks in Asia and Pacific economies: Application of SVAR models. OPEC Energy Review. 37(3), 327–372. DOI: https://doi.org/10.1111/opec.12015

[8] Zmami, M., Ben-Salha, O., 2019. Does oil price drive world food prices? Evidence from linear and nonlinear ARDL modeling. Economies. 7(1), 12. DOI: https://doi.org/10.3390/economies7010012

[9] Bairagi, S., Mishra, A.K., Mottaleb, K.A., 2022. Impacts of the COVID-19 pandemic on food prices: Evidence from storable and perishable commodities in India. PLOS ONE. 17(3), e0264355. DOI: https://doi.org/10.1371/journal.pone.0264355

[10] Abaidoo, R., Agyapong, E.K., Boateng, K.F., 2021. Stability in the banking industry and commodity price volatility: Perspective from developing economies. Journal of Economic and Administrative Sciences. 39(4), 988–1012. DOI: https://doi.org/10.1108/jeas-05-2021-0089

[11] Darnton-Hill, I., Cogill, B., 2010. Maternal and young child nutrition adversely affected by external shocks such as increasing global food prices. The Journal of Nutrition. 140(1), 162S–169S. DOI: https://doi.org/10.3945/jn.109.111682

[12] N., K.R., Dodo, F.E., 2023. Impact of petroleum products price changes on prices of food items in the Nigerian economy. Journal of Development Economics and Finance. 4(1), 79–95. DOI: https://doi.org/10.47509/jdef.2023.v04i01.05

[13] Santillán, D.N.G., Hinojoza, S.A.P., 2019. Políticas comerciales y exportaciones agrícolas del Ecuador. Periodo 2010–2016. Quipukamayoc. 27(53), 25–31. DOI: https://doi.org/10.15381/quipu.v27i53.15982

[14] Chiriboga, M., Vásquez, E.G.P., Sotomayor, O., 2011. Precios agropecuarios e ingresos: El caso de tres provincias en Ecuador. Universitas. (12), 87. DOI: https://doi.org/10.17163/uni.n12.2010.04

[15] Galbán, J.M., 2022. Zonificación del uso potencial agrícola en la cuenca media del río Luján, Argentina. Geográfica Digital. 19(38), 65. DOI: https://doi.org/10.30972/geo.19386204

[16] Argothy, A., Martínez-Cano, J.P., Carvajal, M.B.V., et al., 2023. Transferencia de precios en los mercados agrícolas de Ambato y Riobamba. CienciAmérica. 12(1), 115–133. DOI: https://doi.org/10.33210/ca.v12i1.422

[17] Sepúlveda, R., Cabas-Monje, J., 2018. Factibilidad del uso de contratos de futuros del Chicago Mercantile Exchange para la cobertura del riesgo de precio en el ganado bovino chileno. Lecturas de Economía. (90), 9–44. DOI: https://doi.org/10.17533/udea.le.n90a01

[18] Reyes, C.P.H., Larios, L.E.A., Díaz, F.E.B.d., et al., 2018. Estrategias de vida y seguridad alimentaria nutricional. Revista Salud y Desarrollo. 2(2), 32–41. DOI: https://doi.org/10.55717/aijz6747

[19] Totosaus, A., Pérez, A.N.B., 2023. Relación entre el nivel de seguridad alimentaria y los ambientes alimentarios en Ecatepec: Efecto de la contingencia sanitaria por COVID-19. Journal of Behavior and Feeding. 2(4), 10–18. DOI: https://doi.org/10.32870/jbf.v2i4.33

[20] Montalvo-Romero, N., Montiel-Rosales, A., Fernández-Lambert, G., et al., 2021. Huerto traspatio, como práctica de autoalimento y desarrollo económico de familias marginadas: Una revisión literaria. Tendencias en la Investigación Universitaria. Una Visión Desde Latinoamérica. XIV, 120–136. DOI: https://doi.org/10.47212/tendencias2021vol.xiv.9

[21] Casanueva, D.R., García, O.P., Jiménez, D.T.C., et al., 2022. Propuesta de ejes, líneas y acciones estratégicas para la producción de alimentos en el municipio de Sancti Spíritus, Cuba. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia. 45(2), 100–110. DOI: https://doi.org/10.22209/rt.v45n2a03

[22] Jiménez, G.E.M., 2023. Avances tecnológicos en el procesamiento de alimentos: Impacto en la seguridad alimentaria y la sostenibilidad. Bastcorp International Journal. 2(2), 43–55. DOI: https://doi.org/10.62943/bij.v2i2.32

[23] Cruz-Sánchez, B., Muñoz-Rodríguez, M., Santoyo-Cortés, V.H., et al., 2016. Potencial y restricciones de la avicultura de traspatio sobre la seguridad alimentaria en Guerrero, México. Agricultura Sociedad y Desarrollo. 13(2), 257. DOI: https://doi.org/10.22231/asyd.v13i2.329

[24] Solchaga, I.O.S., Nave, F., 2022. Diseño y validación técnica del ícono del plato nutricional para la alimentación diaria de los guatemaltecos. Revista Científica. 30(2), 11–22. DOI: https://doi.org/10.54495/rev.cientifica.v30i2.230

[25] Zomchak, L., Kukhotska, T., 2023. Wheat market price dynamics in Ukraine: Quantitative exploration and forecasting. European Journal of Economics and Management. 9(4), 14–22. DOI: https://doi.org/10.46340/eujem.2023.9.4.2

[26] Mitra, D., Paul, R.K., 2017. Hybrid time-series models for forecasting agricultural commodity prices. Model Assisted Statistics and Applications. 12(3), 255–264. DOI: https://doi.org/10.3233/mas-170400

[27] Wanjuki, T.M., Wagala, A., Muriithi, D.K., 2021. Forecasting commodity price index of food and beverages in Kenya using seasonal autoregressive integrated moving average (SARIMA) models. European Journal of Mathematics and Statistics. 2(6), 50–63. DOI: https://doi.org/10.24018/ejmath.2021.2.6.80

[28] Nurjati, E., Wiryawan, F.S., 2024. Strategi meningkatkan daya saing bawang merah melalui prediksi harga. Jurnal Ilmu Pertanian Indonesia. 29(3), 342–355. DOI: https://doi.org/10.18343/jipi.29.3.342

[29] Menculini, L., Marini, A., Proietti, M., et al., 2021. Comparing Prophet and deep learning to ARIMA in forecasting wholesale food prices. Forecasting. 3(3), 644–662. DOI: https://doi.org/10.3390/forecast3030040

[30] Rosni, Q.M., Othman, M.R., 2022. Time-series modelling of food security inflation in Malaysia using an ARIMA model as a machine learning approach. Journal of Maritime Logistics. 62–78. DOI: https://doi.org/10.46754/jml.2022.12.005

[31] Wang, Z., Yang, C., Zhang, S., et al., 2024. Analysis and forecasting of syphilis trends in mainland China based on hybrid time series models. Epidemiology and Infection. 152. DOI: https://doi.org/10.1017/s0950268824000694

[32] Kamal, M.A., Gyanchandani, M., Kushwah, A.K., 2022. A novel time series data clustering approach for wind speed forecasting. Wind Engineering. 46(4), 1281–1290. DOI: https://doi.org/10.1177/0309524x221076976

[33] Wang, M., Pan, J., Li, X., et al., 2022. ARIMA and ARIMA-ERNN models for prediction of pertussis incidence in mainland China from 2004 to 2021. BMC Public Health. 22(1). DOI: https://doi.org/10.1186/s12889-022-13872-9

[34] Zhai, M., Li, W., Tie, P., et al., 2021. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: A time series predictive analysis. BMC Infectious Diseases. 21(1). DOI: https://doi.org/10.1186/s12879-021-05973-4

[35] Wang, H., Tian, C., Wang, W., et al., 2018. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiology and Infection. 146(8), 935–939. DOI: https://doi.org/10.1017/s0950268818001115

[36] Bahk, G., Kim, Y., Park, M., 2015. Use of Internet search queries to enhance surveillance of foodborne illness. Emerging Infectious Diseases. 21(11), 1906–1912. DOI: https://doi.org/10.3201/eid2111.141834

[37] Zhao, Z., Zhai, M., Li, G., et al., 2022. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. Preprint. DOI: https://doi.org/10.21203/rs.3.rs-2081379/v1

[38] Delgadillo-Ruiz, O., Ramírez-Moreno, P.P., Rodríguez, J.A.L., et al., 2016. Pronósticos y series de tiempo de rendimientos de granos básicos en México. Acta Universitaria. 26(3), 23–32. DOI: https://doi.org/10.15174/au.2016.882

[39] Sosa, M.E.D., Pérez, E.A.C., Ríos, W.D.P., 2021. Modelamiento del precio de la papa criolla en el departamento de Cundinamarca por medio de series de tiempo y modelos dinámicos. Comunicaciones en Estadística. 14(1), 31–52. DOI: https://doi.org/10.15332/23393076.6633

[40] Villada, F., Jaramillo-Arroyave, D., Villada, M., 2014. Pronóstico del precio del petróleo mediante redes neuronales artificiales. Información Tecnológica. 25(3), 145–154. DOI: https://doi.org/10.4067/s0718-076420140003

[41] Gómez, L.M.J., Lambis-Alandete, E., Velásquez-Henao, J.D., 2023. Comparación de algoritmos de deep learning para pronósticos en los precios de criptomonedas. Ingeniería y Competitividad. 25(3). DOI: https://doi.org/10.25100/iyc.v25i3.12845

[42] Muñoz-Santiago, A., Urquijo-Vanstrahlengs, J., Castro-Otero, A., et al., 2017. Pronóstico del precio de la energía en Colombia utilizando modelos ARIMA con IGARCH. Revista de Economía del Rosario. 20(1), 36. DOI: https://doi.org/10.12804/revistas.urosario.edu.co/economia/a.6152

[43] Conto, E.L.T., López, R.A.C., 2023. Comportamiento de la UVR en el largo plazo. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA. 24(1), 21–34. DOI: https://doi.org/10.24309/recta.2023.24.1.03

[44] Ministerio de Desarrollo Agrario y Riego (MIDAGRI), 2025. Sistema de abastecimiento y precios. Available from: http://sistemas.midagri.gob.pe/sisap/portal2/mayorista/# (cited 15 February 2025).

[45] SENAMHI, 2024. Boletín hidrometeorológico de la Dirección Zonal 3 Cajamarca Sur - La Libertad. Available from: https://cdn.www.gob.pe/uploads/document/file/7109294/6109384-bhm-dz3-n-09-2024.pdf (cited 9 April 2025).

Online ISSN: 2737-4785, Print ISSN: 2737-4777, Published by Nan Yang Academy of Sciences Pte. Ltd.