Can Agronomic and Cultural Strategic Practices Control Fall Armyworm, Boost Smallholder Productivity, and Strengthen Household Food Security in Malawi?

Innocent Pangapanga-Phiri

Centre for Agricultural Research and Development (CARD), Lilongwe University of Agriculture and Natural Resources (LUANAR), Bunda College Campus, Lilongwe P.O. Box 219, Malawi

DOI: https://doi.org/10.36956/rwae.v6i2.1768

Received: 24 February 2025 | Revised: 31 March 2025 | Accepted: 2 April 2025 | Published Online: 5 June 2025

Copyright © 2025 Innocent Pangapanga-Phiri. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

Agronomic and Cultural Strategic (ACS) practices present sustainable solutions to the Fall Armyworm (FAW) outbreak in agrarian economies. FAW (Spodoptera frugiperda), an invasive lepidopteran pest, has caused severe yield losses since its first detection in 2016. Its rapid spread, intensified by rising temperatures, threatens food security in Sub-Saharan African countries such as Malawi. While synthetic pesticides are commonly promoted for FAW control, their high cost and environmental risks limit their acceptability, accessibility, and sustainability. Using nationally representative data, this study evaluates the impact of ACS practices on sustained smallholder farm productivity and food security in Malawi. We find that FAW significantly reduces farm productivity by 13%. However, the adoption of ACS practices increased farm productivity by 28% and household food security by 14%, highlighting the effectiveness of ACS practices in managing FAW and enhancing household food security. Key land characteristics, particularly soil type and slope, also significantly influence farm productivity outcomes by at least 30%. Among ACS practices, sustainable land management measures proved to be the most effective strategy for enhancing household food security, yielding an average treatment effect on the treated (ATT) of 14.99 percentage points, with manure application (ATT = 4.89), agroforestry (ATT = 4.18), and mulching (ATT = 3.68) contributing the most. Agricultural extension advisory services and input subsidies were key complementary interventions to enhance the adoption and effectiveness of ACS practices as viable and sustainable pathways for managing FAW, improving farm productivity, and enhancing food security among farming households in Malawi.

Keywords: Invasive Fall Armyworms; Agronomic and Cultural Strategic Practices; Farm Productivity; Food Security; Complementary Interventions


References

[1] Idemudia, I., Okwae Fening, K., Agboyi, L.K., et al., 2024. First report of the predatory potential and functional response of the red flower assassin bug Rhynocoris segmentarius (Germar), a natural enemy of Spodoptera frugiperda (J.E. Smith). Biological Control. 191, 105465. DOI: https://doi.org/10.1016/j.biocontrol.2024.105465

[2] Early, R., González-Moreno, P., Murphy, S.T., et al., 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota. 40, 25–50.

[3] Day, R., Abrahams, P., Bateman, M., et al., 2017. Fall armyworm: Impacts and implications for Africa. Outlooks Pest anagement. 28, 196–201. DOI: https://doi.org/10.1564/v28

[4] Terán-Samaniego, K., Robles-Parra, J.M., Vargas-Arispuro, I., et al., 2025. Agroecology and sustainable agriculture: Conceptual challenges and opportunities—a systematic literature review. Sustainability. 17(5), 1805. DOI: https://doi.org/10.3390/su17051805

[5] Yunhe L., Zhenying W., Romeis, J., 2021. Managing the invasive fall armyworms through biotech crops: A Chinese perspective. Trends in Biotechnology. 39(2), 105–107

[6] Thierfelder, C., Niassy, S., Midega, C., et al., 2018. Low-cost agronomic practices and landscape management approaches to control FAW. In: Prasanna, B.M., Huesing, J.E., Eddy, R., et al. (eds.). Fall Armyworm in Africa: A Guide for Integrated Pest Management. CIMMYT: CDMX, Mexico. pp. 89–96.

[7] Granger, L., Mfune, T., Musesha, M., et al., 2020. Factors in uencing the occurrence of fall armyworm parasitoids in Zambia. Journal of Pest Science. 94, 1133–1146. DOI: https://doi.org/10.1007/s10340-020-01320-9

[8] Abrahams, P., Bateman, M., Beale, T., et al., 2017. Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management. 28(5), 196–201. DOI: https://doi.org/10.1564/v28_oct_02

[9] Ministry of Agriculture, Irrigation and Water Development [MoAIWD], 2024. Malawi National Agricultural Policy. Report number 2, 18 December 2024.

[10] World Bank, 2018. Climate-Smart Agriculture in Malawi. Report no. 30, 1 October 2018.

[11] FAO, 2018. Integrated Management of the Fall Armyworm on Maize. A Guide for Farmer Field Schools in Africa. Report number 1, 16 February 2018.

[12] Díaz-Álvarez, E.A., Martínez-Zavaleta, J. P., López-Santiz, E.E., et al., 2020. Climate change can trigger fall armyworm outbreaks: A developmental response experiment with two Mexican maize landraces. International Journal of Pest Management. DOI: https://doi.org/10.1080/09670874.2020.1869347

[13] Kansiime, M.K., Rwomushana, I., Mugambi, I., 2023. Fall armyworm invasion in Sub-Saharan Africa and impacts on community sustainability in the wake of Coronavirus Disease 2019: Reviewing the evidence. Current Opinion in Environmental Sustainability. 62, 101279. DOI: https://doi.org/10.1016/j.cosust.2023.101279

[14] Achiri, D.T., Ndode, E.E., Mbeboh, M.N., et al., 2025. Bio-inoculant consortium and organic amendment comprising plant bioactive extract increased maize yield by improving soil nutrient availability and mitigating pest damage. Plant Soil. DOI: https://doi.org/10.1007/s11104-025-07250-8

[15] Blanco, C.A., Whalon, M.E., Concepcion, J., et al., 2019. Field-evolved resistance of the fall armyworm (lepidoptera: noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of Economic Entomology. 112(2), 792–802. DOI: https://doi.org/10.1093/jee/toy372

[16] Yu, S., 1990. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology. 39(1), 84–91. DOI: https://doi.org/10.1016/0048-3575(91)90216-9

[17] Murray, K., Jepson, P.C., 2019. Integrated Pest Management Strategic Planning: A Practical Guide. EM 9238, 1 August 2019. DOI: https://catalog.extension.oregonstate.edu/em9238

[18] Harrison, R.D., Thierfelder, C., Baudron, F., et al., 2019. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management. 243, 318–330. DOI: https://doi.org/10.1016/j.jenvman.2019.05.011

[19] Baudron, F., Zaman-Allah, M.A., Chaipa, I., et al., 2019. Understanding the factors influencing fall armyworm (Spodoptera frugiperda JE Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Protetion. 120, 141–150.

[20] Tambo, J.A., Day, R.K., Lamontagne-Godwin, J., et al., 2019. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: An analysis of farmers’ control actions. International Journal of Pest Management. 66(4), 298–310. DOI: https://doi.org/10.1080/09670874.2019.1646942

[21] McGrath, D., Huesing, J.E., Beiriger, R., et al., 2018. Monitoring, surveillance, and scouting for fall armyworm. In: Prasanna, B.M., Huesing, J.E., Eddy, R., et al. (eds.). Fall Armyworm in Africa: A Guide for Integrated Pest Management. International Maize and Wheat Improvement Centre (CIMMYT): CDMX, Mexico. pp. 11–28.

[22] DiTomaso, J.M., Van Steenwyk, R.A., Nowierski, R.M., et al., 2017. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach. Pest Management Science. 73, 9–13. DOI: https://doi.org/10.1002/ps.4347

[23] De Groote, H., Kimenju, S.C., Munyua, B., et al., 2020. Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agriculture, Ecosystems & Environment. 292, 106804. DOI: https://doi.org/10.1016/j.agee.2019.106804

[24] National Planning Commission (NPC), 2021. Malawi Vision 2063. Report number 2, 19 January 2021.

[25] Zhao, C., Liu, B., Piao, S., et al., 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America. 114(35), 9326–9331.

[26] Tambo, J.A., Kansiime, M.K., Mugambi, I., et al., 2020. Understanding smallholders’ responses to fall armyworm invasion: Cross-country evidence from sub-Saharan Africa. Science of the Total Environment. 740, 140015. DOI: https://doi. org/10.1016/j.scitotenv.2020.140015

[27] Kumela, T., Simiyu, J., Sisay, B., et al., 2018. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. International Journal of Pest Management. 0874, 1–9. DOI: https://doi.org/10.1080/09670874.2017.1423129

[28] Chimweta, M., Nyakudya, I.W., Jimu, L., et al., 2019. Fall armyworm [Spodoptera frugiperda (J.E. Smith)] damage in maize: Management options for flood-recession cropping smallholder farmers. International Journal of Pest Management. 66, 142–154.

[29] Pangapanga-Phiri, I., Mungatana, E., Mhondoro, G., 2024. Does contract farming arrangement improve smallholder tobacco productivity? Evidence from Zimbabwe. Heliyon. 10(1), e23862. DOI: https://doi.org/10.1016/j.heliyon.2023.e23862

[30] National Statistical Office [NSO], 2020. Fifth Integrated Household Survey 2019–2020. Report number 1 , 1 December 2020.

[31] IPCC, 2018. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press: Cambridge, UK & New York, NY, USA, pp. 1–582.

[32] Amadu, F.O., McNamara, P.E., Miller, D.C., 2020. Understanding the adoption of climate-smart agriculture: A farm-level typology with empirical evidence from southern Malawi. World Development. 126, 104692. DOI: https://doi.org/10.1016/j.worlddev.2019.104692

[33] Ministry of Agriculture, Irrigation and Water Development (MoAIWD), 2018. Malawi National Agricultural Policy.

[34] Pangapanga, P.I., Mungatana, E.D., 2021. Adoption of Climate-smart agricultural practices and their influence on the technical efficiency of maize production under extreme weather events, International Journal of Disaster Risk Reduction. 61, 102322.

[35] Bezu, S., Kassie, G.T., Shiferaw, B., et al., 2014. Impact of improved maize adoption on welfare of farm households in Malawi: A panel data analysis. World Development. 59, 120–131.

[36] Powers, D.A., 1993. Endogenous Switching Regression Models with Limited Dependent Variables. Sociological Methods & Research. 22(2), 248-273. DOI: https://doi.org/10.1177/0049124193022002004

[37] Heckman, J.J., Robb, R., 1985. Alternative methods for evaluating the impact of interventions: An overview. Journal of Econometrics. 30(1–2), 239–267. DOI: https://doi.org/10.1016/0304-4076(85)90139-3

[38] Rothbard, S., Etheridge, J.C., Murray, E.J., 2024. A Tutorial on Applying the Difference-in-Differences Method to Health Data. Current Epidemiology Reports. 11, 85–95. https://doi.org/10.1007/s40471-023-00327-x

[39] Angrist, J.D., Pischke, J.S., 2008. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press: Princeton, NJ, USA.

[40] Lechner, M., 2011, The estimation of causal effects by difference-in-difference methods. Foundations and Trends in Econometrics. 4(3), 165–224. DOI: http://dx.doi.org/10.1561/0800000014

[41] Imbens, G.W., Wooldridge, J.M., 2009. Recent developments in the econometrics of program evaluation on JSTOR. Journal of Economic Literature. 5, 5-86. DOI: 10.1257/jel.47.1.5

[42] Rosenbaum, P.R., Rubin, D.B., 1983. The central role of the propensity score in observational studies for causal effects. Biometrika. 70(1), 41–55. DOI: https://doi.org/10.1093/biomet/70.1.41

[43] Mundlak, Y., 1978. On the pooling of time series and cross section data. Econometrica. 46, 69–85.

[44] Khonje, M., Manda, J., Alene, A.D., et al., 2015. Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Development. 66, 695–706.

[45] McFadden, D., 1974. Econometric models for probabilistic choice among products. The Journal of Business. 53(3), S13–29.

[46] Wooldridge, J.M., 2010. Econometric Analysis of Cross Section and Panel Data. MIT Press: Cambridge, MA, USA.

[47] Lokshin, M., Sajaia, Z., 2004. Maximum likelihood estimation of endogenous switching regression models. The Stata Journal. 4(3), 282–289.

[48] Kassie, M., Teklewold, H., Marenya, P., et al., 2015. Production risks and food security under alternative technology choices in Malawi: Application of a multinomial endogenous switching regression. Journal of Agricultural Economics. 66, 640–659.

[49] Ansah, I.G.K., Tampaa, F., Tetteh, B.K.D., 2021. Farmers’ control strategies against fall armyworm and determinants of implementation in two districts of the Upper West Region of Ghana. International Journal of Pest Management. 70(4), 570–584. DOI: https://doi.org/10.1080/09670874.2021.2015008

[50] Imarhiagbe, O., Okafor, A.C., Ikponmwosa, B.O., et al., 2023. Sustainable agricultural pest control strategies to boost food and socioecological security: The allelopathic strategy. In: Ogwu, M.C., Chibueze Izah, S. (eds.). One Health Implications of Agrochemicals and their Sustainable Alternatives. Sustainable Development and Biodiversity. Springer: Singapore. DOI: https://doi.org/10.1007/978-981-99-3439-3_23

[51] Romeis, J., Naranjo, S.E., Meissle, M., et al., 2019. Genetically engineered crops help support conservation biological control. Biological Control. 130, 136–154.

[52] Midega, C.A.O., Pittchar, J.O., Pickett, J.A., et al., 2018. A climate- adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda Crop Protection 120 (2019) 141–150 (J E Smith), in maize in East Africa. Crop Protection. 105, 10–15. https://doi.org/10.1016/j.cropro.2017.11.003

Online ISSN: 2737-4785, Print ISSN: 2737-4777, Published by Nan Yang Academy of Sciences Pte. Ltd.