Analysis of Climate‑Smart Agriculture (CSA) Adoption Level on Tidal Land and Its Effect on Household Food Security

M. Yamin

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

Trisna Wahyu Swasdiningrum Putri

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

Salsabilah Dwi Saputri

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

Meitry Firdha Tafarini

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

Merna Ayu Sulastri

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

Dini Damayanthy

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

Siti Ramadani Andelia

Department of Agribusiness, Faculty of Agriculture, Sriwijaya University, Palembang 30662, South Sumatra, Indonesia

DOI: https://doi.org/10.36956/rwae.v6i2.1736

Received: 17 February 2025 | Revised: 19 March 2025 | Accepted: 27 March 2025 | Published Online: 6 May 2025

Copyright © 2025 M. Yamin, Trisna Wahyu Swasdiningrum Putri, Salsabilah Dwi Saputri , Meitry Firdha Tafarini, Merna Ayu Sulastri, Dini Damayanthy, Siti Ramadani Andelia. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

Climate change is a universal challenge for all those natural resource-based sectors, including agriculture. The farming community should adapt to climate change effects through Climate Smart Agriculture (CSA) approaches to resolve the same. The objectives of the study are to analyze the level of technology adoption of CSA practices that have been implemented by rice farmers on tidal land, to analyze the level of household food security of rice farmers on tidal land, and to analyze the effect of the level of technology adoption of CSA practices towards household food security in Telang Jaya Village, Muara Telang District, Banyuasin Regency. Sixty farmers are used for the respondents number. A study method with a survey approach of visiting the research site directly is employed here. The outcomes of this study indicate an increased awareness of climate change among farmers; one way is by adopting CSA, which can optimize farm productivity and increase farmer income, thus positively impacting food security. The adoption rate of CSA technology, i.e., tractors, water pumps, drainage, direct seeding planting, and combined harvesters, positively influences food security.

Keywords: Climate Smart Agriculture; Tidal Land; Food Security; Technology Adoption


References

[1] Christyanto, M., Mayulu, H., 2021. Pentingnya pembangunan pertanian dan pemberdayaan petani wilayah perbatasan dalam upaya mendukung ketahanan pangan nasional: Studi kasus di wilayah perbatasan Kalimantan. Journal of Tropical AgriFood. 3(1), 1. DOI: https://doi.org/10.35941/jtaf.3.1.2021.5041.1-14

[2] Rusmayadi, G., Silamat, E., Abidin, Z., et al., 2024. Analisis Dampak Perubahan Iklim terhadap Produktivitas Tanaman Pangan. Jurnal Review Pendidik Dan Pengajaran. 7(3), 9488–9495. DOI: https://doi.org/10.31004/jrpp.v7i3.31300

[3] Yamin, M., Ayundari, L.D., Andelia, S.R., et al., 2023. Adopsi Teknologi Dalam Persiapan Menghadapi Risiko Teknis Usahatani Padi Akibat Perubahan Iklim. Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis. 9(2), 2496. DOI: https://doi.org/10.25157/ma.v9i2.10456

[4] Climate Watch, 2021. Global Historical Emissions. Available from: https://www.climatewatchdata.org/ (cited 16 February 2025).

[5] Zhai, L., Lee, J.E., 2024. Investigating Vulnerability, Adaptation, and Resilience: A Comprehensive Review within the Context of Climate Change. Atmosphere. 15(4), 474. DOI: https://doi.org/10.3390/atmos15040474

[6] Tilahun, G., Bantider, A., Yayeh, D., 2023. Impact of adopting climate-smart agriculture on food security in the tropical moist montane ecosystem: The case of Geshy watershed, Southwest Ethiopia. Heliyon. 9(12), 1–17. DOI: https://doi.org/10.1016/j.heliyon.2023.e22620

[7] Mereu, V., Santini, M., Cervigni, R., et al., 2018. Robust Decision-Making for a Climate-Resilient Development of the Agricultural Sector in Nigeria. In: Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G. (eds.). Climate Smart Agriculture. Springer International Publishing: Cham, Switzerland. pp. 277–306.

[8] Center for Agricultural Data and Information System, 2023. Statistics of Food Consumption 2023. Available from: https://satudata.pertanian.go.id/assets/docs/publikasi/Buku_Statsitik_Konsumsi_Pangan_2023.pdf (cited 2 February 2025).

[9] Malau, L.R.E., Rambe, K.R., Ulya, N.A., et al., 2023. Dampak Perubahan Iklim Terhadap Produksi Tanaman Pangan Di Indonesia. Jurnal Penelitian Pertanian Terapan. 23(1), 34–46. DOI: http://dx.doi.org/10.25181/jppt.v23i1.2418

[10] Ansari, A., Wuryandani, S., Pranesti, A., et al., 2023. Optimizing water-energy-food nexus: achieving economic prosperity and environmental sustainability in agriculture. Frontiers in Sustainable Food Systems. 7, 1–7. DOI: https://doi.org/10.3389/fsufs.2023.1207197

[11] Ansari, A., Pranesti, A., Telaumbanua, M., et al., 2023. Evaluating the effect of climate change on rice production in Indonesia using a multimodelling approach. Heliyon. 9(9), 1–15. DOI: https://doi.org/10.1016/j.heliyon.2023.e19639

[12] Cui, L., Wang, W., 2023. Factors Affecting the Adoption of Digital Technology by Farmers in China: A Systematic Literature Review. Sustainability. 15(20), 1–14. DOI: https://doi.org/10.3390/su152014824

[13] Mamat, H.S., Sukarman, S., 2020. Manfaat Inovasi Teknologi Sumberdaya Lahan Pertanian Dalam Mendukung Pembangunan Pertanian. Jurnal Sumberdaya Lahan. 14(2), 116–133. DOI: https://doi.org/10.21082/jsdl.v14n2.2020.115-132

[14] Darsani, Y.R., Alwi, M., 2022. Inovasi Teknologi Budidaya Padi Unggul di Lahan Rawa Pasang Surut Tipe Luapan C: Kasus Desa Matang Danau, Kecamatan Paloh, Kabupaten Sambas, Kalimantan Barat. Jurnal Sosial Ekonomi Pertanian dan Agribisnis. 18(1), 41–54.

[15] Ajayi, V.O., 2023. A Review on Primary Sources of Data and Secondary Sources of Data. European Journal of Education and Pedagogy. 2(3), 1–7.

[16] Cheong, H.i., Lyons, A., Houghton, R., et al., 2023. Secondary Qualitative Research Methodology Using Online Data within the Context of Social Sciences. International Journal of Qualitative Methods. 22, 1–19. DOI: https://doi.org/10.1177/16094069231180160

[17] Wahab, A., Syahid, A., Junaedi, J., 2021. Penyajian Data Dalam Tabel Distribusi Frekuensi Dan Aplikasinya Pada Ilmu Pendidikan. Journal of Education and Learning. 2(1), 40–48. DOI: https://doi.org/10.33096/eljour.v2i1.91

[18] Alidu, A.F., Man, N., Ramli, N.N., et al., 2022. Smallholder farmers access to climate information and climate-smart adaptation practices in the northern region of Ghana. Heliyon. 8(5), 1–9. DOI: https://doi.org/10.1016/j.heliyon.2022.e09513

[19] Agyekum, T.P., Antwi‐Agyei, P., Dougill, A.J., et al., 2024. Benefits and barriers to adopting climate‐smart agriculture practices in West Africa: A systematic review. Climate Resilience and Sustainability. 3(3), 1–15. DOI: https://doi.org/10.1002/cli2.79

[20] Tunio, R.A., Li, D., Khan, N., 2024. Maximizing farm resilience: the effect of climate-smart agricultural adoption practices on food performance amid adverse weather events. Frontiers in Sustainable Food Systems. 8, 1–14. DOI: https://doi.org/10.3389/fsufs.2024.1423702

[21] Pandeya, S., Gajurel, A., Mishra, B.P., et al., 2024. Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability. Sustainability. 16(23), 1–11. DOI: https://doi.org/10.3390/su162310247

[22] Hassan, K.S., Islam, M.N., Billah, M.M., et al., 2024. Effective extension and access to education drive optimal adoption of climate-smart agriculture interventions in affected tidal floodplains: A case study. Heliyon. 10(11), e31616. DOI: https://doi.org/10.1016/j.heliyon.2024.e31616

[23] Abegunde, V.O., Sibanda, M., Obi, A., 2022. Effect of climate-smart agriculture on household food security in small-scale production systems: A micro-level analysis from South Africa. Cogent Social Sciences. 8(1), 1–27. DOI: https://doi.org/10.1080/23311886.2022.2086343

[24] Hoque, M.Z., Mahmud, A.A., Haque, M.E., et al. Adoption of Climate Smart Agricultural Practices by Charland Farmers in Charfasson, Bangladesh. Journal of Agriculture and Ecology Research International. 24(5), 87–97. DOI: https://doi.org/10.9734/jaeri/2023/v24i5545

[25] Tariku, G.D., Kebede, S.A., 2025. Climate-smart agricultural practices and their implication in Ethiopia: a systematic review. International Journal of Climate Change Strategies and Management. 17(1), 1–20. DOI: https://doi.org/10.1108/IJCCSM-01-2024-0012

[26] Rukundo, E., Tabe-Ojong, M.P.J., Gebrekidan, B.H., et al., 2023. Adoption and impacts of agricultural technologies and sustainable natural resource management practices in fragile and conflict-affected settings: A review and meta-analysis. Available from: https://hdl.handle.net/10568/132360 (cited 31 January 2025).

[27] Machete, K.C., Senyolo, M.P., Gidi, L.S., 2024. Adaptation through Climate-Smart Agriculture: Examining the Socioeconomic Factors Influencing the Willingness to Adopt Climate-Smart Agriculture among Smallholder Maize Farmers in the Limpopo Province, South Africa. Climate. 12(74), 1–17. DOI: https://doi.org/10.3390/cli12050074

[28] Mbanasor, J.A., Kalu, C.A., Okpokiri, C.I., et al., 2024. Climate-smart agriculture practices by crop farmers: Evidence from southeast Nigeria. Smart Agricultural Technology. 8, 1–12. DOI: https://doi.org/10.1016/j.atech.2024.100494

[29] Yamin, M., Putri, N.E., 2024. Agricultural Household Economic In Condition Flood Impact Of Climate Change In Indonesia. IOP Conference Series: Earth and Environmental Science. 1364(1), 1–9. DOI: https://doi.org/10.1088/1755-1315/1364/1/012017

[30] Aisyah, S., Faqih, A., Rahudi, R., et al., 2023. Relationship Between Farmer Characteristics and Farmer Group Dynamics with The Success of Farmer Empowerment Programs Through Agricultural Technology and Information. Eduvest - Journal of Universal Studies. 3(8), 1487–1497. DOI: https://doi.org/10.59188/eduvest.v3i8.878

[31] Mkansi, N.D., Ledwaba, J.L., Mokhaukhau, J., 2025. Smallholder Farmers’ Perceptions of Climate Change Adaptation Strategies: The Case of the Greater Giyani Local Municipality, Limpopo Province. Research on World Agricultural Economy. 6, 276–289. DOI: https://doi.org/10.36956/rwae.v6i1.1287

[32] Rahmawati, A., Alwin, A., Adiputra, A., 2024. The Impact of Farmers’ Socio-Economic Conditions Due to the Conversion of Agricultural Land in Setia Mulya Village, Bekasi Regency, Indonesia. Jambura Geo Education Journal. 5(2), 104–114. DOI: https://doi.org/10.37905/jgej.v5i2.26493

[33] Anang, B.T., Apedo, C.K., 2023. The influence of off-farm work on farm income among smallholder farm households in northern Ghana. Cogent Economics & Finance. 11(1), 1–14. DOI: https://doi.org/10.1080/23322039.2023.2196861

[34] Weerasooriya, G.V.T.V., Karthigayini, S., 2023. Adoption of Climate Smart Agriculture (CSA) Technologies in Sri Lanka: Scope, Present Status, Problems, Prospects, Policy Issues, and Strategies. Available from: https://doi.org/10.1007/978-981-19-8738-0_9 (cited 7 February 2025).

[35] Ali, H., Menza, M., Hagos, F., et al., 2022. Impact of climate-smart agriculture adoption on food security and multidimensional poverty of rural farm households in the Central Rift Valley of Ethiopia. Agriculture & Food Security. 11(62), 1–16. DOI: https://doi.org/10.1186/s40066-022-00401-5

[36] Nong, H.T.T., Gan, C., Hu, B., 2021. Farmers’ Perception of and Adaptation to Climate Change: An Investigation in Northeast Vietnam. Journal of Development Economics. 46(4), 65–85. DOI: https://doi.org/10.35866/caujed.2021.46.4.003

[37] Muhammad, S., Muhammad, H., Sadik, I., 2023. Households’ Food Security Model Of Rice Farmers On Tidal Lands Of Banjar District, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences. 136(4), 106–118. DOI: https://doi.org/10.18551/rjoas.2023-04.09

[38] Mekonnen, A., Tessema, A., Ganewo, Z., et al., 2021. Climate change impacts household food security and farmers adaptation strategies. Journal of Agriculture and Food Research. 6, 1–9. DOI: https://doi.org/10.1016/j.jafr.2021.100197

[39] Hartoni, H., Shafriani, K.A., 2023. Food Security of Households Paddy Rice Farmers in Tidal Land Barito Kuala Regency. Tropical Wetland Journal 9(1), 32–37. DOI: https://doi.org/10.20527/twj.v9i1.115

[40] Khalifa, J., 2025. The Impacts of Climate Change, Agricultural Productivity, and Food Security on Economic Growth in Tunisia: Evidence from an Econometrics Analysis. Research on World Agricultural Economy. 6(1), 577–599. DOI: https://doi.org/10.36956/rwae.v6i1.1457

[41] Gold, K.L., 2024. Food Insecurity in West Africa: Is Global Warming the Driver? Research on World Agricultural Economy. 5, 403–419. DOI: https://doi.org/10.36956/rwae.v5i4.1186

[42] Masha, M., Bojago, E., Ngare, I., 2024. Determinants of adopting urban agriculture (UA) as climate-smart agriculture (CSA) practices and its impact on food security: evidence from Wolaita Sodo city, South Ethiopia. Discover Sustainability. 5(1), 168. DOI: https://doi.org/10.1007/s43621-024-00365-5

[43] Kamau, J.N., Kiprop, I.N., Kipruto, G.K., 2020. The Role of Farmers’ Social Networks in Adopting Climate Smart Agriculture: Case of Horticultural Farmers in Nyeri County, Kenya. Research on World Agricultural Economy. 1(1), 35–38. DOI: https://doi.org/10.36956/rwae.v1i1.241

[44] Retnaningtyas, T.A., Padmaningrum, D., Anantanyu, S., 2024. Perilaku Petani Milenial Provinsi Jawa Barat dalam Penerapan Climate-Smart Agriculture (CSA) pada Tanaman Hortikultura. Jurnal Ilmiah Membangun Desa dan Pertanian. 9(2), 160–171. DOI: https://doi.org/10.37149/jimdp.v9i2.1105

[45] Ratmini, N.P.S., Herwenita, I.F. Climate change mitigation through superior varieties use to increase rice production in tidal swamp land. IOP Conference Series: Earth and Environmental Science. 824(1), 1–7. DOI: https://doi.org/10.1088/1755-1315/824/1/012019

[46] Ghodasaini, K.U., Ghimire, H., 2022. Role of Quality Seeds in Food Security and Self-S Sufficiency in Nepal. INWASCON TECHNOLOGY MAGAZINE. 4, 52–55. DOI: https://doi.org/10.26480/itechmag.04.2022.52.55

[47] Truong, A.D., 2020. Shifting crop planting calendar as a climate change adaptation solution for rice cultivation region in the Long Xuyen Quadrilateral of Vietnam. Chilean Journal of Agricultural Research. 80(4), 468–477. DOI: https://doi.org/10.4067/S0718-58392020000400468

[48] Saadu, B., Ibrahim, H.Y., Nazifi, B., et al., 2024. Adoption of climate-smart agricultural practices and its impact on smallholder farming households in some rural areas of North-Western Nigeria. Agricultura tropica et subrotopica. 57(1), 23–34. DOI: https://doi.org/10.2478/ats-2024-0003

[49] Saud, S., Wang, D., Fahad, S., et al., 2022. Comprehensive Impacts of Climate Change on Rice Production and Adaptive Strategies in China. Frontiers in Microbiology. 13, 1–12. DOI: https://doi.org/10.3389/fmicb.2022.926059

Online ISSN: 2737-4785, Print ISSN: 2737-4777, Published by Nan Yang Academy of Sciences Pte. Ltd.