Development of Sustainable Bioindustrial Agriculture Based on Crop-Livestock Integration to Achieve Food Security in Bengkulu Province, Indonesia

Novitri Kurniati

Department of Agribussiness, Universitas Muhammadiyah Bengkulu, Bengkulu 38119, Indonesia

Heri Dwi Putranto

Department of Animal Husbandry, Universitas Bengkulu, Bengkulu 38122, Indonesia

Jafrizal

Department of Agribussiness, Universitas Muhammadiyah Bengkulu, Bengkulu 38119, Indonesia

DOI: https://doi.org/10.36956/rwae.v6i1.1394

Received: 16 October 2024 | Revised: 10 November 2024 | Accepted: 11 November 2024 | Published Online: 21 January 2025

Copyright © 2025 Novitri Kurniati, Heri Dwi Putranto, Jafrizal. Published by Nan Yang Academy of Sciences Pte. Ltd.

Creative Commons LicenseThis is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.


Abstract

The agricultural sector in Bengkulu Province faces challenges such as low productivity and product quality, underutilization of agricultural and livestock waste, high dependency on external (chemical) inputs, and subsistence farming practices that neglect economies of scale. Additionally, agricultural resource degradation, climate uncertainty, and population growth threaten food security in the province. To address these issues, the government is promoting the implementation of sustainable bioindustrial agriculture. This study aims to evaluate the adoption level, income, and cost efficiency of sustainable bioindustrial agriculture based on rice and cattle integration to enhance food security in Bengkulu Province. The research was conducted in Seluma and Rejang Lebong districts, involving 200 farmers selected through Accidental Sampling. Data was collected through interviews, observations, focus group discussions, and literature review. Analysis methods included Likert scale analysis, income analysis, and the Stochastic Frontier production function. The findings indicate that the adoption level of bioindustrial agriculture is low, with a score of 48.68 percent. The average annual income from bio-industrial activities is IDR 43,543,099, with a cost efficiency rate of 87.92 percent. In bio-industrial agriculture, the only variable found to significantly impact inefficiency is the farmer’s age. Factors that significantly influence cost efficiency include income, seed prices, NPK fertilizer prices, and labor wages, while compost prices, calf prices, and feed prices do not have a significant effect on cost efficiency.

Keywords: Adoption; Bioindustry; Efficiency


References

[1] Badan Pusat Statistik Provinsi Bengkulu, 2023. Bengkulu in Number. 17000.2306, 28 February 2023. (In Indonesian)

[2] Descheemaeker, K., Oosting, S.J., Tui, S.H.-K., et al., 2016. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: A call for integrated impact assessments. Regional Environmental Change. 16(8), 2331–2343. DOI: https://doi.org/10.1007/s10113-016-0957-8

[3] SB, M., D, S., Satyareddi, S.A., et al., 2014. Integrated farming system - an holistic approach: A review. Journal of Agriculture and Allied Sciences. 3, 30. Available from: https://www.rroij.com/open-access/integrated-farming-system--an-holistic-approach-a-review.pdf

[4] Hilimire, K., 2011. Integrated crop/livestock agriculture in the United States: A review. Journal of Sustainable Agriculture. 35(4), 376–393. DOI: https://doi.org/10.1080/10440046.2011.562042

[5] Oukil, A., Nourani, A., Soltani, A.A., et al., 2024. Improving agricultural sustainability through farm mergers: an energy efficiency perspective. International Journal of Agricultural Sustainability. 22(1), 40–50. DOI: https://doi.org/10.1080/14735903.2023.2293598

[6] Hammouti, B., Dahmani, M., Yahyi, A., et al., 2019. Black pepper, the “king of spices”: Chemical composition to applications. Arabian Journal of Chemical and Environmental Research. 6(1), 12–56.

[7] Soni, R.P., Katoch, M., Ladohia, R., 2014, Integrated farming systems - a review. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 7(10), 36–42. Available from: www.iosrjournals.org

[8] N. Jaishankar, 2014. Integrated farming for sustainable agriculture and livelihood security to rural poor. Proceedings of the International Conference on Chemical, Biological, and Environmental Sciences (ICCBES'14); May 12–13, 2014; Kuala Lumpur, Malaysia. pp. 40-50. DOI: https://doi.org/10.17758/IAAST.A0514013

[9] Badan Penelitian dan Pengembangan Kementrian Pertanian, 2015. Agricultural Development Master Strategy Book 2015–2045. 978-979-15689-1-3, 2014. (in Indonesian).

[10] Badan Penerapan Standar Instrumen Pertanian Provinsi Bengkulu, 2023. Agricultural Census Coordination. (in Indonesian).

[11] Sudjatmiko, D.P., Siddik, M., Zaini, A., et al., 2021. Study of bioindustry agricultural model in Setanggor Village Praya Barat District, Central Lombok Regency. Prosiding SAINTEK LPPM Universitas Mataram; November 9–10, 2020; Vol 3, January 2021. Available from: https://jurnal.lppm.unram.ac.id/index.php/prosidingsaintek/article/view/224/225 (In Indonesian)

[12] Argo, Y., Sari, R., 2020. Rice Based Bioindustry Agriculture In West Java as a starting point for organic agriculture development. Prosiding Seminar Nasional Kesiapan Sumber Daya Pertanian dan Inovasi Spesifik Lokasi Memasuki Era Industri 4.0; 9 October 2019; Semarang, Central java, Indonesia. pp. 95–100. Available from: https://repository.pertanian.go.id/server/api/core/bitstreams/9ed0e590-1212-491d-8213-7157f506b04f/content

[13] Elizabeth, R., Anugrah, I.S., 2020. Bioindustry agriculture improves the competitiveness of agroindustry products and sustainable agricultural development. Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis. 6(2), 871–889. Available from: https://jurnal.unigal.ac.id/mimbaragribisnis/article/view/3603/pdf

[14] Sugiyono, 2008. Metode Penelitian Bisnis (Business Research Methodology). Alfabeta: Bandung, Indonesia, pp. 60-80. (in Indonesian).

[15] Sukiyono, K., 2018. Penelitian Survei dan Teknik Sampling (Research Survey and Sampling Technique). Badan Penerbitan Fakultas Pertanian UNIB: Bengkulu, Indonesia, pp. 50-70. (in Indonesian).

[16] Situmorang, B., Edwina, S., Maharani, E., 2015. The innovation-adopted by the palm farmer to palm – cow integrated system (Siska) in Pelalawan Regency. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau. 2(1), 1–12. Available from: https://www.neliti.com/publications/200956/adopsi-inovasi-petani-kelapa-sawit-terhadap-sistem-integrasi-sapi-kelapa-sawit-s

[17] Hasnah, Yuzaria, D., Hakimi, R., 2017. Sustainable cocoa – cattle integration adoption model to improve cocoa farmers' income in West Sumatera. 503/UN.16/Penelitian/PP-2017, 9 June 2017. (in Indonesian). Available from: https://www.researchgate.net/publication/327259707_Model_Adopsi_Integrasi_Kakao_-_Sapi_Berkelanjutan_Untuk_Meningkatkan_Pendapatan_Petani_Kakao_di_Sumatera_Barat

[18] Kurniati, N., Efrita, E., Damaiyanti, D., 2019. Income of integrated farming system based on rice and cattle in Rimbo Kedui Village, Seluma Regency, Bengkulu Province. Agrikan: Jurnal Agribisnis Perikanan. 12(1), 64. (in Indonesian). DOI: https://doi.org/10.29239/j.agrikan.12.1.64–69

[19] Kurniati, N., Sukiyono, K., Purmini, 2020. Cost efficiency of integrated farming system based on rice-cattle in Bengkulu Province of Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences. 107(11), 126–132. DOI: https://doi.org/10.18551/rjoas.2020-11.15

[20] Kurniati, N., Efrita, E., Jafrizal, et al., 2023. Comparative of generated income between integrated and non-integrated farming in Bengkulu Province, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences. 133(1), 96–106. DOI: https://doi.org/10.18551/rjoas.2023-01.12

[21] Soekartawi, Dillon, Soeharjo, et al., 2004. Ilmu Usahatani dan Penelitian Untuk Pengembangan Petani Kecil (Farming and Research for Farmer Development). UI Press: Jakarta, Indonesia. pp. 30-50. (in Indonesian).

[22] Aigner, D., Lovell, C.A.K., Schmidt, P., 1977. Formulation and estimation of stochastic frontier production function models. Journal Econometrics. 6(1), 21–37. DOI: https://doi.org/10.1016/0304-4076(77)90052-5

[23] Meeusen, W., van Den Broeck, J., 1997. Efficiency Estimation from Cobb-Douglas production functions with composed error. International Economic Review (Philadelphia). 18(2), 435–444. DOI: https://doi.org/10.2307/2525757

[24] Coelli, T.J., 1996. A guide to FRONTIER version 4.1: A computer program for stochastic frontier production and cost function estimation. North-Holland: Armidale, Australia. pp. 40-50. DOI: https://doi.org/10.1016/0165-1765(92)90096-H

[25] Battese, G.E., Coelli, T.J., 1995. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics, 20(2), 325–332. DOI: https://doi.org/10.1007/BF01205442

[26] Suratiyah, K., 2015. Revised Edition of Farming Science. Jakarta: Self-help Spreader,

[27] Baumgart-Getz, A., Prokopy, L.S., Floress, K., 2012. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. Journal Environmental Management. 96(1), 17–25. DOI: https://doi.org/10.1016/j.jenvman.2011.10.006

[28] Asis, Ardiansyah, R., Jaya, R., 2021. Response and productivity of two rice varieties (Oryza sativa L.) on mechanical and manual cultivation systems. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). 49(2),147–153. DOI: https://doi.org/10.24831/jai.v49i2.35918

[29] Kavitha, S., Samuel, G., Rao, I.S., et al., 2024. Integrated farming system for a sustainable livelihood. International Journal of Environment and Climate Change. 14(6), 165–169. DOI: https://doi.org/10.9734/ijecc/2024/v14i64218.

[30] Bannor, R.K., Kumar, G.A.K., Oppong-Kyeremeh, H., et al., 2020. Adoption and impact of modern rice varieties on poverty in Eastern India. Rice Science. 27(1), 56–66. DOI: https://doi.org/10.1016/j.rsci.2019.12.006

[31] Arnawa, I.K., Dennis Villanueva, M., Martiningsih, N.G.A.G.E., et al., 2021. The development of bio-industrial agricultural model on dry land. SOCA: Jurnal Sosial, Ekonomi Pertanian. 15(3), 656–663. DOI: https://doi.org/10.24843/SOCA.2021.v15.i03.p20

[32] Jitsanguan, C., 2001. Sustainable agriculture systems for small scale farmers in Thailand : Implications for the environment. Publisher: Taiwan, China. pp. 40–50.

[33] Radhamani, S., Balasubramanian, A., Ramamootthy, K., et al., 2003. Sustainable integrated: Farming systems for drylands - a “review”. Agricultural Review. 24(3), 204–210. Available from: https://arccjournals.com/journal/agricultural-reviews/ARCC4291

[34] Sumekar, W., Mardiningsih, D., Eddy, B.T., et al., 2023. The application integrated farming system and the role of farmer group. IOP Conference Series: Earth Environmental Science. 1246(1), 012036. DOI: https://doi.org/10.1088/1755-1315/1246/1/012036

[35] Wibawa, W., Silviyani, 2015. Sistem Pertanian Bioindustri yang Berkelanjutan Berbasis Integrasi Padi – Sapi (Bioindutry Agricultural System Based onf Integrated Rice-Cow). Bengkulu. (In Indonesian)

[36] Badan Pusat Statistik Provinsi Bengkulu, 2024. Bengkulu in Number 2024. 17000.24004, 28 February 2024. (in Indonesian).

[37] Astuti, R.P., Bahtera, N.I., Atmaja, E.J.J., 2019. Entrepreneurial characteristics and behaviors of Muntok white pepper farmers. Society. 7(2), 101–115. DOI: https://doi.org/10.33019/society.v7i2.116

[38] Mukhlis, Noer, M., Nofialdi, et al., 2018. The integrated farming system of crop and livestock: A review of rice and cattle integration farming. International Journal of Sciences: Basic and Applied Research (IJSBAR). 42(3), 68–82. Available from: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

[39] Tiwari, T., Azad, C.S., Kumar, D., et al., 2023. Integrated farming system (IFS): An holistic approach for Sustainable agriculture. New Era Agriculture Magazine. Available from: https://www.researchgate.net/publication/376185119

[40] Katoch, M., Sharma, S.K., Sharma, G.D., 2024. Integrated farming system model: Basic information. Just Agriculture. 005, 26-35 . Available from: www.justagriculture.in

[41] Jondrow, J., Knox Lovell, C.A., Materov, I.S., et al., 1982. On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics. 19(2–3), 233–238. DOI: https://doi.org/10.1016/0304-4076(82)90004-5

[42] Ogundari, K., Ojo, S.O., 2007. An examination of technical, economic and allocative efficiency of small farms: The case study of cassava farmers in Osun state of Nigeria. Bulgarian Journal of Agricultural Science. 13, 185–195.

[43] Nwaru, J.C., Ndukwu, P., Nwaru, J.C., et al., 2011. Measurement and determinants of production efficiency among small-holder sweet potato (ipomoea batatas) farmers in Imo State, Nigeria. European Journal of Scientific Research. 59(3), 307–317. Available from: http://www.eurojournals.com/ejsr.html

[44] Laha, A., Kumar Kuri, P., 2011. Measurement of allocative efficiency in agriculture and its determinants: Evidence from rural West Bengal, India. International Journal of Agricultural Research. 6(5), 377–388. DOI: https://doi.org/10.3923/ijar.2011.377.388

[45] Sunarwibowo, R.P., Ikhsan, M., Mahi, B.R., et al., 2024. Efficiency of agricultural cooperative members in Indonesia. Asian Economic and Financial Review. 14(5), 367–388. DOI: https://doi.org/10.55493/5002.v14i5.5070

[46] Angga Siagian, R., Soetjipto, W., 2020. Cost efficiency of rice farming in Indonesia: Stochastic frontier approach. Agricultural Social Economic Journal. 20(1), 7–14. DOI: https://doi.org/10.21776/ub.agrise.2020.020.1.2

[47] Tu, V., Trang, N., 2016. Cost efficiency of rice production in Vietnam: An application of stochastic translog variable cost frontier. Asian Journal of Agricultural Extension, Economics & Sociology. 8(1), 1–10. DOI: https://doi.org/10.9734/AJAEES/2016/19745

[48] Howara, D., 2004. Optimization of integrated cattle and rice farming business development in Majalengka Regency. Jurnal Agroland. 18(1), 43–49.

[49] Rangkuti, N.P.J., Mukarlina, M., Rahmawati, R., 2017. Pertumbuhan Bayam Merah (Amaranthus tricolor L.) yang diberi Pupuk Kompos Kotoran Kambing dengan Dekomposer Trichoderma harzianum (Growth of Red Spinach (Amaranthus tricolor L.) Given Goat Manure Compost Fertilizer with Trichoderma harzianum Decomposer). Jurnal Protobiont. 6(3), 18–25. (In Indonesian)

[50] Omotayo, A.O., Akinwumi, A.P., Clement, A., et al., 2024. Economic efficiency of rice milling industry among value chain processors in North West of Nigeria. Nepalese Journal of Agricultural Sciences. 26, 170–188. Available from: https://www.researchgate.net/publication/377677260

Online ISSN: 2737-4785, Print ISSN: 2737-4777, Published by Nan Yang Academy of Sciences Pte. Ltd.