Challenges and Pathways for Sustainable Development in Global Land Use Systems: A Narrative Review
College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya
School of Management, Northwestern Polytechnic University, Xi’an 710072, China
Department of Geography, University of Nebraska, Lincoln, Nebraska 68588, USA
Department of Geography and Resource Development, University of Ghana, Legon P. O Box LG 25, Ghana
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Clappana P. O. Kollam, Kerala 690525, India
Department of Public Health and Allied Sciences, Catholic University, Sunyani P. 0. Box 363, Ghana
Environmental Protection Agency, Accra GP 1613, Ghana
Department of Geography and Resource Development, University of Ghana, Legon P. O Box LG 25, Ghana
DOI: https://doi.org/10.36956/lmu.v1i1.1836
Received: 1 February 2025; Revised: 20 February 2025; Accepted: 24 February 2025; Published Online: 2 March 2025
Copyright © 2025 Isaac Sarfo, Nana Adwoa Anokye Effah, Michael Atuahene Djan, Michael Kpakpo Allotey, Emmanuel Yeboah, Dhekra Ben Amara, Matovu Baker, Anita Boah, Priscilla Atta Djaba, Godknows Harrison Xeflide. Published by Nan Yang Academy of Sciences Pte. Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.
Abstract
Land is essential for the flourishing of human civilizations. It is a complex interplay of natural processes, socio-economic dynamics, and environmental sustainability. Hence, it influences policy, research, and practice. This study critically reviews the literature about the challenges and issues currently explored for sustainable development in global land use systems based on an extensive bibliographic database from the Web of Science. It explores the complex world of global land use system development, examining research trends, tools, and future directions. This study’s findings indicate that current research trends emphasize the use of emerging digital technologies, including geospatial and informatics techniques, Geo-detectors, regression models, artificial intelligence, and socio-economic models. These tools are instrumental in addressing the challenges posed by land use change at various scales. They enable us to effectively identify, track, and enhance our understanding of the sustainability, science, and management of land use systems. The studies reviewed offer valuable support for initiatives aimed at adopting innovative theories, methods, instruments, and procedures to tackle land use and sustainability issues related to natural resources globally. Furthermore, new fields within land use systems are increasingly recognized for their potential to transform traditional practices, strengthen urban-rural linkages, and contribute to the realization of the 17 UN Sustainable Development Goals. This recognition stems from the multidisciplinary nature of the discipline.
Keywords: Current Issues; Global; Land Cover; Land Management; Land Use; Sustainable Development
References
[1] Verburg, P.H., Crossman, N., Ellis, E.C., et al., 2015. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene. 12, 29–41. DOI: https://doi.org/10.1016/j.ancene.2015.09.004
[2] Boserup, E., 2013. The conditions of agricultural growth: the economics of agrarian change under population pressure, 1st ed. Routledge: London, UK. pp.1–124. DOI: https://doi.org/10.4324/9781315016320
[3] Darity, W.A., 1980. The Boserup theory of agricultural growth: a model for anthropological economics. J. Dev. Econ. 7(2), 137–157. DOI: https://doi.org/10.1016/0304-3878(80)90001-2
[4] Sarfo, I., Qiao, J., Effah, N.A.A., et al., 2024. Advances in global land use systems development and sustainability: a bibliometric analysis. Acta Scientiarum Polonorum. Formatio Circumiectus. 23(2), 39–65. DOI: https://doi.org/10.15576/ASP.FC/187717
[5] Spangler, K., Burchfield, E.K., Schumacher, B., 2020. Past and current dynamics of U.S. agricultural land use and policy. Front. Sustain. Food Syst. 4, 98. DOI: https://doi.org/10.3389/fsufs.2020.00098
[6] Kumar, S., Meena, R.S., Sheoran, S., et al., 2022. Remote sensing for agriculture and resource management. Nat. Resour. Conserv. Res. 5, 91–135. DOI: https://doi.org/10.1016/B978-0-12-822976-7.00012-0
[7] Schirpke, U., Tasser, E., Borsky, S., et al., 2023. Past and future impacts of land-use changes on ecosystem services in Austria. J. Environ. Manag. 328, 118728. DOI: https://doi.org/10.1016/j.jenvman.2023.118728
[8] Dinesha, S., Hosur, S.R., Toushif, P.K., et al., 2023. Sustaino-resilient agroforestry for climate resilience, food security and land degradation neutrality. In: Raj, A., Jhariya, M.K., Banerjee, A., et al. (eds.). Land and Environmental Management through Forestry. 9, pp. 145–162. DOI: https://doi.org/10.1002/9781119910527.CH9
[9] Oh, S., Lu, C., 2022. Vertical farming - smart urban agriculture for enhancing resilience and sustainability in food security. J. Hortic. Sci. Biotechnol. 98(2), 133–140. DOI: https://doi.org/10.1080/14620316.2022.2141666
[10] Oliveira, E., Meyfroidt, P., 2021. Strategic land-use planning instruments in tropical regions: state of the art and future research. J. Land Use Sci. 16(5–6), 479–497. DOI: https://doi.org/10.1080/1747423X.2021.2015471
[11] Naboureh, A., Bian, J., Lei, G., et al., 2021. A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries. Big Earth Data. 5(2), 237–257. DOI: https://doi.org/10.1080/20964471.2020.1842305
[12] Aria, M., Cuccurullo, C., 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959–975. DOI: https://doi.org/10.1016/j.joi.2017.08.007
[13] Tscharntke, T., Klein, A.M., Kruess, A., et al., 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8(8), 857–874. DOI: https://doi.org/10.1111/j.1461-0248.2005.00782.x
[14] Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma. 124(1–2), 3–22. DOI: https://doi.org/10.1016/j.geoderma.2004.03.005
[15] Dormann, C.F., Schweiger, O., Augenstein, I., et al., 2007. Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob. Ecol. Biogeogr. 16(6), 774–787. DOI: https://doi.org/10.1111/j.1466-8238.2007.00344.x
[16] Chen, C., Park, T., Wang, X., et al., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain. 2(2), 122–129. DOI: https://doi.org/10.1038/s41893-019-0220-7
[17] Scannell, L., Gifford, R., 2010. Defining place attachment: a tripartite organizing framework. J. Environ. Psychol. 30(1), 1–10. DOI: https://doi.org/10.1016/j.jenvp.2009.09.006
[18] Coral, C., Bokelmann, W., Bonatti, M., et al., 2021. Understanding institutional change mechanisms for land use: lessons from Ecuador's history. Land Use Policy. 108, 105530. DOI: https://doi.org/10.1016/j.landusepol.2021.105530
[19] Sheng, E.L., 2024. A review on the geopolitics of China: from perspectives of history and theories. From colonial seaports to modern coastal cities. Palgrave Macmillan: Singapore. pp. 1–28. DOI: https://doi.org/10.1007/978-981-99-9077-1_1
[20] Pulver, S., Fiorella, K.J., Aviolo, M., et al., 2022. The roots of socio-environmental research in geography and anthropology. Foundations of socio-environmental research: legacy readings with commentaries. Cambridge University Press: Cambridge, UK. pp. 123–132. DOI: https://doi.org/10.1017/9781009177856.012
[21] Long, H., 2020. Understanding land use transitions: a theoretical approach. Land use transitions and rural restructuring in China. Springer: Singapore. pp. 3–29. DOI: https://doi.org/10.1007/978-981-15-4924-3_1
[22] Briassoulis, H., 2020. Analysis of land use change: theoretical and modeling approaches, 2nd ed. WVU Research Repository: Morgantown, WV, USA.
[23] Petroni, M.L., Siqueira-Gay, J., Gallardo, A.L.C.F., et al., 2022. Understanding land use change impacts on ecosystem services within urban protected areas. Landsc. Urban Plan. 223, 104404. DOI: https://doi.org/10.1016/j.landurbplan.2022.104404
[24] Long, H., Zhang, Y., Ma, L., et al., 2021. Land use transitions: progress, challenges and prospects. Land. 10(9), 903. DOI: https://doi.org/10.3390/land10090903
[25] da Silveira, J.G., de Oliveira Neto, S.N., do Canto, A.C.B., et al., 2022. Land use, land cover change and sustainable intensification of agriculture and livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability. 14(5), 1–23. DOI: https://doi.org/10.3390/su14052563
[26] Brundtland, G., 1987. Report of the world commission on environment and development: our common future. United Nations General Assembly document. Available from: https://digitallibrary.un.org/record/139811 (cited 20 February 2024).
[27] Egidi, G., Salvati, L., Falcone, A., et al., 2022. Re-framing the latent nexus between land-use change, urbanization and demographic transitions in advanced economies. Sustainability. 13(2), 533. DOI: https://doi.org/10.3390/su13020533
[28] Abera, H.G., 2023. The role of education in achieving the sustainable development goals (SDGs): a global evidence based research article. Int. J. Soc. Sci. Educ. Res. Stud. 3(1), 67–81. DOI: https://doi.org/10.55677/ijssers/V03I1Y2023-09
[29] Shayan, N.F., Mohabbati-Kalejahi, N., Alavi, S., et al., 2022. Sustainable development goals (SDGs) as a framework for corporate social responsibility (CSR). Sustainability. 14(3), 1222. DOI: https://doi.org/10.3390/su14031222
[30] Ruggerio, C.A., 2021. Sustainability and sustainable development: a review of principles and definitions. Sci. Total Environ. 786, 147481. DOI: https://doi.org/10.1016/j.scitotenv.2021.147481
[31] Edwards, M.G., 2021. The growth paradox, sustainable development, and business strategy. Bus. Strategy Environ. 30(7), 3079–3094. DOI: https://doi.org/10.1002/bse.2790
[32] Bonnedahl, K.J., Heikkurinen, P., Paavola, J., 2022. Strongly sustainable development goals: overcoming distances constraining responsible action. Environ. Sci. Policy. 129, 150–158. DOI: https://doi.org/10.1016/j.envsci.2022.01.004
[33] Lima, V., 2021. Collaborative governance for sustainable development. In: Leal Filho, W., Marisa Azul, A., Brandli, L., et al. (eds). Peace, justice and strong institutions. Springer International Publishing: Cham, Switzerland. pp.79–90. DOI: https://doi.org/10.1007/978-3-319-95960-3_2
[34] Guo, Y., Qiao, W., 2020. Rural migration and urbanization in China: historical evolution and coupling pattern. Sustainability. 12(18), 7307. DOI: https://doi.org/10.3390/su12187307
[35] Ebikabowei, B.A., Eboh, I.A., Egbuchulam, P.C., 2021. Urbanization and sustainable cities in Nigeria. Int. J. Econ. Dev. Res. 2(1), 16–31. DOI: https://doi.org/10.37385/ijedr.v2i1.222
[36] Tariq, A., Shu, H., Siddiqui, S., et al., 2021. Monitoring land use and land cover changes using geospatial techniques, a case study of Fateh Jang, Attock, Pakistan. Geogr. Environ. Sustain. 14(1), 41–52. DOI: https://doi.org/10.24057/2071-9388-2020-117
[37] Nguyen, T.T., Grote, U., Neubacher, F., et al., 2023. Security risks from climate change and environmental degradation: implications for sustainable land use transformation in the Global South. Curr. Opin. Environ. Sustain. 63, 101322. DOI: https://doi.org/10.1016/j.cosust.2023.101322
[38] Nguyen, B.Q., Tran, T.N.D., Grodzka-Łukaszewska, M., et al., 2022. Assessment of urbanization-induced land-use change and its impact on temperature, evaporation, and humidity in central Vietnam. Water. 14(21), 3367. DOI: https://doi.org/10.3390/w14213367
[39] Surya, B., Ahmad, D.N.A., Sakti, H.H., et al., 2020. Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, south Sulawesi province, Indonesia. Land. 9(3), 95. DOI: https://doi.org/10.3390/land9030095
[40] Lavorel, S., Locatelli, B., Colloff, M.J., et al., 2020. Co-producing ecosystem services for adapting to climate change. Philos. Trans. R. Soc. B: Biol. Sci. 375(1794), 20190119. DOI: https://doi.org/10.1098/rstb.2019.0119
[41] Enamul, A.K.E., Mukhopadhyay, P., Nepal, M., et al., 2022. South Asian Stories of Climate Resilience. Climate Change and Community Resilience. Springer: Singapore. pp. 1–7. DOI: https://doi.org/10.1007/978-981-16-0680-9_1
[42] Galan, J., Galiana, F., Kotze, D.J., et al., 2023. Landscape adaptation to climate change: local networks, social learning and co-creation processes for adaptive planning. Global Environ. Chang. 78, 102627. DOI: https://doi.org/10.1016/j.gloenvcha.2022.102627
[43] Fekete, H., Kuramochi, T., Roelfsema, M., et al., 2021. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 137, 110602. DOI: https://doi.org/10.1016/j.rser.2020.110602
[44] Saraji, M.K., Streimikiene, D., 2023. Challenges to the low carbon energy transition: a systematic literature review and research agenda. Energy Strat. Rev. 45, 101163. DOI: https://doi.org/10.1016/j.esr.2023.101163
[45] Abdukadirova, M.A., Yokubov, S.S., 2022. The use of geoinformation systems in the study of the land fund of household and Dekhkan Farms. Tex. J. Multidiscip. Stud. 8, 163–164.
[46] Wang, S.W., Gebru, B.M., Lamchin, M., et al., 2020. Land use and land cover change detection and prediction in the kathmandu district of nepal using remote sensing and GIS. Sustainability. 12(9), 3925. DOI: https://doi.org/10.3390/su12093925
[47] Rehman, A., Saba, T., Kashif, M., et al., 2022. A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy. 12(1), 127. DOI: https://doi.org/10.3390/agronomy12010127
[48] Teague, R., Kreuter, U., 2020. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 4, 534187. DOI: https://doi.org/10.3389/fsufs.2020.534187
[49] Mohamed, A., Worku, H., 2020. Simulating urban land use and cover dynamics using cellular automata and markov chain approach in Addis Ababa and the surrounding. Urban Clim. 31, 100545. DOI: https://doi.org/10.1016/j.uclim.2019.100545
[50] Xu, P., Tsendbazar, N., Herold, M., et al., 2024. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sens. Environ. 311, 114316. DOI: https://doi.org/10.1016/j.rse.2024.114316
[51] Afuye, G.A., Nduku, L., Kalumba, A.M., et al., 2024. Global trend assessment of land use and land cover changes: a systematic approach to future research development and planning. J. King Saud Univ. Sci. 36(7), 103262. DOI: https://doi.org/10.1016/j.jksus.2024.103262
[52] Zhang, T., Cheng, C., Wu, X., 2023. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data. 10(1), 748. DOI: https://doi.org/10.1038/s41597-023-02637-7
[53] Copernicus Climate Change Service (C3S), 2019. Land cover classification gridded maps from 1992 to present derived from satellite observation. Climate Data Store (CDS). DOI: https://doi.org/10.24381/cds.006f2c9a
[54] Zhang, T., Cheng, C., Wu, X., 2023. Global LULC projection dataset from 2020 to 2100 at a 1km resolution. figshare. DOI: https://doi.org/10.6084/m9.figshare.23542860
[55] Chen, G., Li, X., Liu, X., 2021. Future global land datasets with a 1-km resolution based on the SSP-RCP scenarios. Sci Data. 9, 125. DOI: https://zenodo.org/record/4584775
[56] Luo, M., et al., 2022. 1 km land use/land cover change of China under comprehensive socioeconomic and climate scenarios for 2020–2100. Sci. Data. 9, 110. DOI: https://doi.org/10.1038/s41597-022-01219-3
[57] Monkkonen, P., Guerra, E., Escamilla, J.M., et al., 2023. A global analysis of land use regulation, urban form, and greenhouse gas emissions. Available from: https://ssrn.com/abstract=4456916 (cited 3 January 2024).
[58] National Research Council (NRC), 2010. Toward sustainable agricultural systems in the 21st century. The National Academies Press: Washington, DC, USA. DOI: https://doi.org/10.17226/12832
[59] Hasnat, G.N.T., Hossain, M.K., 2021. Examining international land use policies, changes, and conflicts. IGI Global: Hershey, PA, USA. DOI: https://doi.org/10.4018/978-1-7998-4372-6
[60] Li, X., Love, P.E.D., Liang, X., et al., 2024. Public-private partnerships and land value capture: a convergent framework to improve the procurement of urban rail transit infrastructure. Dev. Built Environ. 18, 100441. DOI: https://doi.org/10.1016/j.dibe.2024.100441
[61] Davis, J., Pijawka, D., Wentz, E.A., et al., 2020. Evaluation of community-based land use planning through Geodesign: application to American Indian communities. Landsc. Urban Plan. 203, 103880. DOI: https://doi.org/10.1016/j.landurbplan.2020.103880
[62] Bassett, E.M., Jacobs, J.M., 1997. Community-based tenure reform in urban Africa: the community land trust experiment in Voi, Kenya. Land Use Policy. 14(3), 215–229. DOI: https://doi.org/10.1016/S0264-8377(97)00003-3
[63] Alden Wily, L., 2018. The community land act in Kenya: opportunities and challenges for communities. Land. 7(1), 12. DOI: https://doi.org/10.3390/land7010012
[64] Dale, A., Vella, K., Ryan, S., et al., 2020. Governing community-based natural resource management in Australia: international implications. Land. 9(7), 234. DOI: https://doi.org/10.3390/land9070234
[65] McGregor, J., Parsons, M., Glavac, S., 2021. Local government capacity and land use planning for natural hazards: a comparative evaluation of Australian local government areas. Planning Practice & Research. 37(2), 248–268. DOI: https://doi.org/10.1080/02697459.2021.1919431
[66] Bibri, S.E., Krogstie, J., Kärrholm, M., 2020. Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 4, 100021. DOI: https://doi.org/10.1016/j.dibe.2020.100021
[67] Xie, H., Zhang, Y., Zeng, X., et al., 2020. Sustainable land use and management research: a scientometric review. Landsc. Ecol. 35, 2381–2411. DOI: https://doi.org/10.1007/s10980-020-01002-y
[68] Liu, J., Jin, X., Xu, W., et al., 2020. A new framework of land use efficiency for the coordination among food, economy and ecology in regional development. Sci. Total Environ. 710, 135670. DOI: https://doi.org/10.1016/j.scitotenv.2019.135670
[69] Subramanian, A., Nagarajan, A.M., Vinod, S., et al., 2023. Long-term impacts of climate change on coastal and transitional eco-systems in India: an overview of its current status, future projections, solutions, and policies. Res. Adv. 13, 12204–12228. DOI: https://doi.org/10.1039/d2ra07448f
[70] Wu, J., 2022. A new frontier for landscape ecology and sustainability: introducing the world's first atlas of urban agglomerations. Landsc. Ecol. 37, 1721–1728. DOI: https://doi.org/10.1007/s10980-022-01475-z
[71] Cordova-Pozo, K., Rouwette, E.A.J.A., 2023. Types of scenario planning and their effectiveness: a review of reviews. Futures. 146, 103153. DOI: https://doi.org/10.1016/j.futures.2023.103153