Hydrogen Revolution: Advances in Catalytic Ammonia Decomposition
Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Muhammad Mustaqeem
Institute of Chemistry, University of Sargodha, Sargodha 40162, Pakistan
Department of Chemistry, University of Malakand, Chakdara, Dir-L 18800, Pakistan
CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Department of Chemistry, University of Malakand, Chakdara, Dir-L 18800, Pakistan
DOI: https://doi.org/10.36956/cet.v1i1.1689
Received: 3 December 2024 | Revised: 17 January 2025 | Accepted: 21 January 2025 | Published Online: 30 January 2025
Copyright © 2025 Muhammad Anis Aslam, Muhammad Mustaqeem, Muhammad Sohail Abbas, Rashid Ahmad. Published by Nan Yang Academy of Sciences Pte. Ltd.

This is an open access article under the Creative Commons Attribution 4.0 International License.
Abstract
The simple storage of ammonia, combined with the tendency to liberate hydrogen without carbon dioxide emissions, has made ammonia breakdown popular among the research community in recent years. It has evolved as a promising method for hydrogen (H₂) production. The discussion highlights the critical role of catalyst composition, support materials, and promoters in enhancing activity, stability, and scalability. By comparing the advantages and limitations of each method, this work provides a roadmap for future research aimed at optimising NH₃-to-H₂ conversion for sustainable energy applications. This review article has discussed the current advances in ammonia breakdown technology for hydrogen generation, focusing on new materials and mechanical designs for catalysis especially emphasising thermocatalytic, photocatalytic, and electrocatalytic methods. Importance is given to exploring the recent developments of efficient and cost-effective catalysts, including monometallic (e.g., Ru, Ni) and bimetallic systems (e.g., Ru-Ni, Ni-Co), as well as metal hydrides. The Challenges, like high reaction temperatures, slow kinetics, and catalyst deactivation, are explored, and prospective solutions, such as low-temperature oxidative cleavage and plasma-assisted methods. The review also explores the mechanistic insights into NH₃ decomposition pathways and the synergistic effects of bimetallic catalysts. Moreover, it would help to update the knowledge about the catalytic reaction processes and emphasise the benefits and drawbacks of each strategy. Furthermore, the significance of discovering a cost-effective metal catalyst with better efficiency and higher reliability is also debated. This article may serve as a fundamental resource to scale up information about the catalytic production of hydrogen from ammonia.
Keywords: Ammonia; Hydrogen; Catalysis; Metallic Catalyst; Clean Energy
References
[1] Gernaat, D.E., de Boer, H.S., Daioglou, V., et al., 2021. Climate change impacts on renewable energy supply. Nature Climate Change. 11(2), 119–125.
[2] Tabassum, H., Mukherjee, S., Chen, J., et al., 2022. Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy & Environmental Science. 15(10), 4190–4200.
[3] Howarth, R.W., Jacobson, M.Z., 2021. How green is blue hydrogen? Energy Science & Engineering. 9(10), 1676–1687. DOI: https://doi.org/10.1002/ese3.956
[4] Staffell, I., Scamman, D., Abad, A.V., et al., 2019. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science. 12(2), 463–491. DOI: https://doi.org/10.1039/C8EE01157E
[5] Li, M., Zhao, Z., Cheng, T., et al., 2016. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science. 354(6318), 1414–1419. DOI: https://doi.org/10.1126/science.aaf9050
[6] Nikolaidis, P., Poullikkas, A., 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews. 67, 597–611. DOI: https://doi.org/10.1016/j.rser.2016.09.044
[7] Aziz, M., Wijayanta, A.T., Nandiyanto, A.B.D., 2020. Ammonia as effective hydrogen storage: A review on production, storage and utilization. Energies. 13(12), 3062. DOI: https://doi.org/10.3390/en13123062
[8] Mukherjee, S., Devaguptapu, S.V., Sviripa, A., et al., 2018. Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental. 226, 162–181. DOI: https://doi.org/10.1016/j.apcatb.2017.12.039
[9] Chatterjee, S., Parsapur, R.K., Huang, K.-W., 2021. Limitations of ammonia as a hydrogen energy carrier for the transportation sector. ACS Energy Letters. 6(12), 4390–4394. DOI: https://doi.org/10.1021/acsenergylett.1c02189
[10] Młotek, M., Perron, M., Krawczyk, K., 2021. Ammonia decomposition in a gliding discharge plasma. Energy Technology. 9(12), 2100677. DOI: https://doi.org/10.1002/ente.202100677
[11] Guo, J., Chen, P., 2021. Interplay of alkali, transition metals, nitrogen, and hydrogen in ammonia synthesis and decomposition reactions. Accounts of Chemical Research. 54(10), 2434–2444. DOI: https://doi.org/10.1021/acs.accounts.1c00076
[12] Chen, C., Wu, K., Ren, H., et al., 2021. Ru-based catalysts for ammonia decomposition: a mini-review. Energy & Fuels. 35(15), 11693–11706. DOI: https://doi.org/10.1021/acs.energyfuels.1c01261
[13] Pandev, M., Lucchese, P., Mansilla, C., et al., 2017. Hydrogen Economy: the future for a sustainable and green society. Bulgarian Chemical Communications. 49, 84–92.
[14] Ursua, A., Gandia, L.M., Sanchis, P., 2011. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE. 100(2), 410–426. DOI: https://doi.org/10.1109/JPROC.2011.2156750
[15] Jaunatre, M., 2021. Renewable Hydrogen. Springer: Berlin, Germany.
[16] Robertson, I.M., Sofronis, P., Nagao, A., et al., 2015. Hydrogen embrittlement understood. Metallurgical and Materials Transactions A. 46, 2323–2341. DOI: https://doi.org/10.1007/s11661-015-2836-1
[17] Zheng, J., Liu, X., Xu, P., et al., 2012. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy. 37(1), 1048–1057. DOI: https://doi.org/10.1016/j.ijhydene.2011.02.125
[18] Suh, M.P., Park, H.J., Prasad, T.K., et al., 2012. Hydrogen storage in metal–organic frameworks. Chemical Reviews. 112(2), 782–835. DOI: https://doi.org/10.1021/cr200274s
[19] Murray, L.J., Dincă, M., Long, J.R., 2009. Hydrogen storage in metal–organic frameworks. Chemical Society Reviews. 38(5), 1294–1314. DOI: https://doi.org/10.1039/B802256A
[20] Biniwale, R.B., Rayalu, S., Devotta, S., et al., 2008. Chemical hydrides: a solution to high capacity hydrogen storage and supply. International Journal of Hydrogen Energy. 33(1), 360–365. DOI: https://doi.org/10.1016/j.ijhydene.2007.07.028
[21] Okura, K., Miyazaki, K., Muroyama, H., et al., 2018. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Advances. 8(58), 33451–33458. DOI: https://doi.org/10.1039/C8RA06615A
[22] Bell, T.E., Zhan, G., Wu, K., et al., 2017. Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports. Topics in Catalysis. 60, 1251–1259.
[23] Kurtoğlu, S.F., Sarp, S., Akkaya, C.Y., et al., 2018. COx-free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts. International Journal of Hydrogen Energy. 43(21), 9954–9968.
[24] Bell, T.E., Torrente-Murciano, L., 2016. H2 production via ammonia decomposition using non-noble metal catalysts: A review. Topics in Catalysis. 59, 1438–1457. DOI: https://doi.org/10.1007/s11244-016-0653-4
[25] Lucentini, I., Casanovas, A., Llorca, J., 2019. Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2. International Journal of Hydrogen Energy. 44(25), 12693–12707.
[26] Lucentini, I., Colli, G.G., Luzi, C.D., et al., 2021. Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: Effect of metal loading and kinetic analysis. Applied Catalysis B: Environmental. 286, 119896. DOI: https://doi.org/10.1016/j.apcatb.2021.119896
[27] Chen, X., Zhou, J., Chen, S., et al., 2018. Catalytic performance of M@Ni (M= Fe, Ru, Ir) core−shell nanoparticles towards ammonia decomposition for COx-free hydrogen production. Journal of Nanoparticle Research. 20, 1–9.
[28] Fu, E., Qiu, Y., Lu, H., et al., 2021. Enhanced NH3 decomposition for H2 production over bimetallic M (M= Co, Fe, Cu) Ni/Al2O3. Fuel Processing Technology. 221, 106945. DOI: https://doi.org/10.1016/j.fuproc.2021.106945
[29] Zaman, S.F., Jolaoso, L.A., Podila, S., et al., 2018. Ammonia decomposition over citric acid chelated γ-Mo2N and Ni2Mo3N catalysts. International Journal of Hydrogen Energy. 43(36), 17252–17258.
[30] Le, T.A., Do, Q.C., Kim, Y., et al., 2021. A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean Journal of Chemical Engineering. 38(6), 1087–1103.
[31] Lamb, K.E., Dolan, M.D., Kennedy, D.F., 2019. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. International Journal of Hydrogen Energy. 44(7), 3580–3593. DOI: https://doi.org/10.1016/j.ijhydene.2018.12.024
[32] Lucentini, I., Garcia, X., Vendrell, X., et al., 2021. Review of the decomposition of ammonia to generate hydrogen. Industrial & Engineering Chemistry Research. 60(51), 18560–18611.
[33] Guo, W., Vlachos, D.G., 2015. Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nature Communications. 6, 8619. DOI: https://doi.org/10.1038/ncomms9619
[34] Hansgen, D.A., Vlachos, D.G., Chen, J.G., 2010. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nature Chemistry. 2(6), 484–489. DOI: https://doi.org/10.1038/nchem.626
[35] Hansgen, D.A., 2011. Rational catalyst design for the ammonia decomposition reaction [Doctoral dissertation]. University of Delaware: Newark, DE, USA.
[36] Chen, J.G., Menning, C.A., Zellner, M.B., 2008. Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties. Surface Science Reports. 63(5), 201–254. DOI: https://doi.org/10.1016/j.surfrep.2008.02.001
[37] Jacobsen, C.J., Dahl, S., Clausen, B.S., et al., 2001. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. Journal of the American Chemical Society. 123(34), 8404–8405. DOI: https://doi.org/10.1021/ja010963d
[38] Juangsa, F.B., Irhamna, A.R., Aziz, M., 2021. Production of ammonia as potential hydrogen carrier: Review on thermochemical and electrochemical processes. International Journal of Hydrogen Energy. 46(27), 14455–14477. DOI: https://doi.org/10.1016/j.ijhydene.2021.01.214
[39] Peters, S., Abdel-Mageed, A.M., Wohlrab, S., 2023. Thermocatalytic Ammonia Decomposition–Status and Current Research Demands for a Carbon-Free Hydrogen Fuel Technology. ChemCatChem. 15(2), e202201185. DOI: https://doi.org/10.1002/cctc.202201185
[40] Gu, Y.-Q., Jin, Z., Zhang, H., et al., 2015. Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for COx-free hydrogen production from ammonia. Journal of Materials Chemistry A. 3(33), 17172–17180.
[41] Alturaifi, S.A., Mathieu, O., Petersen, E.L., 2022. An experimental and modeling study of ammonia pyrolysis. Combustion and Flame. 235, 111694. DOI: https://doi.org/10.1016/j.combustflame.2021.111694
[42] Ao, R., Lu, R., Leng, G., et al., 2023. A Review on Numerical Simulation of Hydrogen Production from Ammonia Decomposition. Energies. 16(2), 921. DOI: https://doi.org/10.3390/en16020921
[43] Shadravan, V., Cao, A., Bukas, V.J., et al., 2022. Enhanced promotion of Ru-based ammonia catalysts by in situ dosing of Cs. Energy & Environmental Science. 15(8), 3310–3320.
[44] Miyaoka, H., Ichikawa, T., Hino, S., et al., 2011. Compressed hydrogen production via reaction between liquid ammonia and alkali metal hydride. International Journal of Hydrogen Energy. 36(14), 8217–8220.
[45] Zhiqiang, F., Ziqing, W., Dexing, L., et al., 2022. Catalytic ammonia decomposition to COx-free hydrogen over ruthenium catalyst supported on alkali silicates. Fuel. 326, 125094. DOI: https://doi.org/10.1016/j.fuel.2022.125094
[46] Qiu, Y., Fu, E., Gong, F., et al., 2022. Catalyst support effect on ammonia decomposition over Ni/MgAl2O4 towards hydrogen production. International Journal of Hydrogen Energy. 47(8), 5044–5052.
[47] Ganley, J.C., Thomas, F., Seebauer, E., et al., 2004. A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catalysis Letters. 96, 117–122. DOI: https://doi.org/10.1023/B:CATL.0000030108.50691.d4
[48] Chang, F., Gao, W., Guo, J., et al., 2021. Emerging materials and methods toward ammonia‐based energy storage and conversion. Advanced Materials. 33(50), 2005721. DOI: https://doi.org/10.1002/adma.202005721
[49] Schüth, F., Palkovits, R., Schlögl, R., et al., 2012. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy & Environmental Science. 5(4), 6278–6289. DOI: https://doi.org/10.1039/C2EE02865D
[50] Giddey, S., Badwal, S., Kulkarni, A., 2013. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy. 38(34), 14576–14594. DOI: https://doi.org/10.1016/j.ijhydene.2013.09.054
[51] Nagaoka, K., Eboshi, T., Takeishi, Y., et al., 2017. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst. Science Advances. 3(4), e1602747. DOI: https://doi.org/10.1126/sciadv.1602747
[52] Inokawa, H., Ichikawa, T., Miyaoka, H., 2015. Catalysis of nickel nanoparticles with high thermal stability for ammonia decomposition. Applied Catalysis A: General. 491, 184–188.
[53] Zhang, J., Xu, H., Li, W., 2005. Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Applied Catalysis A: General. 296(2), 257–267.
[54] Okura, K., Okanishi, T., Muroyama, H., et al., 2015. Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst. Applied Catalysis A: General. 505, 77–85.
[55] Zhang, S., He, Z., Li, X., et al., 2020. Building heterogeneous nanostructures for photocatalytic ammonia decomposition. Nanoscale Advances. 2(9), 3610–3623.
[56] Dong, Y., Bai, Z., Liu, R., et al., 2007. Preparation of fibrous TiO2 photocatalyst and its optimization towards the decomposition of indoor ammonia under illumination. Catalysis Today. 126(3-4), 320–327.
[57] Abdul Razak, S., Mahadi, A.H., Thotagamuge, R., et al., 2023. Photocatalytic Hydrogen Gas Production from NH3 and Alkylamine: Route to Zero Carbon Emission Energy. Catalysis Letters. 153(4), 1013–1023.
[58] Yuan, Y., Zhou, L., Robatjazi, H., et al., 2022. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science. 378(6622), 889–893. DOI: https://doi.org/10.1126/science.abn5636
[59] Utsunomiya, A., Okemoto, A., Nishino, Y., et al., 2017. Mechanistic study of reaction mechanism on ammonia photodecomposition over Ni/TiO2 photocatalysts. Applied Catalysis B: Environmental. 206, 378–383.
[60] Hanada, N., Hino, S., Ichikawa, T., et al., 2010. Hydrogen generation by electrolysis of liquid ammonia. Chemical Communications. 46(41), 7775–7777.
[61] Yang, Y., Kim, J., Jo, H., et al., 2021. A rigorous electrochemical ammonia electrolysis protocol with in operando quantitative analysis. Journal of Materials Chemistry A. 9(19), 11571–11579.
[62] Dong, B.X., Ichikawa, T., Hanada, N., et al., 2011. Liquid ammonia electrolysis by platinum electrodes. Journal of Alloys and Compounds. 509, S891–S894.
[63] Goshome, K., Yamada, T., Miyaoka, H., et al., 2016. High compressed hydrogen production via direct electrolysis of liquid ammonia. International Journal of Hydrogen Energy. 41(33), 14529–14534.
[64] Akagi, N., Hori, K., Sugime, H., et al., 2022. Systematic investigation of anode catalysts for liquid ammonia electrolysis. Journal of Catalysis. 406, 222–230.
[65] Little, D.J., Smith, M.R., Hamann, T.W., 2015. Electrolysis of liquid ammonia for hydrogen generation. Energy & Environmental Science. 8(9), 2775–2781. DOI: https://doi.org/10.1039/C5EE01840D
[66] Jiang, M., Zhu, D., Zhao, X., 2014. Electrolysis of ammonia for hydrogen production catalyzed by Pt and Pt-Ir deposited on nickel foam. Journal of Energy Chemistry. 23(1), 1–8.
[67] Dong, B.X., Tian, H., Wu, Y.C., et al., 2016. Improved electrolysis of liquid ammonia for hydrogen generation via ammonium salt electrolyte and Pt/Rh/Ir electrocatalysts. International Journal of Hydrogen Energy. 41(33), 14507–14518.
[68] Little, D.J., Edwards, D.O., Smith, M.R., et al., 2017. As precious as platinum: Iron nitride for electrocatalytic oxidation of liquid ammonia. ACS Applied Materials & Interfaces. 9(19), 16228–16235.
[69] Maslova, V., Fourré, E., Veryasov, G., et al., 2023. Ammonia Decomposition in Electric Field over Ce‐based Materials. ChemCatChem. 15(4), e202201626. DOI: https://doi.org/10.1002/cctc.202201626
[70] Wu, M., Du, J., Tao, C., et al., 2019. A tri-functionalised PtSnOx-based electrocatalyst for hydrogen generation via ammonia decomposition under native pH conditions. Journal of Colloid and Interface Science. 542, 451–459.
[71] Zhang, S., Zhao, Y., Yan, L., et al., 2021. Electrochemical ammonia oxidation reaction on defect-rich TiO nanofibers: Experimental and theoretical studies. International Journal of Hydrogen Energy. 46(79), 39208–39215.
[72] Zhang, S., Yan, L., Jiang, H., et al., 2022. Facile Fabrication of a Foamed Ag3CuS2 Film as an Efficient Self-Supporting Electrocatalyst for Ammonia Electrolysis Producing Hydrogen. ACS Applied Materials & Interfaces. 14(7), 9036–9045.
[73] Khan, W.U., Alasiri, H.S., Ali, S.A., et al., 2022. Recent advances in bimetallic catalysts for hydrogen production from ammonia. The Chemical Record. 22(7), e202200030. DOI: https://doi.org/10.1002/tcr.202200030
[74] Lucentini, I., Colli, G.G., Luzi, C., et al., 2022. Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2. Chemical Engineering Journal. 427, 131756. DOI: https://doi.org/10.1016/j.cej.2021.131756
[75] Wu, Z.W., Li, X., Qin, Y.H., et al., 2020. Ammonia decomposition over SiO2-supported Ni–Co bimetallic catalyst for COx-free hydrogen generation. International Journal of Hydrogen Energy. 45(30), 15263–15269.
[76] Li, H., Guo, L., Qu, J., et al., 2023. Co-Ni supported yttrium oxide material as a catalyst for ammonia decomposition to COx-free hydrogen. International Journal of Hydrogen Energy. 48(24), 8985–8996.
[77] He, H., Jiang, H., Yang, F., et al., 2023. Bimetallic NixCo10-x/CeO2 as highly active catalysts to enhance mid-temperature ammonia decomposition: Kinetics and synergies. International Journal of Hydrogen Energy. 48(13), 5030–5041.
[78] Shiraishi, Y., Toi, S., Ichikawa, S., et al., 2020. Photocatalytic NH3 splitting on TiO2 particles decorated with Pt–Au bimetallic alloy nanoparticles. ACS Applied Nano Materials. 3(2), 1612–1620.
[79] Yi, Y., Wang, L., Guo, Y., et al., 2019. Plasma‐assisted ammonia decomposition over Fe–Ni alloy catalysts for COx‐free hydrogen. AIChE Journal. 65(2), 691–701.
[80] Jiang, K., Li, K., Liu, Y.Q., et al., 2022. Nickel-cobalt nitride nanoneedle supported on nickel foam as an efficient electrocatalyst for hydrogen generation from ammonia electrolysis. Electrochimica Acta. 403, 139700. DOI: https://doi.org/10.1016/j.electacta.2021.139700
[81] Xie, P., Yao, Y., Huang, Z., et al., 2019. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature Communications. 10(1), 4011. DOI: https://doi.org/10.1038/s41467-019-11848-9
[82] David, W.I., Makepeace, J.W., Callear, S.K., et al., 2014. Hydrogen production from ammonia using sodium amide. Journal of the American Chemical Society. 136(38), 13082–13085. DOI: https://doi.org/10.1021/ja5042836
[83] Bergstrom, F., Fernelius, W.C., 1933. The Chemistry of the Alkali Amides. Chemical Reviews. 12(1), 43–179. DOI: https://doi.org/10.1021/cr60041a002
[84] Titherley, A.W., 1894. Sodium, potassium, and lithium amides. Journal of the Chemical Society, Transactions. 65, 504–522. DOI: https://doi.org/10.1039/CT8946500504
[85] Leng, H., Ichikawa, T., Hino, S., et al., 2006. Synthesis and decomposition reactions of metal amides in metal–N–H hydrogen storage system. Journal of Power Sources. 156(2), 166–170.
[86] Kojima, Y., Miyaoka, H., Ichikawa, T., 2013. New and Future Developments in Catalysis: Chapter 5. Hydrogen Storage Materials. Elsevier: Amsterdam, Netherlands.
[87] Kojima, Y., Tange, K., Hino, S., et al., 2009. Molecular hydrogen carrier with activated nanohydride and ammonia. Journal of Materials Research. 24, 2185–2190.
[88] Yamaguchi, S., Miyaoka, H., Ichikawa, T., et al., 2017. Thermal decomposition of sodium amide. International Journal of Hydrogen Energy. 42(8), 5213–5219.
[89] Jain, A., Kumar, S., Miyaoka, H., et al., 2017. Ammonia suppression during decomposition of sodium amide by the addition of metal hydride. International Journal of Hydrogen Energy. 42(35), 22388–22394.
[90] Lin, H.J., Li, H.W., Paik, B., et al., 2016. Improvement of hydrogen storage property of three-component Mg(NH2)2–LiNH2–LiH composites by additives. Dalton Transactions. 45(39), 15374–15381.
[91] Chen, P., Zhu, M., 2008. Recent progress in hydrogen storage. Materials Today. 11(12), 36–43. DOI: https://doi.org/10.1016/S1369-7021(08)70251-7
[92] Zhang, T., Isobe, S., Wang, Y., et al., 2013. A solid–solid reaction enhanced by an inhomogeneous catalyst in the (de)hydrogenation of a lithium–hydrogen–nitrogen system. RSC Advances. 3(18), 6311–6314.
[93] Ponikvar, Z., Likozar, B., Gyergyek, S., 2022. Electrification of Catalytic Ammonia Production and Decomposition Reactions: From Resistance, Induction, and Dielectric Reactor Heating to Electrolysis. ACS Applied Energy Materials. 5(5), 5457–5472. DOI: https://doi.org/10.1021/acsaem.1c03045