Mon-Fri(09:00-18:00 hrs)

Nanomaterials in Soil Environment: A Review


Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University

Subhasish Das

Department of Environmental Science, Pachhunga University College, Mizoram University

DOI: https://doi.org/10.36956/njas.v1i2.11

Copyright and Licensing

The authors shall retain the copyright of their work but allow the Publisher to publish, copy, distribute, and convey the work.

NASS Journal of Agricultural Sciences publishes accepted manuscripts under Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Authors who submit their papers for publication by NASS Journal of Agricultural Sciences agree to have the CC BY-NC 4.0 license applied to their work, and that anyone is allowed to reuse the article or part of it free of charge for non-commercia. As long as you follow the license terms and original source is properly cited, anyone may copy, redistribute the material in any medium or format, remix, transform, and build upon the material.

Reproducing Published Material from other Publishers

It is absolutely essential that authors obtain permission to reproduce any published material (figures, tables or any extract of a text) which does not fall into the public domain, or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder. In order to avoid unnecessary delays in the publication process, you should start obtaining permissions as early as possible. If in any doubt about the copyright, apply for permission. The journal cannot publish material from other publications without permission.

In exceptional circumstances articles may be licensed differently. If you have specific condition (such as one linked to funding) that does not allow this license, please mention this to the editorial office of the journal at submission. Exceptions will be granted at the discretion of the publisher.


Nanomaterials (NMs) have become an integral part of our daily life and their extensive uproduction will only increase with the coming time. These NMs exhibit significant contrast in regard to dimension, reaction, and structure. The most important aspect of the NMs is that these can be easily manipulated and engineered to custom-suit different functions/industries. Owing to
their dynamic nature, these NMs behave differently when introduced in any medium. In soil, the behavior of NMs is significantly controlled by the interactions of nanomaterials with soil phases. Although, NMs are deemed beneficial for human-use yet these also carry lethal effects. Moreover, there is dearth of adequate research with respect to the interactions among
nanomaterials and soil physicochemical properties; their accumulation-dissolution dynamics in soil-plant systems; and their long term influence on soil health. Several NMs induce physiological stress when introduced inside the body. Thus, various researchers have devised green pathways for producing NMs, although their wide applicability is still questionable. Although the domain of nanotechnology is greatly explored yet there remain several grey areas
which need to be addressed for sustainable utilization of these unique materials in the benefit of humankind.

Keywords: Nanomaterials, toxicity, soil, stress, biomagnification


[1] Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M., 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56. https://doi.org/10.1093/occmed/kql051

[2] Ananth, A., Dharaneedharan, S., Heo, M.-S., Mok, Y.S., 2015. Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chemical Engineering Journal 262, 179–188. https://doi.org/10.1016/j.cej.2014.09.083

[3] Aubert, T., Burel, A., Esnault, M.-A., Cordier, S., Grasset, F., Cabello-Hurtado, F., 2012. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. Journal of Hazardous Materials 219–220, 111–118. https://doi.org/10.1016/j.jhazmat.2012.03.058

[4] Auffan, M., Rose, J., Wiesner, M.R., Bottero, J.-Y., 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environmental pollution (Barking, Essex : 1987) 157, 1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002

[5] Baalousha, M., Lead, J.R., 2013. Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 419, 238–247. https://doi.org/10.1016/j.colsurfa.2012.12.004

[6] Barnes, R.J., Riba, O., Gardner, M.N., Scott, T.B., Jackman, S.A., Thompson, I.P., 2010. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 79, 448–454. https://doi.org/10.1016/j.chemosphere.2010.01.044

[7] Barua, S., Konwarh, R., Bhattacharya, S.S., Das, P., Devi, K.S.P., Maiti, T.K., Mandal, M., Karak, N., 2013. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids and Surfaces B: Biointerfaces 105, 37–42. https://doi.org/10.1016/j.colsurfb.2012.12.015

[8] Benn, T.M., Westerhoff, P., 2008. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environmental Science & Technology 42, 7025–7026. https://doi.org/10.1021/es801501j

[9] Beyene, H.D., Werkneh, A.A., Bezabh, H.K., Ambaye, T.G., 2017. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001

[10] Bizmark, N., Ioannidis, M.A., 2015. Effects of Ionic Strength on the Colloidal Stability and Interfacial Assembly of Hydrophobic Ethyl Cellulose Nanoparticles. Langmuir : the ACS journal of surfaces and colloids 31, 9282–9289. https://doi.org/10.1021/acs.langmuir.5b01857

[11] Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., Wood, S., 2006. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicological sciences : an official journal of the Society of Toxicology 90, 23–32. https://doi.org/10.1093/toxsci/kfj084

[12] Bratlie, K.M., Lee, H., Komvopoulos, K., Yang, P., Somorjai, G.A., 2007. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano letters 7, 3097–3101. https://doi.org/10.1021/nl0716000

[13] Buettner, K.M., Rinciog, C.I., Mylon, S.E., 2010. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 366, 74–79. https://doi.org/10.1016/j.colsurfa.2010.05.024

[14] Bumajdad, A., Ali, S., Mathew, A., 2011. Characterization of iron hydroxide/oxide nanoparticles prepared in microemulsions stabilized with cationic/non-ionic surfactant mixtures. Journal of colloid and interface science 355, 282–292. https://doi.org/10.1016/j.jcis.2010.12.022

[15] Campos, E.A., Pinto, D.V.B.S., Oliveira, J.I.S. de, Mattos, E. da C., Dutra, R. de C.L., 2015. Synthesis, Characterization and Applications of Iron Oxide Nanoparticles - a Short Review . Journal of Aerospace Technology and Management .

[16] Canas, J.E., Qi, B., Li, S., Maul, J.D., Cox, S.B., Das, S., Green, M.J., 2011. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO(2)) to earthworms (Eisenia fetida). Journal of environmental monitoring : JEM 13, 3351–3357. https://doi.org/10.1039/c1em10497g

[17] Corr, S.A., 2013. Metal oxide nanoparticles, in: Nanoscience: Volume 1: Nanostructures through Chemistry. The Royal Society of Chemistry, pp. 180–207. https://doi.org/10.1039/9781849734844-00180

[18] Fernandes, M.T.C., Garcia, R.B.R., Leite, C.A.P., Kawachi, E.Y., 2013. The competing effect of ammonia in the synthesis of iron oxide/silica nanoparticles in microemulsion/sol–gel system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 422, 136–142. https://doi.org/10.1016/j.colsurfa.2013.01.025

[19] French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L., Baveye, P.C., 2009. Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. Environmental Science & Technology 43, 1354–1359. https://doi.org/10.1021/es802628n

[20] Gallego-Urrea, J.A., Tuoriniemi, J., Pallander, T., Hassellöv, M., 2010. Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis. Environmental Chemistry 7, 67–81.

[21] Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

[22] Gentile, A., Ruffino, F., Grimaldi, G.M., 2016. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications. Nanomaterials . https://doi.org/10.3390/nano6060110

[23] Gomes, S.I.L., Novais, S.C., Scott-Fordsmand, J.J., De Coen, W., Soares, A.M.V.M., Amorim, M.J.B., 2012a. Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155, 219–227. https://doi.org/10.1016/j.cbpc.2011.08.008

[24] Gomes, S.I.L., Novais, S.C., Scott-Fordsmand, J.J., De Coen, W., Soares, A.M.V.M., Amorim, M.J.B., 2012b. Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155, 219–227. https://doi.org/10.1016/j.cbpc.2011.08.008

[25] Gonzalez-Moragas, L., Yu, S.-M., Benseny-Cases, N., Stürzenbaum, S., Roig, A., Laromaine, A., 2017. Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 11, 647–657. https://doi.org/10.1080/17435390.2017.1342011

[26] Goswami, L., Kim, K.-H., Deep, A., Das, P., Bhattacharya, S.S., Kumar, S., Adelodun, A.A., 2017. Engineered nano particles: Nature, behavior, and effect on the environment. Journal of environmental management 196, 297–315. https://doi.org/10.1016/j.jenvman.2017.01.011

[27] Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring 13, 1145–1155. https://doi.org/10.1039/C0EM00547A

[28] Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environmental Science & Technology 43, 9216–9222. https://doi.org/10.1021/es9015553

[29] Gourgou, E., Zhang, Y., Mirzakhalili, E., Epureanu, B., 2018. Caenorhabditis elegans locomotion dynamics is affected by internally localized magnetic fields. bioRxiv.

[30] Guardia, P., Pérez, N., Labarta, A., Batlle, X., 2010. Controlled Synthesis of Iron Oxide Nanoparticles over a Wide Size Range. Langmuir 26, 5843–5847. https://doi.org/10.1021/la903767e

[31] Gupta, A.K., Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

[32] Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology (London, England) 17, 287–314. https://doi.org/10.1007/s10646-008-0199-8

[33] Heiligtag, F.J., Niederberger, M., 2013. The fascinating world of nanoparticle research. Materials Today 16, 262–271. https://doi.org/10.1016/j.mattod.2013.07.004

[34] Hooper, H.L., Jurkschat, K., Morgan, A.J., Bailey, J., Lawlor, A.J., Spurgeon, D.J., Svendsen, C., 2011. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International 37, 1111–1117. https://doi.org/10.1016/j.envint.2011.02.019

[35] Hu, C.W., Li, M., Cui, Y.B., Li, D.S., Chen, J., Yang, L.Y., 2010. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry 42, 586–591. https://doi.org/10.1016/j.soilbio.2009.12.007

[36] Jemec, A., Drobne, D., Remskar, M., Sepcic, K., Tisler, T., 2008. Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environmental toxicology and chemistry 27, 1904–1914.

[37] Jiang, J., Oberdörster, G., Biswas, P., 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research 11, 77–89. https://doi.org/10.1007/s11051-008-9446-4

[38] Johnson, A.C., Bowes, M.J., Crossley, A., Jarvie, H.P., Jurkschat, K., Jürgens, M.D., Lawlor, A.J., Park, B., Rowland, P., Spurgeon, D., Svendsen, C., Thompson, I.P., Barnes, R.J., Williams, R.J., Xu, N., 2011a. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of The Total Environment 409, 2503–2510. https://doi.org/10.1016/j.scitotenv.2011.03.040

[39] Johnson, A.C., Bowes, M.J., Crossley, A., Jarvie, H.P., Jurkschat, K., Jürgens, M.D., Lawlor, A.J., Park, B., Rowland, P., Spurgeon, D., Svendsen, C., Thompson, I.P., Barnes, R.J., Williams, R.J., Xu, N., 2011b. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of The Total Environment 409, 2503–2510. https://doi.org/10.1016/j.scitotenv.2011.03.040

[40] Joshi, S.S., Patil, P.R., Krishnamurthy, V.N., 2008. Thermal Decomposition of Ammonium Perchlorate in thePresence of Nanosized Ferric Oxide. Defence Science Journal; Vol 58, No 6.

[41] Judy, J.D., Unrine, J.M., Bertsch, P.M., 2011. Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain. Environmental Science & Technology 45, 776–781. https://doi.org/10.1021/es103031a

[42] Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., Boller, M., 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 156, 233–239. https://doi.org/10.1016/j.envpol.2008.08.004

[43] Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z., 2010. Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environmental Science & Technology 44, 1962–1967. https://doi.org/10.1021/es902987d

[44] Khan, Ibrahim, Saeed, K., Khan, Idrees, 2017. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011

[45] Kim, B., Park, C.-S., Murayama, M., Hochella, M.F., 2010. Discovery and Characterization of Silver Sulfide Nanoparticles in Final Sewage Sludge Products. Environmental Science & Technology 44, 7509–7514. https://doi.org/10.1021/es101565j

[46] Kim, S.W., Nam, S.-H., An, Y.-J., 2012. Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicology and environmental safety 77, 64–70. https://doi.org/10.1016/j.ecoenv.2011.10.023

[47] Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G., 2014. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials 264, 98–106. https://doi.org/10.1016/J.JHAZMAT.2013.10.053

[48] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N., 2010. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews 110, 2574. https://doi.org/10.1021/cr900197g

[49] Machala, L., Tuček, J., Zbořil, R., 2011. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials 23, 3255–3272. https://doi.org/10.1021/cm200397g

[50] Manzo, S., Rocco, A., Carotenuto, R., Picione, F.D.L., Miglietta, M.L., Rametta, G., Di Francia, G., 2011. Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environmental science and pollution research international 18, 756–763. https://doi.org/10.1007/s11356-010-0421-0

[51] Marin, S., Vlasceanu, G.M., Tiplea, R.E., Bucur, I.R., Lemnaru, M., Marin, M.M., Grumezescu, A.M., 2015. Applications and toxicity of silver nanoparticles: a recent review. Current topics in medicinal chemistry 15, 1596–1604.

[52] Martin-Palma, R.J., Lakhtakia, A., 2010. Properties of Nanostructures, in: Nanotechnology: A Crash Course. SPIE Digital Library, pp. 31–36. https://doi.org/10.1117/3.853406.ch3

[53] Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., Haynes, C.L., 2013. Toxicity of engineered nanoparticles in the environment. Analytical chemistry 85, 3036–49. https://doi.org/10.1021/ac303636s

[54] Moerz, S.T., Kraegeloh, A., Chanana, M., Kraus, T., 2015. Formation Mechanism for Stable Hybrid Clusters of Proteins and Nanoparticles. ACS Nano 9, 6696–6705. https://doi.org/10.1021/acsnano.5b01043

[55] Mueller, N.C., Nowack, B., 2008. Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology 42, 4447–4453. https://doi.org/10.1021/es7029637

[56] Oskam, G., 2006. Metal oxide nanoparticles: synthesis, characterization and application. Journal of Sol-Gel Science and Technology 37, 161–164. https://doi.org/10.1007/s10971-005-6621-2

[57] Pandian, A.M.K., Karthikeyan, C., Rajasimman, M., Dinesh, M.G., 2015. Synthesis of silver nanoparticle and its application. Ecotoxicology and Environmental Safety 121, 211–217. https://doi.org/10.1016/j.ecoenv.2015.03.039

[58] Patil, R.M., Thorat, N.D., Shete, P.B., Bedge, P.A., Gavde, S., Joshi, M.G., Tofail, S.A.M., Bohara, R.A., 2018. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports 13, 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002

[59] Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., Lowry, G. V, 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental science & technology 41, 284–290.

[60] Phiwdang, K., Suphankij, S., Mekprasart, W., Pecharapa, W., 2013. Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia 34, 740–745. https://doi.org/10.1016/j.egypro.2013.06.808

[61] Pieters, G., Pezzato, C., Prins, L.J., 2012. Reversible Control over the Valency of a Nanoparticle-Based Supramolecular System. Journal of the American Chemical Society 134, 15289–15292. https://doi.org/10.1021/ja307621d

[62] Pipan-Tkalec, Z., Drobne, D., Jemec, A., Romih, T., Zidar, P., Bele, M., 2010. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology 269, 198–203. https://doi.org/10.1016/j.tox.2009.08.004

[63] Rodriguez, J.A., Liu, G., Jirsak, T., Hrbek, J., Chang, Z., Dvorak, J., Maiti, A., 2002. Activation of Gold on Titania: Adsorption and Reaction of SO2 on Au/TiO2(110). Journal of the American Chemical Society 124, 5242–5250. https://doi.org/10.1021/ja020115y

[64] Rosicka, D., Sembera, J., 2011. Assessment of Influence of Magnetic Forces on Aggregation of Zero-valent Iron Nanoparticles. Nanoscale research letters 6, 10. https://doi.org/10.1007/s11671-010-9753-4

[65] Schmid, K., Riediker, M., 2008. Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environmental Science & Technology 42, 2253–2260. https://doi.org/10.1021/es071818o

[66] Schoiswohl, J., Kresse, G., Surnev, S., Sock, M., Ramsey, M.G., Netzer, F.P., 2004. Planar Vanadium Oxide Clusters: Two-Dimensional Evaporation and Diffusion on Rh(111). Physical Review Letters 92, 206103.

[67] Shen, C., Jin, Y., Li, B., Ruckenstein, E., Shang, J., Huang, Y., 2018. Anomalous Attachment Behavior of Nanoparticles inside Narrow Channels. Vadose Zone Journal 17. https://doi.org/10.2136/vzj2018.04.0075

[68] Shoults-Wilson, William A, Reinsch, B.C., Tsyusko, O. V, Bertsch, P.M., Lowry, G. V, Unrine, J.M., 2011. Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5, 432–444. https://doi.org/10.3109/17435390.2010.537382

[69] Shoults-Wilson, W A, Zhurbich, O.I., McNear, D.H., Tsyusko, O.V., Bertsch, P.M., Unrine, J.M., 2011. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology (London, England) 20, 385–396. https://doi.org/10.1007/s10646-010-0590-0

[70] Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D., 2015. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters 7. https://doi.org/10.1007/s40820-015-0040-x

[71] Song, Z., Cai, T., Chang, Z., Liu, G., Rodriguez, J.A., Hrbek, J., 2003. Molecular Level Study of the Formation and the Spread of MoO3 on Au (111) by Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 125, 8059–8066. https://doi.org/10.1021/ja034862m

[72] Stebounova, L.V., Guio, E., Grassian, V.H., 2011. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanoparticle Research 13, 233–244. https://doi.org/10.1007/s11051-010-0022-3

[73] Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., Handy, R., Hankin, S., Hassellöv, M., Joner, E., Fernandes, T.F., 2010. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Science of The Total Environment 408, 1745–1754. https://doi.org/10.1016/j.scitotenv.2009.10.035

[74] Sun, S., Zeng, H., 2002. Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society 124, 8204–8205. https://doi.org/10.1021/ja026501x

[75] Tiwari, J.N., Tiwari, R.N., Kim, K.S., 2012. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science 57, 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

[76] Tourinho, P.S., van Gestel, C.A.M., Lofts, S., Svendsen, C., Soares, A.M.V.M., Loureiro, S., 2012a. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental toxicology and chemistry 31, 1679–1692. https://doi.org/10.1002/etc.1880

[77] Tourinho, P.S., van Gestel, C.A.M., Lofts, S., Svendsen, C., Soares, A.M.V.M., Loureiro, S., 2012b. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental toxicology and chemistry 31, 1679–1692. https://doi.org/10.1002/etc.1880

[78] Unrine, J.M., Hunyadi, S.E., Tsyusko, O.V., Rao, W., Shoults-Wilson, W.A., Bertsch, P.M., 2010. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms ( Eisenia fetida ). Environmental Science & Technology 44, 8308–8313. https://doi.org/10.1021/es101885w

[79] Wang, H., Wick, R.L., Xing, B., 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157, 1171–1177. https://doi.org/10.1016/j.envpol.2008.11.004

[80] Wang, Y., Deng, L., Caballero-Guzman, A., Nowack, B., 2016. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling. Nanotoxicology 10, 1545–1554. https://doi.org/10.1080/17435390.2016.1242798

[81] Wiley, B.J., Im, S.H., Li, Z.-Y., McLellan, J., Siekkinen, A., Xia, Y., 2006. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 110, 15666–15675. https://doi.org/10.1021/jp0608628

[82] Wu, W., He, Q., Jiang, C., 2008. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters 3, 397–415. https://doi.org/10.1007/s11671-008-9174-9

[83] Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., 2009. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie (International ed. in English) 48, 60–103. https://doi.org/10.1002/anie.200802248

[84] Xu, Z., Hwang, J.-Y., Li, B., Huang, X., Wang, H., 2008. The characterization of various ZnO nanostructures using field-emission SEM. JOM 60, 29–32. https://doi.org/10.1007/s11837-008-0044-9

[85] Yahya, N., Daud, H., Tajuddin, N.A., Daud, H.M., Shafie, A., Puspitasari, P., 2010. Application of ZnO Nanoparticles EM Wave Detector Prepared by Sol-Gel and Self-Combustion Techniques. Journal of Nano Research 11, 25–34. https://doi.org/10.4028/www.scientific.net/JNanoR.11.25

[86] Zhang, Y., Leu, Y.-R., Aitken, R.J., Riediker, M., 2015. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment. International Journal of Environmental Research and Public Health 12, 8717–8743. https://doi.org/10.3390/ijerph120808717