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This study investigates the hydro-elastic behaviors of fully submerged 
horizontal cylinders in different regular waves. Two methods were proposed 
and compared in this study. The first method was based on potential theory 
in frequency domain and the discrete-module-beam (DMB) method, which 
discretizes a floating elastic structure into a sufficient number of rigid 
bodies while simultaneously representing the elastic behavior from beam 
elements with Euler-Bernoulli beam and Saint-Venant torsion. Moreover, 
the Morison method in time domain was employed; this method estimates 
wave forces from the semi-empirical Morison equation, and the elastic 
behavior is embodied by massless axial, bending, and torsional springs. 
Various parametric studies on cylinder diameter, submergence depth, and 
wave direction were conducted. Wave forces, dry/wet mode shapes/natural 
frequencies, and dynamic motions are presented and analyzed.
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1. Introduction

Underwater cylindrical structures have been suggest-
ed for various reasons. Many of them lie on the seabed, 
and typical examples include submarine pipelines that 
transport water, oil, and natural gas, submarine cables for 
electricity transmission, and immersed tunnels for public 
transportation. Even if these structures have accumulated 
engineering practices, several critical limitations still exist. 
These structures are susceptible to seismic activities [1,2];  
the seabed should be even for installation; scours, the re-
moval of sediment around the pipeline, can occur and are 

critical for vibration and fatigue damage associated with 
seabed movement [3]. Also, the deepwater application is 
very challenging for submarine pipelines and cables due 
to not only high hydrostatic pressure and temperature dif-
ference but also high costs associated with a longer length 
and additional intervention work for the seabed [4].

Submerged floating structures have been proposed 
as novel alternatives to the above structures, and repre-
sentative examples are submerged floating pipelines and 
submerged floating tunnels. These structures float at a 
submergence depth and keep their location with mooring 
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systems if needed. They have several advantages: (1) they 
can be safe from wave and seismic actions by properly 
selecting design parameters, (2) the deepwater applica-
tion is much more straightforward without considerable 
hydrostatic pressure and temperature difference, as in the 
deepwater location, and (3) structural health monitoring is 
much easier [4-9].

Their considerable dynamic and structural behavior 
and the resulting large mooring tension are still consid-
ered severe under various environmental conditions such 
as waves, currents, earthquakes, and tsunamis. Many stud-
ies adopted the Morison equation [10] for force estimation 
of the horizontal cylinder [11-13] due to low computational 
cost. However, the Morison equation has limitations in 
that wavelength should be more than five times the char-
acteristic length ( / 0.2D L ≤  where D  is cylinder diameter 
and L  is wavelength), and the radiation effect is neglect-
ed. In addition, when the structure is close to free surface, 
the free-surface effect can be substantial, which results 
in a considerable variation of the scattering wave force 
compared with the deeply submerged structure cases [14]. 
The resulting mooring tension can also be different to a 
great extent. In this regard, validation work of the Mor-
ison equation for fully submerged floating structures is 
essential with respect to different diameters, submergence 
depths, and wave directions. 

Several papers discussed the validity of the Morison 
equation by comparing it with theory-based approaches. 
Typically, the inertia coefficient MC  is fixed at 2 accord-
ing to the slender body assumption and can vary for the 
non-slender body. For example, Chakrabarti and Tam [15] 
estimated the effective inertia coefficient for the Morison 
equation for bottom-mounted surface-piecing vertical 
cylinder and proved that the effective inertia coefficient 
significantly decreases as /D L  increases. Chung [16] stat-
ed that when an object is close to free surface, the inertia 
coefficient can be a function of frequency, and radiation 
damping can be empirically added. In other words, its 
validity may be weakened when the free-surface effect 
exists to a great degree. Chang et al. [17] showed that the 
Morison equation reasonably estimates wave force up 
to second order for the hinged vertical cylinder at small 
wave steepness. However, they also mentioned that the 
Morison equation underestimates the peak wave force and 
overestimates trough wave forces at high wave steepness. 
Varying inertia coefficients along the submergence depth 
are proposed as in Ref. [18]. Regarding horizontal cylin-
ders, Li et al. [19] conducted experimental studies for in-
line responses for a submerged horizontal cylinder and 
showed that the inertia coefficient is not changing signifi-
cantly with respect to the Keulegan-Carpenter number as 

opposed to vertical cylinders. Chen et al. [20] compared the 
Morison equation with CFD simulation and showed that 
the Morison equation underestimates the wave force on a 
partially submerged horizontal cylinder by up to 50% rel-
ative errors. 

This study compared the potential theory with the Mori-
son equation for fully-submerged horizontal cylinders. Both 
ends were fixed with the fixed-fixed boundary condition in 
which there are no displacements and angles at both ends. 
The multibody-based hydro-elasticity method with the po-
tential theory in frequency domain—referred to as the dis-
crete-module-beam (DMB) method—was compared with 
the lumped mass method with Morison equation—referred to 
as the Morison method. The Froude-Krylov, scattering wave, 
and radiation damping forces in the DMB method were com-
pared with the inertia force of the Morison equation in the 
Morison method. Dry/wet natural frequencies/mode shapes 
and horizontal/vertical motions/forces were systematically 
presented and analyzed. 

2. Theory and Formulation

Two different approaches were selected to evaluate 
dynamic behaviors and wave forces for a fully submerged 
horizontal cylinder. The first method was the DMB meth-
od, in which wave forces are estimated by 3-dimensional 
(3D) potential theory in frequency domain and Euler-Ber-
noulli beam and Saint-Venant torsion are employed for 
representing elastic behaviors. The second method is the 
Morison method, in which the Morison equation estimates 
wave forces with representative added mass and inertia 
coefficients in time domain while beam elements are 
modeled by the lumped mass method with massless axial, 
bending, and torsional springs. The theory and formula-
tion of the two methods are explained in this section. De-
tailed formulations regarding the two methods and their 
validations can be found in Refs [12,21,22].

2.1 Discrete-Module-Beam Method in Frequency 
Domain

The DMB method is based on 3D potential theory for 
the multibody in frequency domain; a large deformable 
structure consists of M  rigid bodies and 1M −  connecting 
beams [23,24], as shown in Figure 1. The DMB method uses 
the right-handed Cartesian coordinate system.

Figure 1. DMB method [25].
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Laplace equation is governing equation for the poten-
tial theory when fluid is incompressible, irrotational, and 
inviscid as: 

2 0
i te ωϕ −

∇ Φ =

Φ =
 (1)

where Φ  is the total time-dependent velocity potential, 
which can be decomposed into the total time-independent 
velocity potential ϕ  and the time-dependent term i te ω−  
based on the assumption of harmonic excitation with wave 
angular frequency ω  and time t . ϕ  can further be decom-
posed into diffraction and radiation components with the 
incident, scattered, and radiation potentials Iϕ , Sϕ , and 
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Rϕ  as:
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where m represents the mth rigid body and ( )m
jξ  is six de-

grees of freedom (6DOF) displacements of the mth rigid 
body, i.e., surge, sway, heave, roll, pitch, and yaw mo-
tions. First-order Iϕ  can be written as:
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where wA  is the amplitude of an incident wave, k  is the 
wavenumber, H  is water depth, θ  is the wave direction, 
and g  is the gravity acceleration. Moreover, Sϕ  and ( )m

Rϕ  
can be obtained by considering the following bounda-
ry conditions on the free surface FS , bottom BS , body 
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where r  is the radial distance from the origin. ϕ×  can be 
Sϕ  or ( )m

jRϕ . ( )m
jn  is the inward unit normal vector for the j

th DOF on the m th body surface with respect to the body-
fixed coordinate system. Sϕ  and ( )m

jRϕ  are obtained by the 
3D boundary element method. Each body’s coordinate 
center is its center of gravity. 

The wave excitation force that is the sum of the 
Froude-Krylov and scattered wave forces for the j th DOF 

on the m th rigid body in the body-fixed coordinate system 
is given in Equation (5): 

( ) ( ) ( )
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The radiation force for the j th DOF on the m th rigid 
body induced by the k th DOF of the n th rigid body in the 
body-fixed coordinate system is given in Equation (6):
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where ( )mn
jkA  and ( )mn

jkB  denote the added mass and radiation 
damping coefficients of the j th DOF of the m th rigid 
body induced by the k th DOF of the n th rigid body. In 
addition, the hydrostatic restoring force of the m th rigid 
body for the j th DOF is given in Equation (7):
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After the hydrodynamic forces and coefficients have 
been introduced, the equation of motion for M  rigid bod-
ies can be written with the mass, added mass, radiation 
damping, hydrostatic restoring coefficient matrices, M , A ,  
B , and K , and wave-excitation-force vector WF  as:

( )( ) ( )( ) ( ) ( )E Wω ω ω+ + + + + =RM A ξ B B ξ K K ξ F   (8)

where upper dot means time derivative and RB  is the 
structural damping matrix. In Equation (8), the external 
stiffness matrix EK  is introduced to consider the elastic 
behavior of a deformable floating structure. EK  is con-
structed with Euler-Bernoulli beam and Saint-Venant’s 
torsion theory for 1M −  beam elements. The 12 by 12 
sub-stiffness matrix eK  for the e th beam element in the 
local coordinate system is given in Equation (9):
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where E  and G  are Young’s and shear moduli, cA  is the 
cross-sectional area, el  is the element length, and xI ,  

yI , and zI  are the torsional, vertical, and lateral second 
moments of area about x, y, and z axes, respectively. EK  
can be expressed for 1M −  beam elements with the 6 by 6 
sub-stiffness matrices of eK  as: 
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2.2 Morison Method in Time Domain

The Morison method was also modeled in time domain [26].  
In this method, a deformable floating structure consists 
of finite elements with nodes and segments. Key physical 
properties are included in the nodes while segments pres-
ent structure’s deformability with massless axial, bending, 
and torsional springs. The Morison equation evaluates the 
hydrodynamic forces for a moving body at its instantane-
ous node position. The computational time of this method 
is lower than the frequency-domain DMB method since 
this method is dependent on the Morison equation for 
wave-force estimation. It is worth utilizing this method if 
accurate global performance estimation is possible with 
a cheaper computational cost. The equation of motion for 
a deformable floating structure in time domain can be ex-
pressed as:
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where SK  are the structural stiffness matrix, MF  is the 
hydrodynamic force vector based on the Morison equa-
tion, w  is the wet-weight vector (i.e., buoyancy minus 
dry weight), AC , MC , and DC  are the added mass, inertia, 
and drag coefficients, ∆  and A  are the displaced mass 
and drag area, ρ  is the seawater density, η and η4  are the 
velocity and acceleration vectors of fluid particles, and 
n  denotes the normal direction. Structural deformability 

is represented by KS with axial, bending, and torsional 
springs. The drag term of the Morison equation, i.e., 3rd 
term in Equation (11), was neglected since the Keule-
gan-Carpenter number of the presented problem is low 
(inertia dominant). 

3. Case Description

Figure 2 shows the configuration of a concrete hollow 
cylinder. Its density and Young’s modulus were 2300 kg/m3 
and 30 GPa. The length of the concrete cylinder was fixed 
at 500 m, whereas various diameters of 10 m–20 m, sub-
mergence depths of 20 m–60 m, and wave directions of 
30°–90° were selected as design parameters. In this study, 
the cylinder’s buoyancy-weight ratio was set at 1.0, which 
means its buoyancy is the same as its dry weight. Then, 
the inner diameter and axial, bending, and torsional stiff-
ness were reversely estimated based on the given buoy-
ancy-weight ratio. The fixed-fixed boundary condition at 
both ends was designed; in other words, displacements 
and angles at both ends do not change. Water depth was 
fixed at 100 m. 

4. Results and Discussions

4.1 Wave Force

The wave excitation force WF  in potential theory is of-
ten correlated with the inertia force term IF  in the Morison 
equation, i.e., 2nd term in Equation (11). IF  is with the in-
ertia coefficient ( )1M AC C= + , and 1 and AC  are associated 
with contributions from the Froude-Krylov force and scat-
tered wave force. The validity of the Morison equation is 
then assessed by comparing WF  and IF . Figures 3–4 show 
the comparison of horizontal/vertical WF  and IF  (wave 
force per unit length). Wave direction was fixed at 90° 

Figure 2. Configuration of a cylinder with fixed-fixed boundary condition (D denotes diameter; SD stands for  
submergence depth).
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with respect to the positive x-axis, and IF  was calculated 
from the fixed body. At a low submergence depth of 20 
m, which is close to free surface, trends and magnitudes 
of WF  are somewhat different from those of IF , as shown 
in Figure 3(a) and (c). The Morison model tends to over-
estimate the wave force at high frequencies of 0.7 rad/s or 
more. However, WF  and IF  are very close at higher sub-
mergence depths, regardless of the wave frequency range, 
as shown in Figure 3(b) and (d), which means that the 
Morson method can estimate the wave force accurately for 
deeply submerged cylinders even if the cylinder diameter 
is large. Moreover, the higher the submergence depth, the 
lower the importance of high-frequency wave forces since 
the wave kinematics decreases with submergence depth 
as a function of ( )cosh k z H+  for intermediate water and 

kze  for deep water. As shown in Figure 4, the difference 
between the two forces is significantly reduced at a small 
diameter of 10 m even if the submergence depth is 20 m.

The previous results show that the Morison equation 
accurately estimates the wave inertia force at the large 
submergence depth and small cylinder diameter. It is well 
known that the Morison equation has a limitation, i.e., 

/ 0.2D L ≤ . At the given water depth of 100 m and a cylin-
der diameter of 20 m, the wave frequency should be less 
than around 0.8 rad/s to be included in this condition. The 
scattered wave force SCF  is mainly associated with this 
limitation since the scattered wave force has a tendency 
to be important as the wave frequency increases. Figure 5 
shows the comparison of the Froude-Krylov force FKF  and 

SCF  in the DMB method with half of IF  in the Morison 
method ( )0.5 I = MFF F  that corresponds to FKF  in the DMB 
method. Wave kinematics for the Morison equation is es-
timated at the geometric center, while that for FKF  is based 
on the cylinder surface. At the given cylinder diameters, 
regardless of submergence depths, MFF  is similar to FKF , 
which means that kinematics estimation at the geometric 
center in the Morison method is still valid for this horizon-
tal cylinder at the given frequency range. Then, as noticed 
in Figure 5(a), SCF  induces the difference between WF  and 

IF  only when submergence depth is low. In this case, the 
existence of free surface influences the calculation of SCF .  
No free-surface effect is detected when the submergence 
depth is 60 m due to a large distance between free surface 
and the cylinder.

(a) (b)

(c) (d)

Figure 3. Comparison of horizontal/vertical WF  and IF  at a diameter of 20 m and different submergence depths.

(a) (b)

Figure 4. Comparison of horizontal/vertical WF  and IF  at a diameter of 10 m and a submergence depth of 20 m.
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4.2 Modal Analysis

Next, modal analysis was conducted, and dry/wet mode 
shapes/natural frequencies were obtained. Wet mode 
shapes and natural frequencies require the added mass and 
hydrostatic restoring coefficient matrices. In the Morison 
equation, AC  is typically selected as 1 based on previous 
practices for the slender body [27]. However, the added mass 
is frequency-dependent, and wet mode shapes and natural 
frequencies can be changed. Tables 1-2 give dry and wet 
natural frequencies at different diameters and submergence 
depths. Morison and DMB models calculate similar dry 
natural frequencies with a maximum difference of 0.3%. 
Note that elements number for DMB and Morison methods 
for this example are 22 and 50, respectively. Since the Mor-
ison method is based on the lumped mass method, more 
elements are generally required than the high-order beam-

based DMB method. Twenty-two finite elements in the 
DMB method are sufficient to represent the elastic behavior. 
For the wet mode, while both approaches are well matched 
at a small diameter of 10 m or a large submergence depth 
of 60 m, the large difference is observed when diameter and 
submergence depth are both 20 m. In this case, free surface 
plays some roles in the modification of wet natural frequen-
cies by changing added mass. The maximum difference 
is increased to be 5.0%. In this regard, when a cylinder is 
large and close to free surface, special care should be made 
to evaluate wet natural frequencies.

Figure 6 shows the representative wet mode shapes of 
two methods at the diameter and submergence depth of 
20 m. Even if there is a maximum difference of 5% in wet 
natural frequencies, there is no noticeable difference in the 
wet mode shape up to 3rd mode. 

(a) (b)

Figure 5. Comparison of FKF , SCF , and MFF  at different diameters and submergence depths.

Table 1. Dry natural frequencies at different diameters.

D(m) Direction Mode# Morison (rad/s) DMB (rad/s) Difference (%)

20

Horizontal

1 2.01 2.01 0.0

2 5.51 5.51 -0.1

3 10.73 10.73 -0.3

Vertical

1 2.01 2.01 0.0

2 5.51 5.51 -0.1

3 10.73 10.73 -0.3

10

Horizontal

1 1.01 1.01 -0.3

2 2.77 2.76 -0.2

3 5.40 5.38 -0.3

Vertical

1 1.01 1.01 -0.3

2 2.77 2.76 -0.2

3 5.40 5.38 -0.3
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4.3 Global Behavior 

In previous sections, there were two distinct differences 
between the DMB and Morison methods; at the diameter 
and submergence depth of 20 m, the existence of free 
surface changes the scattered wave force and added mass, 
which results in differences in total wave force and wet 
natural frequencies. In this section, global behaviors are 
further checked at different wave directions. The structur-
al damping matrix based on Rayleigh damping RB  was 
added to deal with unrealistic resonant motions at natural 
frequencies. This study assumes a representative damp-
ing ratio of 5% for concrete structures at the fundamental 

horizontal and vertical natural frequencies. 
Figure 7 shows the amplitude envelopes of horizontal 

and vertical displacements at the diameter and submer-
gence depth of 0.2 m and wave direction of 90°. It turns 
out that the lowest mode shape is dominant for the given 
frequency range. In other words, the lowest horizontal 
and vertical natural frequencies for the DMB method are 
around 1.50 rad/s and 1.49 rad/s, and thus the lowest nat-
ural frequency is dominant for the given frequency range 
of 0.3 rad/s–1.3 rad/s. Since the Morison method overesti-
mates the wave force at the high-frequency region, highly 
overestimated motions are seen, especially when wave 
frequency is close to the fundamental natural frequency. 

Table 2. Wet natural frequencies at different diameters and submergence depths.

D(m) SD(m) Direction Mode# Morison (rad/s) DMB (rad/s) Difference (%)

20 20

Horizontal

1 1.42 1.50 5.0

2 3.91 4.04 3.4

3 7.62 7.88 3.4

Vertical

1 1.42 1.49 4.9

2 3.91 4.06 3.7

3 7.62 7.94 4.1

20 60

Horizontal

1 1.42 1.42 0.1

2 3.91 3.93 0.5

3 7.62 7.70 1.1

Vertical

1 1.42 1.42 -0.3

2 3.91 3.91 0.2

3 7.62 7.68 0.8

10 20

Horizontal

1 0.71 0.72 0.3

2 1.96 1.98 1.0

3 3.82 3.86 1.0

Vertical

1 0.71 0.72 0.3

2 1.96 1.98 0.9

3 3.82 3.85 0.7

(a) (b)

Figure 6. Wet mode shapes at the diameter and submergence depth of 20 m.
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Since the center has the most considerable movement re-
lated to the fixed-fixed boundary condition at both ends, 
results at the mid-length are presented in the later section. 

Figure 8 shows the horizontal and vertical motions at 
the diameter of 20 m, different submergence depths of 20 
m and 60 m, and wave direction of 90°. Again, the motion 
trend coincides with wave force. Overevaluated motions 
by the Morison method at the submergence depth of 20 
m are observed, particularly in the high-frequency region. 
Since fundamental wet natural frequency for the Morison 
method is lower than that for the DMB method, resonant 
induced motion associated with high wave force is detect-
ed for the Morison method. On the other hand, the Mori-
son method accurately estimates displacements for deeply 
submerged cylinders for the given frequency range since 
wet natural frequencies and wave forces between the two 
approaches coincide.

Finally, Figure 9 shows the horizontal and vertical mo-
tions at the diameter and submergence depth of 20 m and dif-
ferent wave directions of 30° and 60°. As wave direction 
is not perpendicular to the cylinder, there is an arrival time 
lag of input waves along the length, which can induce a 
phase cancellation effect where wave force in the differ-
ent locations can be canceled out. The phase cancellation 
effect can be dominant in the high-frequency region. In 
this example, the lower the wave direction, the smaller the 
high-frequency motions. As shown in Figure 3, the DMB 
model estimates the higher wave excitation force for the 
range of 0.3 rad/s–0.7 rad/s; thus, the DMB model tends 
to produce higher motion than the Morison method for the 
given wave directions. Also, the magnitude of motions at 
the mid-length tends to decrease as the wave direction de-
creases. 

(a) (b)
Figure 7. Amplitude envelopes of horizontal (a) and vertical (b) displacements (diameter of 0.2 m; submergence depth 

of 0.2 m; wave direction of 90°).

(a) (b)
Figure 8. Amplitude of displacements at the mid-length and submergence depths of 20 m (a) and 60 m (b) (diameter of 

0.2 m; wave direction of 90°).

(a) (b)
Figure 9. Amplitude of displacements at the mid-length and wave directions of 30° (a) and 60 ° (b) (diameter of 0.2 m; 

submergence depth of 0.2 m).
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5. Conclusions

This study focuses on the hydro-elastic behaviors of a 
fully submerged horizontal cylinder in regular waves. The 
frequency-domain discrete-module-beam (DMB) method 
was developed; a continuous elastic floating structure is 
discretized into a certain number of rigid bodies while 
structural flexibility is modeled by beam elements with 
Euler-Bernoulli beam and Saint-Venant torsion; the hydro-
dynamic coefficients and wave forces were obtained from 
3D potential theory. The time-domain Morison method 
was also employed; the Morison equation estimates wave 
forces and elastic behaviors are represented by massless 
axial, bending, and torsional springs. Various parametric 
studies on the cylinder diameter, submergence depth, and 
wave direction were conducted, and wave forces, dry/wet 
mode shapes/natural frequencies, and dynamic motions 
were analyzed. The results derived from this study are as 
follows:

(1) The presence of free surface tends to change the 
scattered wave force in the DMB model; the larger the di-
ameter and the smaller the submergence depth, the greater 
the change in the scattered wave force. The overestimation 
of wave force in the high-frequency region is observed in 
the Morison model. 

(2) Consideration of frequency-dependent added 
mass in the DMB method slightly changes the wet natural 
frequencies, whereas wet mode shapes of the two ap-
proaches are almost the same. 

(3) The difference of wave forces and wet natural 
frequencies results in significant changes in the overall 
magnitudes of the dynamic motions. In this example, the 
Morison model tends to significantly overestimate dynam-
ic motions around the fundamental wet natural frequency.

(4) Dynamics motions decrease with decreased wave 
direction, and high-frequency motion is reduced mainly 
due to the arrival time lag of incoming waves along the 
length, which induces phase cancellation of wave force.

Conflict of Interest

Author declares that there is no conflict of interest.

References

[1] Anastasopoulos, I., Gerolymos, N., Drosos, V., et al., 
2007. Nonlinear response of deep immersed tunnel to 
strong seismic shaking. Journal of Geotechnical and 
Geoenvironmental Engineering. 133(9), 1067-1090.

[2] Chandrasekaran, S., Nannaware, M., 2014. Response 
analyses of offshore triceratops to seismic activities. 
Ships and Offshore Structures. 9(6), 633-642.

[3] Zhao, E., Dong, Y., Tang, Y., et al., 2021. Numerical 

investigation of hydrodynamic characteristics and lo-
cal scour mechanism around submarine pipelines un-
der joint effect of solitary waves and currents. Ocean 
Engineering. 222, 108553.

[4] Wang, Z., Yang, H., 2016. Parametric instability of 
a submerged floating pipeline between two floating 
structures under combined vortex excitations. Ap-
plied Ocean Research. 59, 265-273.

[5] Jin, C., Kim, M.H., 2018. Time-domain hydro-elastic 
analysis of a SFT (submerged floating tunnel) with 
mooring lines under extreme wave and seismic exci-
tations. Applied Sciences. 8(12), 2386.

[6] Zou, P., Bricker, J.D., Chen, L., et al., 2022. Re-
sponse of a submerged floating tunnel subject to 
flow-induced vibration. Engineering Structures. 253, 
113809.

[7] Deng, S., Ren, H., Xu, Y., et al., 2020. Experimental 
study on the drag forces on a twin-tube submerged 
floating tunnel segment model in current. Applied 
Ocean Research. 104, 102326.

[8] Won, D., Seo, J., Park, J.S., et al., 2020. Internal 
force evaluation of a submerged floating pipeline un-
der irregular waves. Journal of Marine Science and 
Technology. 28(6), 13.

[9] Nagavinothini, R., Chandrasekaran, S., 2020. Dy-
namic response of offshore triceratops with elliptical 
buoyant legs. Innovative Infrastructure Solutions. 
5(2), 1-14.

[10] Morison, J., Johnson, J., Schaaf, S., 1950. The force 
exerted by surface waves on piles. Journal of Petro-
leum Technology. 2(05), 149-154.

[11] Lin, H., Xiang, Y., Yang, Y., et al., 2018. Dynamic re-
sponse analysis for submerged floating tunnel due to 
fluid-vehicle-tunnel interaction. Ocean Engineering. 
166, 290-301.

[12] Jin, C., Bakti, F.P., Kim, M., 2021. Time-domain 
coupled dynamic simulation for SFT-mooring-train 
interaction in waves and earthquakes. Marine Struc-
tures. 75, 102883.

[13] Muhammad, N., Ullah, Z., Choi, D.H., 2017. Per-
formance evaluation of submerged floating tunnel 
subjected to hydrodynamic and seismic excitations. 
Applied Sciences. 7(11), 1122.

[14] Jin, C., Kim, S.J., Kim, M., 2021. Coupled time-do-
main hydro-elastic simulation for submerged floating 
tunnel under wave excitations. International Confer-
ence on Offshore Mechanics and Arctic Engineering. 
V006T006A023.

[15] Chakrabarti, S.K., Tam, W.A., 1975. Interaction of 
waves with large vertical cylinder. Journal of Ship 
Research. 19(01), 23-33.



10

Sustainable Marine Structures | Volume 04 | Issue 02 | July 2022

[16] Chung, J.S., 2018. Morison equation in practice and 
hydrodynamic validity. International Journal of Off-
shore and Polar Engineering. 28(01), 11-18.

[17] Chang, S., Huang, W., Sun, H., et al., 2019. Numeri-
cal investigation of secondary load cycle and ringing 
response of a vertical cylinder. Applied Ocean Re-
search. 91, 101872.

[18] Chandrasekaran, S., Jain, A., Gupta, A., 2007. In-
fluence of wave approach angle on TLP’s response. 
Ocean Engineering. 34(8-9), 1322-1327.

[19] Li, Y.S., Zhan, S., Lau, S., 1997. In-line response of 
a horizontal cylinder in regular and random waves. 
Journal of fluids and structures. 11(1), 73-87.

[20] Chen, B., Lu, L., Greated, C.A., et al., 2015. In-
vestigation of wave forces on partially submerged 
horizontal cylinders by numerical simulation. Ocean 
Engineering. 107, 23-31.

[21] Jin, C., Kim, M., 2021. The effect of key design pa-
rameters on the global performance of submerged 
floating tunnel under target wave and earthquake ex-
citations. CMES-Computer Modeling in Engineering 

& Sciences. 128(1), 315-337.
[22] Bakti, F.P., Jin, C., Kim, M.H., 2021. Practical ap-

proach of linear hydro-elasticity effect on vessel with 
forward speed in the frequency domain. Journal of 
Fluids and Structures. 101, 103204.

[23] Lu, D., Fu, S., Zhang, X., et al., 2016. A method to 
estimate the hydroelastic behaviour of VLFS based 
on multi-rigid-body dynamics and beam bending. 
Ships and Offshore Structures. 14(4), 354-362.

[24] Wei, W., Fu, S., Moan, T., et al., 2017. A dis-
crete-modules-based frequency domain hydroelastic-
ity method for floating structures in inhomogeneous 
sea conditions. Journal of Fluids and Structures. 74, 
321-339.

[25] Jin, C., Bakti, F.P., Kim, M., 2020. Multi-float-
er-mooring coupled time-domain hydro-elastic anal-
ysis in regular and irregular waves. Applied Ocean 
Research. 101, 102276.

[26] Orcina, 2020. OrcaFlex User Manual Version 11.0 d.
[27] Faltinsen, O., 1993 Sea loads on ships and offshore 

structures. London, UK: Cambridge university press.


