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This paper presents a two-dimensional discrete vortex method that uses 
the vortex growing core model to simulate the unsteady force and the 
wake patterns of the pure pitching airfoil efficiently and accurately. To 
avoid the random fluctuation caused by the random walk method, a vortex 
growing core method is used to simulate the viscous diffusion motion. In 
addition, the vortices fall off randomly on the body surface. Referring to 
the experimental configurations of Mackowski and Williamson (2015), a 
good agreement is achieved through the comparisons between the present 
simulation results and the experimental results, including the mean force 
coefficients, oscillation amplitude and wake patterns. It shows that the two-
dimensional discrete vortex method can be used to predict the mechanical 
behavior and wake patterns on the pitching airfoil motion.
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1. Introduction 
Birds, as well as some marine creatures, use vibrations 

of their wings, fins or other parts to generate thrust and 
lift. From the perspective of bionics, some scholars have 

focused on creating thrust-generating devices, just like 
autonomous underwater vehicles and some flapping wing 
micro-aerial vehicles [1-3]. This kind of device is different 
from the turbines which rotate around an external axis 
to achieve electricity generation [4-6], but to control the 
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airfoil motion actively for realizing the bionic behavior 
such as propulsion, hovering, heaving and so on. In recent 
decades, more and more scholars focused on the thrust 
and lift generation mechanism of flapping wings and how 
this mechanism is influenced by various factors. The pure 
pitching motion of the airfoil simplifies the complex mo-
tion of the flapping airfoil, and the study by considering 
only the pitching motion is instructive for researchers to 
understand the evolution law of unsteady forces during 
the movement of the airfoil.

On the basis of Theodore’s pioneer study [7] on the un-
steady force of oscillating airfoil, Garrick [8] theoretically 
calculated the unsteady force caused by the pitching and 
heaving motion of the airfoil. The results showed that the 
pitching motion need high enough frequency to make the 
transition from drag to thrust, whereas the heaving motion 
could produce thrust at any frequency. Koochesfahani [9]  
visualized the wake structure of the pitching NACA 0012 
and found that the wake structure can be modified by the 
control of the amplitude, frequency and shape of the vi-
bration waveform. Further, Bohl and Koochesfahani [10]  
improved the experiment and introduced the method 
of estimating the mean force on the airfoil by using the 
measured mean and fluctuating velocity fields. Godoy-Di-
ana et al. [11] captured the transition of the vortex streets 
in the wake flow of pitching airfoil from the Benard-von 
Karman (Bvk) wake to the reverse Bvk vortex street. The 
results also showed that this transition precedes the actual 
drag-thrust transition. Schnipper et al. [12] visualized a va-
riety of wakes in a vertical soap film and mapped out the 
wake types in a phase diagram. 

Similarly, some scholars used numerical simulation to 
discover the mystery of the pitching airfoil. Young and  
Lai [13] used a compressible two-dimensional Navi-
er-Stokes solver to study the flow over a NACA 0012 air-
foil which oscillated sinusoidally in the plunge. Chandra-
vanshi et al. [14] used both a gridless Lagrange technique 
and a finite volume based Navier-Stokes solver to study 
the pure plunging motion of the airfoil. Wu et al. [15] stud-
ied the NACA 66 hydrofoil’s pitching motion under the 
Lagrange coherent structures. In this study, he used the  
k – ω shear stress transport turbulence model coupled with 
a two-equation γ – Reθ transition model for the turbulence 
closure was used. As a meshless numerical simulation 
method of Lagrange, the discrete vortex method has high-
er efficiency than the traditional CFD method. Therefore, 
some scholars also use the discrete vortex method to calcu-
late the unsteady force and the wake structure of the pitch-
ing airfoil [16-19]. However, most of them used the method 
of random walk which was introduced by Chorin [20]  
to model the viscous diffusion and this method may cause 

the random fluctuation of order Re–1/2 to the simulation 
result. To avoid this random fluctuation, some scholars 
used the growing core method [21-23] instead of the random 
walk method which was introduced by Park [24] in 1989. 
Also, some scholars specified the control layer thickness 
in advance according to the results of a trial and error pro-
cedure when using the discrete vortex method.

This study introduces a two-dimensional discrete vor-
tex method to simulate the propulsive performance of the 
pitching airfoil. This method uses the vortex growing core 
method to simulate the viscous diffusion motion, instead 
of the random walk method. In addition, the vortices 
fall off randomly in this study instead of setting a fixed 
boundary layer thickness in advance. In order to validate 
the reliability of this method, the pure pitching motion of 
the airfoil referring to the experiment of Mackowski and 
Williamson [25] is simulated. For verifying the calculated 
results, the mean force coefficients, oscillation amplitude 
and wake patterns are compared.

In this paper, Section 1 introduces the background of 
the pitching airfoil and the research status of other schol-
ars; Section 2 introduces the numerical implementation 
method for calculating the pitching airfoil; Section 3 
shows the comparison between the simulation results and 
the experimental results; Section 4 draws a conclusion.

2. Numerical Method

2.1 Governing Equation

With the assumption of mass-force ignored, for the 
two-dimensional, incompressible, viscous flow, the fluid 
continuity equation and the Navier Stokes equation can be 
written as: 

0∇⋅ =V  (1)

21 p v
t ρ

∂
+ ⋅∇ = − ∇ + ∇

∂
V V V V  (2)

where V is the local velocity vector of the fluid, p is the 
pressure, ρ and v are the uniform density and the kinemat-
ic viscosity, respectively. Taken the curl of the velocity on 
both sides of N-S equation, it can be written as: 

2v
t
ω ω ω∂
+ ⋅∇ = ∇

∂
V  (3)

where ω  is the vorticity, ω = ∇×V . Considering the two-di-
mensional fluid, the continuity equation can be rewritten 
by introducing the stream function φ in the form of Pois-
son equation:

2ω ϕ= −∇  (4)

To solve the equation, Chorin [20] introduced the oper-
ator splitting method which divided the equation into two 
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parts: the convection part and the viscous diffusion part.

t
ω ω∂
= − ⋅∇

∂
V  (5)

2v
t
ω ω∂
= ∇

∂  (6)

The convection equation indicates the invariance of 
the vorticity of the vortex elements when the vorticity 
field is discretized. For solving the convection equation, 
the Biot-Savart law can be used to obtain the summation 
speed of the vortex elements which concludes the velocity 
induced by the other vortices in the vorticity field and the 
incoming flow.

2

( ) ( , )1( , )
2 ( )

i i

i

tt dVω
π∞

− ×
= −

−∫
r r rV r U

r r  (7)

where  is the free stream incoming flow, ri = (xi, yi) is 
the position vector of the i-th vortex element, ω(ri, t) is the 
vorticity of the i-th vortex element at ri. Since the solution 
of the equation exists singularity which will cause the 
calculated speed become infinite near the vortex element 
position, Chorin [20] introduced a vortex core model ‘vor-
tex-blob’ which gave the vortex elements finite core radi-
us to make the function bounded. Using this vortex core 
model, the equation can be rewritten discretely as [20]: 

2 2
1

( )1( , )
2 ( )

N
i

i
i i i

t
π∞

=

−
= − Γ

− +σ∑ r rV r U
r r  (8)

where iσ  is the radius of the i-th vortex blob, i is the cir-
culation of i-th vortex blob. 

2.2 Numerical Implement of Pitching Airfoil

The stream function of the velocity induced by the i-th 
vortex element can be written as:

2 2ln( )
4

i
i i iϕ

π
Γ

= − +σr  (9)

In the vorticity field, the total stream function of the j-th 
element can be written as:

2 2 2 2

1 1
ln(( ) ) ln(( ) )

4 4

s wN N
i k

j j j i i j k k
i k

yϕ
π π∞

= =

Γ Γ
= − − +σ − − +σ∑ ∑U r r r r  (10)

where Ns and Nw are the number of vortex elements gen-
erated in the surface and the vortex elements moving into 
the wake flow, respectively. 

It should be noted that the no-slip condition and 
no-penetration condition should be satisfied near the solid 
body surface, which can be written as:

b

b

⋅ = ⋅
 ⋅ = ⋅

u s u s
u n u n  (11)

where s and n are the tangent and normal vector of the 
solid body surface, respectively, u and ub are the velocity 
of fluid near the solid body surface and the velocity of 

the body, respectively. Results from Qian and Vezza [26], 
Clarke and Tutty [27] and Wang and Yeung [28] have shown 
that no-slip condition and no-penetration condition are 
equivalent to determine the vorticity boundary condition. 
Therefore, satisfying either no-slip condition or no-pen-
etration condition can uniquely determine the vorticity 
distribution. 

As mentioned before, by solving the equation that satis-
fies the no-penetration condition, the vorticity distribution 
can be obtained on the solid body surface. This equation 
is calculated by differentiating the stream function of two 
adjacent control points on the surface, as written below.

1i i ci iSϕ ϕ+ − = ⋅ ∆U n  (12)

where φi is the stream function of the i-th control point on 
the surface, Uci is the solid body surface velocity at the i-th 
control point, ΔSi is the distance between i-th and (i+1)-th 
control points. As shown in Figure 1, Ns vortex elements 
are generated corresponding to Ns control points on the 
airfoil surface at each time step. For each two adjacent 
vortex elements, the corresponding equation to solve the 
vorticity of every newly generated vortex element. The 
form of the linear equations listed can be written as:

Γ =A B  (13)
where A is a Ns × Ns coefficient matrix, Γ is the vector 
composed of the vorticity of new vortexes, B is a vector. 
The elements of matrix A and vector B can be written as:

2
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 (15)

To ensure the conservation of the total vorticity in the 
field, the vorticity of the new elements and the vortex ele-
ments in the wake flow should satisfy the condition of the 
equation.

Figure 1. Scheme of the airfoil body surface and corre-
sponding vortex elements. 

1 1

s wN N

i j
i j= =

Γ = − Γ∑ ∑  (16)

The vorticity of the newly generated vortex elements 
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can be solved. Under the circumstance of Ns unknowns 
and Ns + 1 equations, Walther [29] used the least square 
method and the Gauss elimination algorithm to solve this 
equation set. So far, the vorticity of newly generated vor-
tex elements can be obtained by solving the convection 
equation, and the induced velocity between elements can 
be further calculated to update the whole field.

In addition, the solution of the viscous diffusion equa-
tion is the Green function. Usually, scholars use the ran-
dom walk method which was introduced by Chorin to 
simulate the viscous diffusion motion. In order to avoid 
the random fluctuation caused by this method, Park [24] 
introduced a vortex growing core method, in which the 
growing radius of the vortex can be written as:

( )21 4.946n n v t+σ = σ + ∆  (17)

where σn and σn+1 are the core radius at the n-th time step 
and the (n+1)-th step, respectively, t∆  is the length of time 
step. Since then, both the convection part and the viscous 
diffusion part can be calculated, so that the whole vortic-
ity field can be calculated by updating the vortex motion 
information.

Since at each time step, certain number of vortex ele-
ments are generated on the body surface, a total number 
of vortex elements will increase rapidly and then make 
the computational cost increase dramatically. Spalart [30] 
introduced a vortex element emergence method to control 
the total number of vortex elements in the whole field. At 
each time step, if two vortex elements satisfy the condi-
tion of the equation, merge these two vortex elements [30]. 

2

03/2 3/2
0 0( ) ( )

i j i j

i ji j

V
D d D d

Γ Γ −
⋅ ≤

+ +Γ +Γ

r r
 (18)

where ri and rj are the position information of the i-th and 
the j-th vortex element, respectively, D0 and V0 are the 
governing parameters, di and dj are the distance from the 
i-th and the j-th vortex element to the body surface, re-
spectively. The vortex element information after the emer-
gence is written as:

i i j j

i j

Γ + Γ
=

Γ +Γ

r r
r  (19)

i jΓ = Γ +Γ  (20)

2.3 Solution of Pitching Airfoil in Water Environment

This study uses the two-dimensional discrete vortex 
method introduced above to simulate the flow field and 
the mechanical behavior of the airfoil when the airfoil 
performs a pure pitch motion. The motion pattern of the 
airfoil shown in Figure 2 is considered, in which the 

airfoil oscillates around its quarter-chord point with the 
frequency f and the angle θ0. The free stream flow direc-
tion is from the left to the right. At each time step, the 
angle of attack is controlled by a sinusoidal oscillation 
shown in the equation. Also, this study uses the reduced 
pitching frequency k which is nondimensionalized by the 
freestream velocity , the chord length c and the fre-
quency f. The equation can be written as:

0 sin(2 )ftθ θ π=  (21)

fck
U
π

∞

=  (22)

Another parameter charactering the pitching motion 
of the airfoil is the Strouhal number StA. It can be defined 
based on the wake width A. In nature, swimmers and birds 
typically keep the StA between 0.2 and 0.4 [31]. Due to the 
fact that the wake width A is difficult to measure, it can be 
replaced by the amplitude change of the airfoil’s trailing 
edge [25].

02 sinp
A

f c rfASt
U U

θ

∞ ∞

⋅ ⋅ ⋅
= =  (23)

where rp is the dimensionless length from the pivot point 
to the trailing edge (in this study, rp = 0.75). Similarly, 
the Reynolds number which combines the free stream 
velocity, kinematic viscosity and the chord length is also 
one of the dominant parameters in the research of pitching 
airfoils. The Reynolds number can be defined as:

Re U c
υ
∞ ⋅=  (24)

In this study, the time step Δt is determined by a 
non-dimensional time step dt based on the free stream 
incoming flow velocity 

02 sinp
A

f c rfASt
U U

θ

∞ ∞

⋅ ⋅ ⋅
= =

 and the chord length c, which 
can be seen in:

dt ct
U∞

⋅
∆ =  (25)

In this study, dt is set as 0.01 after some trial and error.

Figure 2. Geometry and kinematics of the airfoil.

The force exerted on the airfoil can be determined by 
the pressure distribution on the body surface. The tangen-
tial pressure gradient on the body surface can be written 
as [16]:
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21
c

p da v
dt
ω ω

ρ
∂ ∂Γ

= − ⋅ − ⋅ ⋅ + ⋅ ⋅ +
∂ ∂

s n r s r
s n  (26)

where s  and n are the tangential and normal unit vector at 
the considering control point, respectively, r  is the vector 
which starts from the pivot point to the considering con-
trol point, ω  is the angular velocity at this control point t, 
p and ac are the pressure and the acceleration on the se-
lected control point, respectively. The first three terms of 
the right side in the equation represent the motion acceler-
ation, rotational acceleration and centripetal acceleration, 
respectively. 

By integrating circumferentially the body surface pres-
sure, the streamwise force and the transverse force can 
be obtained. The form of thrust and lift coefficient can 
be written as equation (27) and equation (28), where the 
thrust coefficient CT describes the propulsion performance 
of the pitching airfoil.

21
2

x
T

FC
U cρ ∞

=  (27)

21
2

y
Y

F
C

U cρ ∞

=  (28)

3. Results and Discussion

For validating the computational accuracy of the 
two-dimensional discrete vortex method introduced above, 
this study carried out the numerical simulation of the 
pitching airfoil referring to the experimental configuration 
of Mackowski and Williamson [25]. The main parameters 
of the pitching airfoil are listed in Table 1. In Mackowski 
and Williamson’s research, they studied the trends in pro-
pulsive performance with the flapping frequency, pitching 
angle and Reynolds number for NACA 0012. They also 
examined the unsteady forces on the pure pitching airfoil. 

Table 1. Main parameters of the airfoil in the configura-
tion of Mackowski and Williamson.

Airfoil Type NACA 0012 Hydrofoil

Chord length 10 cm

Pivot location 0.25c

Reynolds number 12000, 16600

Pitching angle 2°, 4°, 8°, 16°, 32°

Reduced frequency range 0.5-12

Figure 3 shows the experimental and computational 
time average values of thrust coefficient CT under the 
circumstance of Re = 12000, θ0 = 2°, with the range of 
reduced pitching frequency k from 0.5 to 12. When the 
frequency is small, the value of the thrust coefficient is 
about –0.03, which is close to the static drag for the airfoil 

at zero angle of attack [32]. The thrust coefficient monoton-
ically increases with the increase of the frequency k, and 
the transition from drag (CT < 0) to thrust (CT > 0) occurs 
at k = 10. At k = 12, CT reaches the maximum of 0.02. 
Comparing the black points of the experimental results 
with the red points of the numerical results, it can be ob-
served that the numerical results agree reasonably well 
with the experimental results in the whole range. In this 
case, the average thrust coefficient CT and its variation 
trend can be calculated well. 

Figure 3. Experimental and computational values of thrust 
coefficient for the pitching NACA 0012 airfoil when Re = 
12000, θ0 = 2°.

As can be seen in Figure 3, both experimental and 
simulation results show that the crossover point between 
thrust and drag occurs at the position of k = 10 under the 
condition of Re = 12000, θ0 = 2°. Further, Figure 4 indi-
cates the crossover value of the reduced frequency k in 
the Reynolds number range from 1 × 104 to 3 × 104. Al-
though there is a slight gap between the experimental and 
calculated values with the Reynolds number increasing, 
the overall trend shows great consistency. The crossover 
point decreases monotonically with the increase of the 
Reynolds number, which means that the higher Reynolds 
number makes it easier to generate thrust due to the airfoil 
pitching motion. 

Figure 5 shows the variation trend between the mean 
thrust coefficient CT and Strouhal number StA at different 
pitching angles under the condition of Re = 16600. The 
black line is a curve fitted to the data. It can be observed 
that the mean thrust coefficient CT and the Strouhal num-
ber StA show a monotonically consistent increase when 
the pitching angle θ0  8°. However, this trend changes 
dramatically at the pitching angle of θ0 = 16° and θ0 = 32°. 
It can be observed that within the increasing frequency 
in large-amplitude cases, the thrust coefficients present a 
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decreasing trend instead of an increasing trend. Therefore, 
it is necessary to avoid the excessive pitching angle in the 
design of the pitching airfoil propulsion procedure.

Figure 4. The crossover point of reduced frequency k at θ0 = 2°.

Under the condition of small pitching angles, the sim-
ulation can well predict the thrust coefficient results and 
its trend. However, as the angle increases, the simulation 
results of CT present some gap compared with the exper-
imental result. What’s gratifying is that the simulation 
result can still predict the variation trend in the range of 
large angle amplitudes.

Figure 5. Mean thrust coefficient vs. Strouhal number StA 
at different pitching angles when Re = 16600.

Figure 6 and Figure 7 present the oscillating amplitude 
of the unsteady thrust and lift coefficient in Mackowski 
and Williamson’s experiment and the simulation of this 
paper at different pitching angles. It can be observed that 
the increase of the pitching angle and the frequency will 
lead to the increase of force coefficient, and this trend will 
be enhanced with the increase of pitching angles. Figure 

6(b) and Figure 7(b) show the CT /  and CT /θ0 amplitude, 
respectively. The scaling in CT and CY work remarkably 
well across the whole range of pitching angles. The black 
lines shown are the prediction results of the linear theory 
introduced by Garrick [8]. It can be seen that across the 
whole range of pitching angles, the numerical calculation 
can well predict the value and variation trend of CT and CY 
under different conditions. The oscillating amplitude of CT 

/  andCY /θ0 under all pitching angles can both be fitted 
into a curve, and the numerical calculation results can also 
reflect this feature.

Figure 6. Amplitude of the varying component of the 
thrust coefficient at different pitching angles when Re = 
16600: (a) CT oscillating amplitude vs. reduced frequency 
k; (b) CT oscillating amplitude divided by θ0

2 vs. reduced 
frequency k.

Figure 7. Amplitude of the varying component of the lift 
coefficient at different pitching angles when Re = 16600: 
(a) CY oscillating amplitude vs. reduced frequency k; (b) 
CY oscillating amplitude divided by θ0 vs. reduced fre-
quency k.

Figure 8 shows the spanwise vorticity results presented 
by Mackowski and Williamson’s PIV measurements and 
the simulation result of this paper under the same con-
ditions. It shows that no matter k = 2, k = 5 or k = 9, the 
simulation results present the consistent vorticity structure 
characteristics in the wake flow. As the reduced frequen-
cy k increases, the wake flow vortex mode changes from  
4P + 2S to 2P and then to inverse-2S mode. Similar results 
can also be observed in Godoy-Diana et al. and Schnipper 
et al.’s research [11,12]. Figure 8 proves that the numerical 
calculation method introduced in this paper can not only 
predict the fluid force exerted on the body, but also can be 
used to obtain the wake structure of the pitching airfoil.



53

 Sustainable Marine Structures | Volume 05 | Issue 02 | September 2023

Figure 8. Spanwise vorticity presented by PIV measure-
ments and DVM simulation with pitching angle θ0 = 2°, 
Re = 16600: (a) PIV measurement when k = 2; (b) PIV 
measurement when k = 5; (c) PIV measurement when k = 
9; (d) simulation result when k = 2; (e) simulation result 
when k = 5; (f) simulation result when k = 9.

4. Conclusions

This study introduces a two-dimensional discrete vor-
tex method to simulate the propulsive performance of the 
pitching airfoil. The vortices fall off randomly on the body 
surface instead of setting a fixed boundary layer thickness 
in advance. In addition, the vortex growing core method 
is used to simulate the viscous diffusion motion instead of 
the random walk method. By using this method, the pure 
pitching motion of the airfoil under the same configura-
tions as Mackowski and Williamson’s [25] experiment is 
simulated in order to verify the reliability of this method. 
The mechanical behavior and wake patterns with different 
flapping frequencies, amplitudes and Reynolds numbers 
are obtained and studied.

Under the condition of Re = 12000, θ0 = 2°, the mean 
value of the thrust coefficient CT can be predicted well by 
the present numerical simulations. Within the increase of 
reduced frequency k, the x direction force acting on the 
airfoil will monotonically increase and complete the tran-
sition from drag to thrust. Similarly, the results of reduced 
frequency k when the transitions from drag to thrust occur 
under different Reynolds numbers also agree well with the 
experimental results. It can be observed that the crossover 
point which indicates the transitions from drag to thrust 
decreases monotonically with the increase of Reynolds 
number, indicating that it is easier to generate thrust for 
airfoils at higher Reynolds numbers. In the cases of dif-
ferent pitching angles, thrust results for small angle cases 
collapse reasonably well with Strouhal number. With larg-
er pitching angles, there are some slight differences be-
tween the calculated lift coefficients and the experimental 
results, but it can still predict the amplitude and the var-
iation trend of the force coefficient. Compared with PIV 
measurements, the simulation wake patterns visualized by 
the distribution of vortex elements present the consistent 

vorticity structure characteristics. It can be clearly ob-
served that the transitions from the ‘4P + 2S’ mode to the 
‘2P’ mode and eventually to the inverse ‘2S’ mode occur 
gradually as the pitching frequency increases.

This study proves that the two-dimensional discrete 
vortex method introduced in this paper can be used to rea-
sonably predict the propulsion performance and wake pat-
terns on the pitching airfoil motion. As this paper mainly 
focuses on the validation of this method used in the pure 
pitching airfoil cases, further research can be also carried 
out to study the complex airfoil motion such as the heav-
ing and pitching combined motion, based on the method 
introduced in this paper.
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