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In the present study, the authors have attempted to present a novel approach 
for the prediction, analysis, and optimization of the Friction Stir Welding 
(FSW) process based on the Deep Neural Network (DNN) model. To 
obtain the DNN structure with high accuracy, the most focus has been on 
the number of hidden layers and the activation functions. The DNN was 
developed by a small database containing results of tensile and hardness 
tests of welded 7075-T6 aluminum alloy. This material and the production 
method were selected based on the application in the construction of fishing 
boat flooring, because on the one hand, it faces the corrosion caused by 
proximity to sea water and on the other hand, due to direct contact with 
human food, i.e., fish etc., antibacterial issues should be considered. All 
the major parameters of the FSW process, including axial force, rotational 
speed, and traverse speed as well as tool diameter and tool hardness, 
were considered to investigate their correspondence effects on the tensile 
strength and hardness of welded zone. The most important achievement of 
this research showed that by using SAE for pre-training of neural networks, 
higher accuracy can be obtained in predicting responses. Finally, the 
optimal values for various welding parameters were reported as rotational 
speed: 1600 rpm, traverse speed: 65 mm/min, axial force: 8 KN, shoulder 
and pin diameters: 15.5 and 5.75 mm, and tool hardness: 50 HRC.
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1. Introduction

One of the oldest methods of non-separable con-
nections, which is widely used in various industries, is 
welding. In fact, large structures cannot be produced in 
one piece, such as the body of ships, airplanes, trains, 
subways, and ground vehicles [1, 2]. Therefore, it is nec-
essary to connect different parts to each other and create 
an assembly. Hence, depending on the application of the 
connection, different types of welding are used in various 
industries, each of which has advantages and disadvan-
tages compared to the others [3]. For example, the biggest 
challenge for all types of welding methods is the creation 
of tensile residual stress in the welding area [4] or micro-
structure change in the Heat-Affected Zone (HAZ), both 
of which lead to a decrease in joint strength [5,6]. In other 
words, these two areas are prone to damage and cracks. 
However, some additional disadvantages arise when an 
intermediate material is used for welding. Therefore, in 
large industries, it is usually tried to use welding methods 
that do not require an electrode or additional material, 
such as Resistance Spot Welding (RSW) in the automotive 
industry [7]. Moreover, the FSW process which was first 
presented by The Welding Institute (TWI) in 1991 [8], has 
emerged as an effective alternative to traditional Metal 
Inert Gas (MIG) welding for use in marine applications, 
particularly as the industry moves towards increased use 
of aluminum alloys. Based on the TWI report in 2007, 
171 large organizations and companies received licenses 
to manufacture shipbuilding from aluminum extrusion by 
FSW process, especially, Al7075 is used to manufacture 
aluminum panels for deep freezing of fishing boats. In 
this regard, one of the biggest challenges and concerns in 
the manufacturing is to optimize the strength of welded 
joints via the welding process. The powerful combination 
of reduced weight from aluminum and increased strength 
of FSW welds can yield spectacular benefits for marine 
designs. Generally, FSW is well suited for marine appli-
cations because of the nature of the welds [9]. During the 
last decades, the selection of the favorable parameters of 
this process to obtain the optimal properties of the welded 
parts is remained challenging and widely considered by 
many researchers. In this regard, the goal is to increase 
the quality and improve the strength of the connection, 
and for this purpose, various techniques have been used. 
The number of publications in this field is very large and 
a comprehensive study is required for a detailed review, 
which is beyond the scope of the present research. How-
ever, some of the efforts made to optimize aluminum parts 
welded in this way are collected in Table 1.

As presented in Table 1, scientists paid the most atten-

tion to data mining methods such as Taguchi Method (TM), 
Linear Regression Method (LRM), Analysis of Variance 
(ANOVA), and Response Surface Method (RSM) to op-
timize different parameters of FSW process. In addition, 
the main goal was to improve the tensile strength and 
hardness of the connection. In recent years, attention has 
been paid to machine learning methods such as Artificial 
Intelligence (AI) for modeling and optimizing friction stir 
welding of aluminum alloys. Nevertheless, the present 
article includes the most comprehensive laboratory results 
and six input parameters. Also, the deep machine learning 
method was used to provide a new approach in optimizing 
the friction stir welding process of aluminum parts. Re-
cently, the advantages and accuracy of using Deep Neural 
Network (DNN) technique compared to Artificial Neural 
Network (ANN) have been evident and proven in various 
fields of engineering [28,29]. Padhy et al. have published a 
comprehensive review on the FSW technology and the 
effects of process parameters on the material characteriza-
tion and metallurgical properties like microstructure [30]. In 
addition, Gangwar and Ramulu have focused on the titani-
um alloys joints by FSW [31]. Also, to improve the quality 
of this type of welded joint, the effects of two parameters 
of the tool and the thickness of the raw material sheets 
have been evaluated. After that, microstructure, material 
properties (i.e., hardness), mechanical properties (i.e., ten-
sile, fatigue, and fracture toughness), residual stress field, 
and temperature distribution have been studied. Mohanty 
et al. have utilized RSM to examine the effects of tool 
shoulder and probe profile geometries simultaneously on 
the FSW of aluminum sheets [32]. In this research, three 
parameters of tool type, tool probe diameter, and shoulder 
flat surface, each of them at three different levels, were 
considered as input to the RSM analysis. Also, connection 
strength, weld cross section area, and grain size in both 
welded area and HAZ were considered as output. The 
results showed that straight cylindrical FSW tool with the 
minimum level of probe diameter provided better strength 
of welded joint. Ahmed et al. have optimized FSW pro-
cess parameters to achieve the maximum tensile strength 
and hardness of welded 5451Al sheets by performing Ta-
guchi sensitivity analysis [33]. They stated that the pin pro-
file of the tool is the most effective factor in both outputs 
with more than 60% effectiveness. Moreover, research on 
the connection of thick aluminum plates through FSW has 
also been carried out [34]. Before this, in most articles, the 
connection of thin sheets up to 5 or 6 mm has been con-
sidered. In this regard, Kumar et al. have proposed a trap-
ezoidal pin of tool to reach a free-defect connection of 12 
mm thick aluminum sheets. constructions, which are ulti-
mately directly or indirectly related to the economic field 
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and cost. For example, in the construction of a fishing 
boat, it is possible to refer to the initial costs including the 
preparation of the raw material i.e., aluminum alloy, the 
construction design including the dimensions and thick-
nesses of the sheets for the construction of the ship, and 
finally the construction method and the type of connection 
of the sheets to each other. On the other hand, considering 
the working conditions in the vicinity of sea water and the 
corrosion as a result, and on the other hand, in direct con-
nection with fish and antibacterial issues, it is necessary 
to choose the type of alloy and heat treatment correctly. 

Finally, in order to reduce production time and ultimately 
reduce the cost of free-defect production, in order to min-
imize repairs, it is necessary to optimize the production 
process. Apart from these cases, just the free-defect con-
struction is not enough, and it must have enough strength 
so that it does not have problems after some time of use [35].  
For this purpose, in addition to examining the tensile 
strength, it is better to study the hardness and microstruc-
ture in the welded area. Therefore, the results of such re-
search can satisfy part of the demands stated above.

Table 1. A summary of the research conducted to optimize the friction stir welding of aluminum parts.

Reference Year Material Method Parameters Objective

[10] 2015 AA6082-T6 Taguchi
Joint geometries: butt, lap, and 
T-shaped

Ultimate tensile strength

[11] 2010 AA1050
Grey relation analysis and 
Taguchi

Rotating speed, welding speed, and 
shoulder diameter

Tensile strength and 
elongation

[12] 2015 AA8011
Taguchi-Based Grey 
Relational Analysis

Tool shoulder diameter, rotational 
speed, welding speed, and axial load

Tensile strength and 
microhardness

[13] 2016
Cast AA7075/SiCp 
Composite

Response surface 
methodology, regression 
model, and Fuzzy grey 
relational analysis approach

Spindle speed, travelling speed, 
downward force, and percentage of 
SiC added to AA7075

Ultimate tensile strength 
and percentage elongation

[14] 2019
AA6082/SiC/10P 
composite

Taguchi approach and analysis 
of variance (ANOVA)

Tool rotation speed, welding speed, 
and tool tilt angle

Ultimate tensile strength

[15] 2018
Dissimilar alloys 
(AA6082/AA5083)

Taguchi method, Grey 
relational method, weight 
method, and analysis of 
variance (ANOVA)

Tool rotation speed, welding speed, 
tool pin profile, and shoulder 
diameter

Ultimate tensile strength 
and elongation

[16] 2008
RDE-40 aluminium 
alloy

Taguchi technique and analysis 
of variance (ANOVA)

Rotational speed, traverse speed, 
and axial force

Tensile strength

[17] 2010 AA7075-T6
Response surface methodology 
and analysis of variance 
(ANOVA)

Tool rotational speed, welding 
speed, axial force, tool shoulder 
diameter, pin diameter, and tool 
hardness

Tensile strength

[18] 2017 Al5052-H32 alloy Response surface methodology
Tool profile, rotational speed, 
welding speed, and tool tilt angle

Tensile strength and 
elongation

[19] 2012
Dissimilar alloy: 
AA6061-T6 and 
AA7075-T6

Response surface methodology
Rotational speed, welding speed, 
and axial force

Ultimate tensile strength, 
yield strength, and 
displacement

[20] 2009
Cast aluminum alloy 
A319

Taguchi method and analysis 
of variance (ANOVA)

Tool rotation speed, welding speed, 
and axial force

Tensile strength

[21] 2021
Dissimilar aluminum 
alloys 6061 and 5083

Response surface methodology
Tool pin profile, tool rotation speed, 
feed rate, and tool tilt angle

Ultimate tensile strength, 
yield strength, and 
microhardness

[22] 2021
Dissimilar 
AA7075-T651 and 
AA6061

Taguchi technique and analysis 
of variance (ANOVA)

Tool offset, pin profile of tool, and 
tilt angle of tool

Tensile strength

[23] 2022
Armor-grade aluminum 
alloys AA5083

Response surface 
methodology, regression, and 
analysis of variance (ANOVA)

Shoulder diameter, shoulder flatness, 
pin profile, and welding speed

Ultimate and yield tensile 
strength and elongation
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Reference Year Material Method Parameters Objective

[24] 2021
Dissimilar aluminum 
alloys of AA 7075-O 
and AA 5052-O grade

Taguchi approach and analysis 
of variance (ANOVA)

Tool pin profile, tool rotational 
speed, feed rate, and tool offset

Tensile strength and 
microhardness

[25] 2018
Dissimilar AA5083-O 
and AA6063-T6 
aluminum alloys

Artificial intelligence and 
genetic algorithm

Tool rotational speed, welding 
speed, shoulder diameter, and pin 
diameter

Tensile strength, 
microhardness, and grain 
size

[26] 2021
Dissimilar AA3103 
and AA7075 aluminum 
alloys

Taguchi method
Tool rotation speed, feed rate, and 
tool pin profile

Hardness, tensile strength, 
and impact strength

[27] 2018
Armor-marine grade 
AA7039

Desirability approach: RSM & 
ANOVA

Rotational speed, feed rate, and tilt 
angle

Ultimate tensile strength 
and tensile elongation

Table 1 continued

In the FSW, a tool moves along the joint line of two 
plates (similar or dissimilar) that simultaneously rotates 
and therefore it creates frictional heat that mechanically 
intermixes the metals and forges the hot and softened met-
al by the applied axial force. Figure 1 depicts the schemat-
ic of the FSW process and its effective parameters such as 
axial force, rotational and traverse speeds as well as tool 
geometry and hardness. As mentioned, in the FSW both 
mechanical and thermal processes are involved which 
show their effects in the welding zone and its surrounding 
regions and divide it into four major parts of Weld Nugget 
(WN), Thermo-Mechanically Affected Zone (TMAZ), 
Heat Affected Zone (HAZ), and Base Material (BM) that 
can be described as fully recrystallized region, area that 
plastically deformed without recrystallization, thermal 
affected, and region of original properties, respectively [36]. 
Because of the variety of physical phenomena in the FSW 
process, its analysis and optimization have become very 
complicated. Therefore, scholars have tried to solve the 
problems in this field by considering different alternative 
approaches of experiments like modeling and optimiza-
tion methods [37]. In this regard, chu et al. have performed 
mechanical and microstructural optimization in the FSW 
joint of Al-Li alloy [38]. They used RSM and Box-Behnken 
experimental design to maximize static strength (i.e., ten-
sile and shear stresses). Moreover, Electron Backscatter-
ing Diffraction (EBSD) and Differential Scanning Calo-
rimetry (DSC) observations have been utilized to optimize 
hardness and reach the ultrafine grains. Sreenivasan et al. 
have optimized FSW process parameters for joining com-
posite materials (i.e., AA7075 - SiC) [39]. They considered 
different parameters, including friction pressure, spindle 
speed, burn-off length, and upset pressure, in three lev-
els, as the input variables in the optimization algorithms. 
Also, they tried to optimize hardness and Ultimate Tensile 
Strength (UTS). To achieve this goal, they employed two 
methods of linear regression and genetic algorithm. In a 
similar study, FSW process parameters have been opti-

mized to obtain the maximum joint strength and the high-
est elongation [40]. Also, Heidarzadeh et al. have employed 
ANOVA and RSM analysis to present mathematical rela-
tionships between the strength, elongation, and hardness 
of the connection in terms of FSW process parameters, 
including rotation speed, traverse speed, and axial force. 
They stated that the hardness reduces by raising the ro-
tation speed and axial force and decreasing the traverse 
speed at the same time. Moreover, rotation speed and axial 
force are the most important factors that affect the strength 
and elongation values, respectively. After that, Heidarza-
deh continued his research in this field with a focus on 
material properties and imaging observations, including 
EBSD and TEM [41]. He et al. have published a review 
report on the numerical simulation of FSW process [42].  
They discussed different techniques for process simulation 
and presented the results obtained from them. However, 
methods based on artificial intelligence such as neural 
networks are remarkably applied in different aspects of 
science and engineering [43-46] as well as their application 
for modeling of FSW process [47-49]. In general, a neural 
network has three major layers of input, hidden, and out-
put [50,51]. A literature review conducted in this research 
shows that shallow Neural Network (SNN), as the primary 
generation of artificial neural networks, has been mostly 
used in the simulation of FSW. In fact, SNNs have 1 or 2 
hidden layers which are generally trained by Back-Prop-
agation (BP) algorithm [46]. These networks besides their 
beneficial applications have some limitations. The most 
important limitation of SNNs is that a large number of 
data sets are required for their development. Recently, by 
considering the improvements achieved in the training 
of neural networks by deep learning presented by Hinton  
et al. [52]; it is feasible to develop deep neural network with 
higher efficiency by employing small data set [53]. As an 
innovation, the current paper aims to show the capability 
of the DNN for prediction, analysis, and optimization of 
the FSW process for the first time by using small data 
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set. In the following, the authors have attempted to as-
sess strength and hardness in the welded zone in terms of 
different process parameters as well as pin and shoulder 
features (i.e., hardness and diameter).

2. Experimental Data

The data used in this research were extracted from the 
paper published by Rajakumar et al. [54]. In order to con-
duct experiments, they prepared rolled sheets of 7075-T6 
aluminum alloy with a thickness of 5 mm and dimensions 
of 150 × 300 mm. The ultimate and yield tensile strengths 
of the sheets are 485 and 410 MPa, respectively. Table 2 

also presents the chemical composition of this material. 
Next, friction stir welding operation perpendicular to the 
rolling was performed as a single pulse and with non-con-
sumable tools. The details of this process are shown in 
Figure 2. 

In the next step, tensile test samples were fabricated ac-
cording to the ASTM standard. They prepared two types of 
smooth and notched samples. All tests were performed at 
room temperature and at a speed of 0.5 mm/min. However, 
in the present study, only the laboratory results for smooth 
samples were used. Moreover, Vickers microhardness in the 
welded zone was measured by applying a force of 50 gr.
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3. DNN Developing
A DNN with four hidden layers was developed to mod-

el the FSW process by using experimental data described 
in the previous section. This experimental dataset was 
selected because it includes high amounts of effective 
parameters of FSW process. Nevertheless, the data used 
for this simulation is given in the Appendix (Table A1). 
Also, the first author has used these data previously for 
providing a model based on the common SNN with BP 
method [48]. Hence, the innovation of the present work 
with the previous one is to present a novel modified neu-
ral network based on deep learning. Parameters of axial 
force, rotational and traverse speeds as well as shoulder 
and pin diameters, and tool hardness were considered to 
investigate their related influences on the strength and 

used for the training and testing steps, respectively. In 
addition, in order to develop DNN, as the dataset is small, 
a Stacked Auto-Encoder (SAE) was used for pre-training 
of DNN. SAE is a specific hidden layer SNN that has the 
same input and output layers and also has the same num-
ber of neurons in each layer of it with respect to the main 
DNN architecture. Used DNN along with linking to SAE 
is presented in Figure 3. Also, the accuracy of predicted 
results was determined via correlation coefficient (R2). 
The obtained accuracies for the developed DNN with and 
without SAE for both training and testing steps based on 
equation (1) are reported in Table 3.
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4. Results and Discussions

Based on the results of the determination of accuracies 
that show the DNN was developed well, parametric anal-
ysis was performed. In Figure 4 and Figure 5, the effects 
of welding process parameters and tool features on the 
welded zone strength and hardness are continuously re-
vealed respectively in a general condition and interval of 
each parameter for the applied analyses are shown at the 
bottom of each contour. The region that has ≤ 95% of the 
considered experimental value was specified in each 2D 
contour by a black line. It can be seen that, in the same 
graph whole prediction, analysis, and optimization can be 
carried out with accuracy close to 100% (R2 ≈ 1). From 
Figure 4, as the rotation speed increases, the strength of 
the welded zone always increases, which is consistent 
with the results of Ahmed et al. in the study of 2022 [33]. 
Also, with the increase of the axial force, the strength im-
proves, but its changes are not significant compared to the 
rotational speed parameter and it depends on the values 
of other parameters. Ref No. 33 also deals with the opti-
mization of process parameters. The authors showed that 
the tensile strength of FSW joint considering the feed rate 
of 18 mm/min is much higher than the tensile strength of 
FSW joint with feed rates of 16 and 20 mm/min. In other 
words, the tensile strength of the connection increases 
with the increase of the feed rate in the range of 16 to 18 
mm/min, and it decreases with the increase of the feed rate 
in the range of 18 to 20 mm/min. Therefore, this interpre-
tation is exactly in accordance with the results presented 
in Figure 4. Moreover, the contour presented in Figure 4b 
indicates that if the rotational speed is less than 1000 rpm, 
changes in axial force do not affect the strength. However, 
all the results presented in this section are considering the 
welding conditions in this study and different results may 
be obtained in other conditions. Therefore, more studies 
are needed to generalize the results to other conditions, 

which is on the agenda of this research group for its future 
studies. Furthermore, by focusing on the hardness in the 
welded zone as a response, it is seen that the hardness 
increases with increasing rotational speed. But in interac-
tion with other parameters, i.e., axial force and transverse 
speed, there is an intermediate area where the highest 
hardness is obtained within this specific area and the low-
est hardness is obtained outside this area. For example, it 
is clear from Figure 4f that setting the rotational speed in 
the range of 1500 to 1700 rpm and also the axial force be-
tween 7 and 9 KN can result in the highest hardness in the 
welded zone.

As shown in Figure 5, no specific trends can be found 
between the system responses (i.e., strength and hardness 
in the welded zone) and tool characteristics, including pin 
and shoulder diameters and their hardness. In other words, 
the interaction between various parameters of this section 
must be checked with more precision and laboratory data 
and it is very difficult and perhaps unlikely to be able to 
independently declare the effect of one of these parame-
ters on the output, because depending on the conditions 
of other parameters, there is a possibility of changing the 
state of the response. It is clearly evident in the contours 
with yellow color theme (i.e., Figure 5d, e, and f) that 
there are different circular and elliptical layers, therefore, 
there is a specific area in each contour that should be tried 
to select the characteristics of the tool in such a way that 
the responses be placed within these areas.

In summary, according to all the achievements present-
ed above, in order to obtain the optimal parameters, all 
the contours should be placed on each other at the same 
time and the common space between the areas marked by 
black lines should be selected. In this way, optimal values 
of rotational speed, traverse speed, axial force, shoulder 
diameter, pin diameter, and tool hardness are specified as 
1600 rpm, 65 mm/min, 8 KN, 15.5 mm, 5.75 mm, and 50 
HRC, respectively.
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Figure 4. Parametric analysis of the effects of axial force, rotational and traverse speeds on strength (a-c) and hardness 
(d-f) of welded zone.Figure 4. Parametric analysis of the effects of axial force, rotational and traverse speeds on strength (a-c) and hardness 
(d-f) of welded zone.
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Figure 5. Parametric analysis of the effects of shoulder diameter, pin diameter, and tool hardness on strength (a-c) and 
hardness (d-f) of welded zone.
Figure 5. Parametric analysis of the effects of shoulder diameter, pin diameter, and tool hardness on strength (a-c) and 
hardness (d-f) of welded zone.
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5. Conclusions

The application of DNN to model the FSW process 
was investigated in this study. The obtained results re-
vealed that by using SAE for pre-training of neural net-
works higher accuracy can be obtained. In addition, it 
can be concluded that by applying DNN on small dataset 
with discrete values, continuous values for whole consid-
ered intervals can be predicted for parametric analysis of 
FSW. Moreover, these 2D contours with the accuracy of 
close to 100% can be easily used for further analysis and 
optimization. However, one of the challenges in this re-
search was that the small dataset was used to estimate the 
tensile strength, but more studies are needed to optimize 
the hardness, and no specific trend was found for hardness 
changes in the welded area according to the investigated 
parameters. Therefore, in future research, the authors seek 
to perform more tests using design of experiment (DOE) 
techniques such as Taguchi method and considering more 
input parameters. In addition, the authors agree with the 
opinion of many reports that the main causes of failures of 
mechanical parts are the fatigue phenomenon [55]. There-
fore, in the future research series, this research team seeks 
to model, analyse, and optimize the friction stir welding 
process of aluminium sheets with the aim of improving 
the fatigue life of the joint. For this, they will use various 
techniques including data mining, artificial intelligence, 
deep learning, etc. to make a comprehensive study. Also, 
the accuracy of the methods will be compared with each 
other and the advantages and disadvantages of each of 
them will be discussed. 
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Appendix A

The data used in this research, including various weld-
ing conditions and laboratory results of tensile and micro-
hardness tests, are given in Table A1.

Table A1. The data used in the current study, including welding conditions and testing results.

Case 
No.

FSW Process Parameters Tool Features Responses in Welded Zone

Rotational speed Transverse speed Axial force Shoulder diameter Pin diameter Tool hardness Strength Hardness

(rpm) (mm/min) (KN) (mm) (mm) (HRc) (MPa) (VHN)

1 1400 60 8 15 5 45 314 203

2 1800 60 8 15 5 45 310 185

3 1400 40 8 15 5 45 279 194

4 1400 60 8 15 5 45 310 198

5 1400 80 8 15 5 45 308 197

6 1400 60 7 15 5 45 282 180

7 1400 60 8 15 5 45 314 199
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Case 
No.

FSW Process Parameters Tool Features Responses in Welded Zone

Rotational speed Transverse speed Axial force Shoulder diameter Pin diameter Tool hardness Strength Hardness

(rpm) (mm/min) (KN) (mm) (mm) (HRc) (MPa) (VHN)

8 1400 60 8 12 5 45 280 193

9 1400 60 8 15 5 45 310 198

10 1400 60 8 18 5 45 256 197

11 1400 60 8 15 4 45 292 194

12 1400 60 8 15 5 45 310 198

13 1400 60 8 15 6 45 300 197

14 1400 60 8 15 5 40 261 186

15 1400 60 8 15 5 45 313 198

16 900 60 8 15 5 45 245 175

17 1200 60 8 15 5 45 290 191

18 1400 20 8 15 5 45 255 180

19 1400 100 8 15 5 45 245 179

20 1400 60 6 15 5 45 263 173

21 1400 60 10 15 5 45 285 171

22 1400 60 8 9 5 45 242 178

23 1400 60 8 21 5 45 296 187

24 1400 60 8 15 3 45 264 181

25 1400 60 8 15 7 45 284 178

26 1400 60 8 15 5 33 271 178

27 1400 60 8 15 5 56 282 178

28 1400 60 9 15 5 45 301 190

29 1400 60 8 15 5 50 310 192

30 1600 60 8 15 5 45 314 202

Source: Maleki, E., 2015 [48].

Table A1 continued


