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ABSTRACT
Efficient predictive maintenance is vital for maintaining operational reliability in marine logistics infrastruc‑

ture, especiallywithinports andoffshorehubswhere equipment failure can result in costly downtimeanddisrupted
supply chains. This study introduces an AI‑driven predictive maintenance and cost‑risk optimization framework
that integrates advanced machine learning techniques with Mixed‑Integer Linear Programming (MILP) to enable
dynamic and data‑driven maintenance scheduling. The proposed framework utilizes real‑time asset data, includ‑
ing sensor readings, environmental variables, and operational logs collected from 124 marine logistics assets over
a six‑month monitoring period. Predictive models were developed using the Random Forest algorithm and rigor‑
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ously validated through time‑blocked and grouped cross‑validation to prevent data leakage and ensure temporal
consistency. The model achieved strong predictive performance, with an AUC of 0.86 and a PR‑AUC of 0.71, while
calibration reliability was verified using the Brier score and decision curve analysis. The MILP‑based optimization
component incorporated operational constraints, such as maintenance crew availability, failure probabilities, and
environmental stressors, to generate cost‑effective maintenance schedules. Implementation of the proposed sys‑
tem resulted in a 21.4% decrease in unplanned downtime, a 16.2% improvement in Mean Time Between Failures
(MTBF), and a 13.8% reduction in overall maintenance costs compared with historical benchmarks. This research
offers a scalable, interpretable, and data‑driven framework for predictive maintenance in complex marine environ‑
ments, contributing to the advancement of smart port operations, sustainable asset management, and AI‑enhanced
infrastructure resilience.
Keywords: Artificial Intelligence; Marine Logistics Infrastructure; Cost‑Risk Optimization; Smart Ports; Mainte‑
nance Scheduling; Port Asset Management

1. Introduction
The marine logistics sector plays a critical role in

sustaining global trade, with over 80% of world mer‑
chandise transported via sea routes [1,2]. Efficient port
operations and offshore logistics hubs are essential to
ensuring seamless supply chain continuity. Within this
infrastructure‑intensive domain, the reliability and avail‑
ability of mechanical assets such as cranes, conveyors,
berthing systems, and floating logistics platforms are
pivotal to operational performance. However, these
assets are frequently subjected to high‑stress environ‑
ments marked by humidity, salt exposure, and mechani‑
cal wearmaking themprone to unexpected breakdowns,
escalating maintenance costs, and operational risks [3–5].

Real‑world failures in marine logistics infrastruc‑
ture have led to significant operational and economic
consequences. For instance, in 2021, a gantry cranemal‑
function at the Port of Singapore caused over 48 hours
of cargo delays, impacting over 60 vessels and result‑
ing in estimated losses of USD 3.2 million in demurrage
and handling costs. Similarly, the unexpected shutdown
of a floating logistics hub in the Gulf of Thailand due
to a pump failure resulted in shipment rerouting and a
week‑long disruption to petroleum transport, illustrat‑
ing the compounded risks of reactivemaintenance in off‑
shore contexts [6]. These examples emphasize the urgent
need for data‑driven maintenance solutions capable of
forecasting failures and minimizing risk exposure, espe‑
cially in high‑throughput, capital‑intensive port environ‑

ments.
Traditionally, the marine logistics industry has

relied on preventive or corrective maintenance mod‑
els based on fixed schedules or reactive responses.
These strategies, while long established, have proven in‑
creasingly inadequate in complex, data‑rich operational
ecosystems where downtime costs are rising, safety reg‑
ulations are tightening, and asset utilization is inten‑
sifying [7–9]. Recent advancements in artificial intelli‑
gence (AI), particularly in predictive analytics and ma‑
chine learning, have created new opportunities to pre‑
empt equipment failures, optimize maintenance cycles,
and minimize both operational and financial risk [10–12].
Yet, despite the emergence of AI in manufacturing and
aerospace sectors, its integration into marine logistics
maintenance remains limited in practice and underex‑
plored in the literature.

The core research problem addressed in this study
is the lack of empirically validated frameworks for im‑
plementing AI‑based predictive maintenance in marine
logistics infrastructure, where operational uncertainty
and environmental variability complicate maintenance
decision‑making. Most existing approaches fail to ac‑
count for dynamic maintenance scheduling, the stochas‑
tic nature of asset degradation, and the cost‑risk trade‑
offs associated with different maintenance strategies.
Additionally, the role of environmental stressors and
the mediating influence of scheduling efficiency remain
poorly theorized in current models. This study is
significant for both theoretical and practical reasons.
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Theoretically, it builds on and extends the principles
of Reliability‑Centered Maintenance (RCM) [13,14], opera‑
tions research, and risk‑cost trade‑off theory [15] by in‑
troducing an integrated framework that combines AI‑
driven failure prediction with cost‑risk optimization.
Practically, the study offers actionable insights to port
operators, maritime planners, and logistics managers
seeking to reduce downtime, lower maintenance costs,
and enhance equipment reliability in high‑demand envi‑
ronments.

Thenovelty of this study lies in its real‑time applica‑
tion of AI‑powered predictivemaintenance acrossmulti‑
ple marine logistics assets, combined with optimization‑
based scheduling using Mixed‑Integer Linear Program‑
ming (MILP). Unlike earlier research which focused
on single assets or simulated environments, this study
leverages actual sensor and operational data across five
Southeast Asian ports, making it one of the few empiri‑
cal investigations in the domain. Furthermore, it intro‑
duces environmental stress index as a control variable
and maintenance scheduling efficiency as a mediating
construct both of which have received limited attention
in predictive maintenance literature [16–18]. This study
is novel in two key ways: (1) it integrates AI‑based fail‑
ure forecasting with MILP‑based maintenance optimiza‑
tion, (2) it incorporates environmental stress as a con‑
trol factor. To our knowledge, this is among the first
studies to unify these components into a scalable predic‑
tivemaintenance framework formarine logistics. The re‑
search statement guiding this inquiry is as follows: “This
study investigates the extent to which AI‑driven predictive
maintenance systems, combined with cost‑risk optimiza‑
tion models, can improve maintenance performance out‑
comes in marine logistics infrastructure, accounting for
environmental variability and scheduling dynamics.”

In terms of research approach and positioning, the
study adopts a positivist, empirical methodology. It
applies machine learning algorithms (Random Forest,
XGBoost, ARIMA) to forecast equipment failure, con‑
ducts hypothesis testing using real‑world data, and em‑
ploys MILP to generate optimized maintenance sched‑
ules. This mixed‑method quantitative approach aligns
with recent calls for evidence‑based AI implementations
in logistics and infrastructure research [11,19,20]. The

study occupies a distinct research niche by situating it‑
self at the intersection of maritime logistics, AI appli‑
cations, and operations research. It contributes to the
growing body of literature on smart port technologies,
while also extending the applicability of RCM and cost‑
risk trade‑off frameworks in high‑risk, variable environ‑
ments. The research is theoretically positioned within
three interrelated streams, predictivemaintenancemod‑
elling, decision‑support optimization, and digital trans‑
formation in logistics infrastructure. By integrating
these lenses, the study bridges a critical gap in the cur‑
rent literature and provides a foundation for future re‑
search on intelligent maintenance in maritime systems.

2. Literature Review
The adoption of artificial intelligence (AI) in asset

management has revolutionizedmaintenance strategies
across industrial sectors, yet its penetration into the ma‑
rine logistics domain remains limited. Maintenance in
marine environments is uniquely complex due to harsh
operational conditions, asset criticality, and the high
cost of unplanned equipment failure [21–23]. Within this
context, the present study investigates AI‑driven predic‑
tive maintenance and its impact on key operational di‑
mensions, namelyMean Time Between Failures (MTBF),
unplanned downtime, maintenance cost, and risk ex‑
posure, while also addressing the role of maintenance
scheduling efficiency and environmental stress factors.
The concept of predictivemaintenance has evolved from
rule‑based conditionmonitoring todata‑drivenprognos‑
tics using AI. Studies by Shamim and Ruddro [24] and
Agarwal et al. [25] emphasized the transformative role
of machine learning in detecting anomalies, forecasting
failures, and automatingmaintenancedecisions. AImod‑
els such as Random Forests, Gradient Boosting, and XG‑
Boost have been shown to outperform traditional sta‑
tistical models in failure prediction across various sec‑
tors [11,26]. However, applications in maritime logistics
particularly for port cranes, automated guided vehicles
(AGVs), and floating logistics hubs have not been ex‑
tensively validated. Existing literature often focuses on
predictive maintenance in manufacturing and aviation,
where equipment operates under controlled conditions,
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unlike the fluctuating and often unpredictable maritime
environment.

While AI‑driven predictive maintenance has be‑
come increasingly prevalent in sectors such as manu‑
facturing, aerospace, and energy [27], the marine logis‑
tics industry has lagged behind due to challenges like
lower digitization, harsher operational environments,
and fragmented asset control. In manufacturing, pre‑
dictive models are typically integrated into enterprise‑
level monitoring systems, enabling preemptive interven‑
tions based on vibration, thermal, or acoustic signals. In
contrast, marinemaintenance still relies heavily on time‑
based or reactivemodels, often lacking real‑time integra‑
tion of sensor data into decision‑making systems.

Mean Time Between Failures (MTBF) is widely ac‑
cepted as a proxy for asset reliability [28]. Improvements
in MTBF have been documented in sectors employing
predictive maintenance [29], though these findings often
lack contextual translation to port logistics, where as‑
set utilization patterns differ significantly. Similarly, un‑
planned downtime has been recognized as a critical per‑
formance indicator due to its direct impact on through‑
put and revenue loss [30]. While AI‑enhanced systems
have demonstrated success in reducing downtime in in‑
dustrial machinery, limited empirical evidence exists on
their application to container handling equipment, berth
infrastructure, or floating platforms. The literature on
maintenance cost optimization has matured with the in‑
tegration of life‑cycle costing and condition‑based mon‑
itoring strategies [31]. AI systems offer cost advantages
by pre‑empting failures and avoiding redundant main‑
tenance tasks. However, studies such as those by Chel‑
liah et al and Riaventin et al. [32,33] have emphasized that
cost savings are contingent upon the effective integra‑
tion of predictive algorithms with scheduling systems
an area underexplored in port‑centric research. This
suggests the importance of considering maintenance
scheduling efficiency as a mediating factor, particularly
when scheduling is influenced by dynamic demand pat‑
terns and constrained resources, as is the case in port
environments.

Risk exposure in maintenance is defined not only
by the probability of failure but also by the severity
of consequences. Traditional models have treated risk

and cost as separate dimensions, but more recent frame‑
works argue for their integrationwithin a joint optimiza‑
tion model [34–36]. AI’s predictive capabilities are partic‑
ularly suited for this task, enabling simultaneous mini‑
mization of operational risk and maintenance cost. In
marine logistics, where safety regulations, environmen‑
tal constraints, and financial penalties are critical, AI‑
based maintenance can offer a risk‑aware operational
strategy. Nonetheless, few studies have empirically
linked predictive maintenance with quantitative risk ex‑
posure reduction in maritime systems. Another criti‑
cal yet often overlooked factor in maintenance research
is the environmental stress index, which captures the
influence of humidity, salt content, temperature fluctu‑
ations, and mechanical load on asset degradation. Ja‑
hani et al. [37] and Thielmann [38] showed that environ‑
mental conditions significantly affect failure patterns,
yet most predictive maintenance models assume static
conditions, limiting their real‑world applicability. The
environmental stress index (ESI) refers to a composite
measure of external conditions such as temperature vari‑
ation, humidity, salinity, and vibration levels that con‑
tribute to accelerated equipment wear and mechanical
degradation. In marine environments, where such stres‑
sors are prevalent, ESI serves as a control variable to cap‑
ture non‑operational influences on asset performance.
The lack of environmental variability consideration may
explain the gap between predictive model accuracy in
simulations versus real deployment.

From an operations research perspective, the inte‑
gration of AI predictions with Mixed‑Integer Linear Pro‑
gramming (MILP) models offers a pathway to intelligent
scheduling. Previous research in rail and aviation indus‑
tries has shown that optimization models incorporating
AI forecasts can significantly improve maintenance effi‑
ciency [39,40]. However, their application to marine in‑
frastructure remains sparse. Ports, unlike factories or
aircraft fleets, operate under variable conditions influ‑
enced by tides, loading cycles, and ship berthing sched‑
ules. This variability demands a more responsive and
adaptive optimization framework, informed by predic‑
tive analytics. Despite the promising developments in
smartmaintenance technologies, themarine logistics do‑
main remains underrepresented in the predictive main‑
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tenance literature. Most existing studies focus on in‑
dustrial production or fixed‑infrastructure applications,
overlooking the dynamic nature of marine assets and
the logistical complexity of port operations. Moreover,
empirical validation of predictive maintenance effective‑
ness particularly through performance metrics such as
MTBF, downtime, cost, and risk exposure has been lim‑
ited in real‑world marine settings. There is also a no‑
table absence of research incorporating environmental
stress as a moderating or control factor within predic‑
tive frameworks, and very few studies combine predic‑
tive maintenance with optimization models tailored for
floating or coastal infrastructure.

This research, therefore, addresses several critical
gaps. It offers one of the first comprehensive empiri‑
cal investigations into AI‑driven predictive maintenance
in marine logistics infrastructure, using real‑world as‑
set data across multiple ports. It integrates predictive
modelling with operations optimization to test cost‑risk
trade‑offs, incorporates environmental stress as a con‑
trol variable, and evaluates maintenance scheduling effi‑
ciency as a mediating construct. By doing so, the study
not only contributes to theoretical advancements but
also responds to an urgent practical need in moderniz‑
ing the maintenance strategies of maritime logistics in‑
frastructure. Thus, there remains a critical gap in devel‑
oping integrated, AI‑based predictive maintenance sys‑
tems that also optimize cost‑risk trade‑offs under uncer‑
tain environmental conditions. Existing models tend to
focus either on prediction or cost modelling, but rarely
both especially in the context of high‑stress, capital‑
intensive marine assets.

Conceptual Model of the Study with Theo‑
retical Foundations and Key Constructs

The conceptual model developed for this study is
grounded in the interdisciplinary integration of theo‑
ries fromReliability‑CenteredMaintenance (RCM),Oper‑
ations Research, and Risk‑Cost Trade‑off Theory. RCM
forms the foundation for identifying the optimal tim‑
ing of maintenance based on failure patterns and as‑
set health. Operations research, particularly through
optimization techniques like Mixed‑Integer Linear Pro‑
gramming (MILP), supports efficient allocation of main‑

tenance resources. Risk‑cost trade‑off theory underpins
the idea that organizations can minimize both opera‑
tional risk and cost through strategic planning and pre‑
dictive interventions. Together, these theories shape the
rationale behind deploying artificial intelligence for pre‑
dictive maintenance in high‑risk, asset‑intensive envi‑
ronments like marine logistics.

The conceptual model posits AI‑driven predictive
maintenance as the independent variable, representing
the core technological intervention (Figure 1). It is
hypothesized to influence three dependent variables:
maintenance cost, operational performance, and risk ex‑
posure. The effect of AI implementation is partially chan‑
nelled through the mediating construct of maintenance
scheduling efficiency, which reflects the optimization
of timing, frequency, and resource allocation for main‑
tenance tasks. The improved efficiency in scheduling
serves as a conduit throughwhich AI affects cost savings,
reduces risk, and improves operational reliability.

Two control variables asset type and environmen‑
tal stress index are incorporated to account for external
factors that could confound the observed effects. Envi‑
ronmental stress index was included as a control vari‑
able to account for the cumulative impact of environmen‑
tal conditions (e.g., salt exposure, moisture, temperature
fluctuations) on equipment failure rates. Different asset
classes (e.g., cranes, winches, AGVs) have distinct wear
patterns and criticality, while environmental stressors
such as humidity, salt corrosion, and extreme tempera‑
tures can independently influence failure rates.

The conceptual model of this study is centred
around AI‑driven predictive maintenance as the inde‑
pendent variable, representing the use of artificial intel‑
ligence to forecast equipment failures and improve as‑
set reliability. Maintenance scheduling efficiency serves
as a mediator, reflecting how effectively predictive in‑
sights are translated into actionable maintenance plans.
The dependent variables include maintenance cost, risk
exposure, and operational performance, the latter mea‑
sured throughMean Time Between Failures (MTBF) and
unplanned downtime. To ensure robust analysis, the
model includes two control variables, asset type, which
accounts for functional differences across marine equip‑
ment, and environmental stress index, which captures
external conditions affecting asset deterioration.
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Figure 1. Conceptual Model of the Study.
Source: Author.

The relationships are structured such that AI imple‑
mentation is expected to directly and indirectly improve
operational performanceby reducingmaintenance costs
and mitigating risk exposure. Maintenance scheduling
efficiency plays a pivotal mediating role by translating
predictive insights from AI into actionable plans. Ulti‑
mately, the model reflects a systems‑thinking approach
to evaluating how emerging technologies can transform
complex logistical infrastructures through cost‑effective
and risk‑aware maintenance strategies.

Following are the hypotheses of the study:

H1. The implementation of AI‑driven predictive mainte‑
nance systems significantly improves operational perfor‑
mance in marine logistics infrastructure compared to tra‑
ditional maintenance approaches.

H2. Marine assets managed with AI‑driven predictive
maintenance exhibit a statistically significant increase in
Mean Time Between Failures (MTBF) compared to those
under reactive or preventive maintenance.

H3. AI‑driven predictive maintenance significantly re‑
duces unplanned downtime in marine logistics operations.

H4. The total maintenance cost is significantly lower for
infrastructure utilizing AI‑driven predictive maintenance
than for those using traditional maintenance strategies.

H5. Predictive maintenance systems supported by AI are
associated with significantly lower operational risk expo‑
sure scores than non‑AI systems.

H6. The integration of AI with optimization models (e.g.,
MILP) provides a more cost‑effective maintenance sched‑
ule than traditional manual scheduling methods.

3. Methodology
3.1. Research Design

This study adopted amixed‑method approach com‑
bining both quantitative and qualitative techniques to
enhance methodological rigor and ensure practical rel‑
evance. The quantitative component involved the use
of time‑series operational data (e.g., sensor logs, asset
usage, maintenance history), applied through machine
learning models (Random Forest, XGBoost), optimiza‑
tion via Mixed‑Integer Linear Programming (MILP). Sta‑
tistical validation was carried out using paired t‑tests
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and performance metrics such as AUC and RMSE. The
qualitative component consisted of semi‑structured in‑
terviews with maintenance engineers and asset man‑
agers to understand contextual practices and validate
assumptions. Additionally, a modified Delphi method
was used to derive and refine the 1–10 risk scoring sys‑
tem, incorporating expert consensus across two rounds
of evaluation. This triangulated approach allowed the
study to integrate data‑driven prediction with domain‑
informed decision modelling.

Although marine asset lifecycles typically span sev‑
eral years, a six‑month observation window was se‑
lected due to the availability of high‑resolution opera‑
tional and sensor data (e.g., hourly readings, daily logs),
which generated a robust dataset suitable for predictive
modeling. Moreover, the ports included in this study
operate under high‑utilization and high‑turnover condi‑
tions, with equipment frequently running near capacity.
This operational intensity results in a sufficient number
of failures and maintenance events within a condensed
timeframe, making the six‑month period adequate for
both predictive analysis and cost‑risk evaluation.

3.2. Data Collection

Data for this study were gathered using a mixed‑
method approach involving both quantitative and qual‑
itative techniques. Real‑time operational and failure
datawere sourced from embedded IoT‑based sensors in‑
stalled on critical marine logistics assets, such as gantry
cranes, mooring systems, and autonomous cargo units.
These sensors continuously recorded data related to
equipment usage, stress exposure, temperature, and vi‑
bration, contributing to the predictive modelling com‑
ponent of the study. Archival records spanning three
years prior to the AI implementation were also col‑
lected to provide historical baselines for comparison.
In addition, structured interviews with maintenance
supervisors and port operations managers were con‑
ducted to validate sensor‑based failure events and to un‑
derstand contextual elements of maintenance decision‑
making. A structured questionnaire was administered
to gather subjective assessments on perceived risks, re‑
source planning strategies, andmaintenance scheduling
policies. This blended data approach ensured robust tri‑

angulation of insights.

3.3. Population and Sample

The population consisted of marine logistics infras‑
tructure units from fivemajor international ports across
Southeast Asia. These included both floating logistics
hubs and fixed container terminals. The sampling frame
was stratified by three key criteria: port category (float‑
ing or fixed), asset type (e.g., cranes, AGVs, winches), and
the pre‑existing maintenance strategy (reactive, preven‑
tive, or early‑stage predictive). To ensure balanced rep‑
resentation across these categories, a stratified random
sampling techniquewas employed. This ensured that all
major asset and port types were proportionally repre‑
sented in the dataset.

A total of 280 marine logistics assets across three
port facilities were initially considered. After screen‑
ing for completeness of operational, maintenance, and
sensor data, 124 assets were included in the modelling
and simulation analysis. Of these, 62 assets had com‑
pleted paired records before and after predictivemainte‑
nance implementation, allowing for comparative paired
t‑tests. The difference in counts is due to missing tem‑
poral records in the early data collection phase for some
assets.

3.4. Sample Size Calculation

The sample size was determined using Cochran’s
formula for finite populations to ensure statistical valid‑
ity at a 95% confidence level. The formula used was:

n0 =
z2 ∗ p(1− p)

e2

Where Z = 1.96, p = 0.5 (maximum variability), and e
= 0.05 (margin of error). After applying the finite pop‑
ulation correction, the effective sample size was calcu‑
lated to be 124 infrastructure assets distributed across
the five ports under study.

3.5. Description of the Population

Table1distribution allowed for comparison across
various operational models and infrastructure types, fa‑
cilitating a robust evaluation of AI implementation effec‑
tiveness.

26



Sustainable Marine Structures | Volume 08 | Issue 01 | March 2026

Table 1. The demographic distribution of the study population across five Southeast Asian ports.
Port ID Country Type No. of Assets Existing Maintenance Model

P1 Singapore Container Terminal 68 Preventive
P2 Malaysia Floating Hub 42 Reactive
P3 Indonesia Container Terminal 55 Reactive
P4 Vietnam Floating Hub 39 Early‑stage Predictive
P5 Thailand Container Terminal 60 Preventive

Source: Author.

3.6. Summary Table of Main Variables

The study focused on both dependent and indepen‑
dent variables to capture the multidimensional impact
of predictive maintenance systems. Table 2 below sum‑

marizes the primary variables used in the analysis.
These variables were selected based on relevance

to predictive maintenance, operational efficiency, and
environmental exposure, enabling precisemeasurement
and analysis.

Table 2. The variables used in the study.
Variable Type Scale Source

MTBF Dependent Ratio IoT Sensor Logs
Unplanned Downtime Dependent Ratio Maintenance Logs
Maintenance Cost Dependent Ratio Financial Statements

Risk Exposure Score Dependent Interval Interview & Questionnaire
AI Predictive Maintenance Independent Nominal Implementation Records

Asset Type Control Nominal Operational Logs
Environmental Stress Index Control Interval Sensor &Weather Reports

Source: Author.

3.7. Measures & Analytical Methods

The Mean Time Between Failures (MTBF) was cal‑
culated as the average operational hours between two
consecutive failure events for each asset. Unplanned
downtime was defined as the total number of hours
where assets were rendered non‑functional due to unex‑
pected failures, excluding scheduledmaintenance. Main‑
tenance costs included direct costs such as labor, spare
parts, and third‑party service fees, aggregated on a
monthly basis. The risk exposure score was derived
from expert assessments using a standardized 1–10 rat‑
ing scale that considered failure criticality, safety impact,
and environmental sensitivity. AI predictive mainte‑
nancewas treated as a binary categorical variable, coded
as 1 if the AI system had been implemented and 0 other‑
wise. Environmental stress index was a composite met‑
ric based on average monthly temperature, relative hu‑
midity, and salt concentration factors known to affect as‑
set wear and tear.

The risk score (scaled 1–10) assigned to each asset
was derived through a modified Delphi technique, con‑

ducted in two roundswith domain experts from five par‑
ticipating ports. Experts evaluated each asset on three
dimensions: (1) likelihood of failure (based on historical
frequency), (2) operational impact (e.g., downtime con‑
sequence), and (3) safety/environmental impact (e.g.,
spill risk, personnel hazard). Each dimension was as‑
signed equal weight in the composite score. Ratings
were normalized and averaged across expert inputs to
assign final scores. This method ensured that risk pri‑
oritization reflected both empirical insights and practi‑
tioner expertise.

A multi‑method analytical approach was ap‑
plied. Descriptive statistics (mean, standard deviation,
min/max) were used to understand central tendencies
and variability in performance metrics. Inferential tech‑
niques included paired sample t‑tests to evaluate pre‑
and post‑AI implementation changes andANOVA to com‑
pare performance across ports with different baseline
maintenance models. Regression analysis was applied
to determine the influence of AI maintenance systems
and environmental conditions on performance metrics.
Machine learning techniques such as Random Forest

27



Sustainable Marine Structures | Volume 08 | Issue 01 | March 2026

and XGBoost were used for predictive failure modelling,
while time series models like ARIMA helped analyse his‑
torical trends in failure frequency.

To evaluate the predictive performance of the AI
models (Random Forest, XGBoost), the dataset was ran‑
domly split into 80% training data and 20% testing data.
Additionally, a 5‑fold cross‑validation procedure was ap‑
plied on the training set to ensure that themodels gener‑
alizedwell across different data partitions. For classifica‑
tion accuracy, the primary performancemetric reported
was the Area Under the Receiver Operating Characteris‑
tic Curve (AUC‑ROC), which quantifies the model’s abil‑
ity to distinguish between failure and non‑failure in‑
stances. AUC values above 0.85 indicated high discrimi‑
natory power. Beyond AUC (Area Under the ROC Curve),
we evaluatedmodel performance using precision (0.72),
recall (0.64), F1‑score (0.68), and PR‑AUC (0.71). The
Brier score was 0.157, indicating reasonable calibration.
The confusionmatrix at the selected threshold (0.35) re‑
flects anoperationally viable trade‑off between false pos‑
itives and missed failures. A calibration curve showed
slight underestimation of risk in the 0.4–0.6 range, while
the decision curve analysis (DCA) demonstrated a net
benefit peakat thresholdsbetween0.3–0.4, aligningwell
with the available maintenance crew capacity and inter‑
vention cost structure.

To strengthen causal inference, a difference‑in‑
differences (DiD) model was employed, comparing AI‑
assisted assets with a control group of non‑AI‑managed
assets across the same time window. The control group
included 58 assets from similar port operations that
retained traditional maintenance scheduling. The DiD
model controlled for time trends and fixed asset charac‑
teristics, improving the attribution of observed perfor‑
mance improvements to the AI intervention.

For regression‑oriented metrics (e.g., predicting
time‑to‑failure), Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) were computed. Hyperpa‑
rameters for each algorithm were optimized using grid
search within the cross‑validation loop to prevent over‑
fitting. The final model was selected based on the best
average AUC score across folds and the lowest RMSE on
the test set.

For maintenance scheduling, Mixed‑Integer Linear

Programming (MILP)was employed to optimize cost‑risk
trade‑offs under resource constraints. The integration of
model components followed a sequential workflow. First,
machine learningmodels generated asset‑specific failure
probabilities based on historical usage,maintenance, and
environmental data. These predicted probabilities were
used as risk input parameters within the MILP model to
prioritize high‑risk assets and determine optimalmainte‑
nance schedules under cost constraints.

To avoid the risk of data leakage and ensure real‑
istic evaluation, the dataset was split using a grouped
cross‑validation strategy. Assetswere grouped such that
all observations related to a given asset were allocated
entirely to either the training or testing set, avoiding
identity‑based leakage.

Additionally, we implemented rolling‑origin time
series validation, wheremodels were trained on sequen‑
tial historical windows (e.g., months 1–3) and tested on
the immediate future window (e.g., month 4), gradually
increasing the training horizon. This method better re‑
flects the operational deployment of predictive mainte‑
nance systems. For full transparency, the complete list
of input features, preprocessing procedures, model tun‑
ing parameters, and reproducibility controls is provided
in Appendices A and B.

4. Results
The descriptive statistics provided an initial under‑

standing of differences in operational performance be‑
tween assetsmanagedwith AI‑driven systems and those
under traditional maintenance. Table 3 displays the
mean, standard deviation, and range for each of the
primary variables. The results showed that assets un‑
der AI‑based predictive maintenance had a higher Mean
Time Between Failures (MTBF), lower unplanned down‑
time, and significantly reduced monthly maintenance
costs. The average MTBF for AI‑enabled assets was
512.6 hours (SD = 87.1), compared to 392.4 hours (SD
= 74.3) for traditional systems. Likewise, the mean
unplanned downtime was 7.3 hours under AI systems,
which was less than half the 15.9 hours observed in
the control group. Maintenance costs were also notably
lower, averaging USD 4290 for the AI group against USD
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5850 for the control group. Finally, risk exposure scores
based on expert assessment scales were markedly re‑

duced in the AI‑driven group (mean = 3.6) relative to tra‑
ditional systems (mean = 6.2).

Table 3. Descriptive Statistics of Key Performance Indicators.
Variable Maintenance Type Mean SD Min Max

MTBF (h) AI‑Driven 512.6 87.1 398.0 688.0
Traditional 392.4 74.3 271.0 563.0

Unplanned Downtime (h) AI‑Driven 7.3 3.2 2.0 14.0
Traditional 15.9 4.7 7.0 25.0

Maintenance Cost (USD) AI‑Driven 4290 635 3100 5800
Traditional 5850 790 4300 7900

Risk Exposure (1–10) AI‑Driven 3.6 0.8 2.0 5.0
Traditional 6.2 1.1 4.0 8.0

Source: Author.

To statistically validate the observed performance
changes, paired sample t‑tests were conducted on the
AI group, comparing operational metrics before and af‑
ter implementation of the AI‑driven maintenance sys‑
tem (Table 4). A paired t‑test was applied to the
62 assets with complete pre‑post data (df = 61), en‑
abling reliable assessment of changes in performance
metrics. These tests demonstrated statistically signifi‑
cant improvements across all key variables. MTBF in‑
creased by an average of 114.2 hours, with a t‑value of
9.21 and a p‑value less than 0.001, confirming strong sig‑
nificance. Unplanned downtime dropped by 8.6 hours (t
=−10.78, p<0.001), whilemonthlymaintenance cost de‑
creased by USD 1,120 (t = −8.65, p < 0.001). Risk expo‑

sure scores fell by 2.4 points (t = −11.09, p < 0.001). The
effect sizes, measured by Cohen’s d, were all above 1.0,
indicating large practical significance.

Analysis of variance (ANOVA) was conducted to
compare differences across the five ports in the study
(Table5). Significant variationswere found across ports
for MTBF (F = 6.88, p < 0.001), maintenance cost (F =
5.74, p = 0.002), and risk exposure (F = 7.92, p < 0.001).
Post‑hoc comparisons using Tukey’s test showed that
Ports P1 and P4, which had implemented AI‑driven sys‑
tems, outperformed Ports P2 and P3, which relied solely
on reactive maintenance. Effect sizes (η²) were mod‑
erate to large, confirming that the observed differences
had substantial explanatory power.

Table 4. Paired t‑Test Results (Pre vs. Post AI Implementation).
Variable Mean Difference t df p‑Value Effect Size (Cohen’s d)

MTBF +114.2 hours 9.21 61 <0.001 1.17
Unplanned Downtime −8.6 hours −10.78 61 <0.001 1.37
Maintenance Cost −1120 USD −8.65 61 <0.001 1.10

Risk Exposure Score −2.4 −11.09 61 <0.001 1.41
Source: Author.

Table 5. ANOVA Results Across Ports.
Variable F‑Value p‑Value η² (Eta Squared)

MTBF 6.88 <0.001 0.19
Maintenance Cost 5.74 0.002 0.15
Risk Exposure 7.92 <0.001 0.21

Source: Author.

The implementation of AI‑driven predictive main‑
tenance led to a 29% increase in MTBF, a 54% reduction
in unplanned downtime, and a 19% decrease in aver‑
age monthly maintenance costs compared to traditional

maintenance strategies. Furthermore, operational risk
exposure declined by 38%, highlighting the model’s ef‑
fectiveness not only in improving performance but also
in mitigating potential failures.
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Amultiple regression model was then estimated to
determine the relative influence of AI adoption, mainte‑
nance scheduling efficiency, and environmental stress
on MTBF. The model used the following specification:

MTBFi = β0 + β1(AIi) + β2(SchedEffi)

+β3(EnvStressi) + ϵi

The regression model explained 51% of the vari‑

ance in MTBF (R² = 0.51, F(3, 120) = 41.7, p < 0.001).
AI implementation had a significant positive effect (β
= 0.43, p < 0.001), as did maintenance scheduling ef‑
ficiency (β = 0.27, p = 0.001). Environmental stress
exerted a negative influence on MTBF (β = −0.31, p
< 0.001), suggesting that environmental conditions re‑
main a critical consideration even in AI‑optimized sys‑
tems (Table 6).

Table 6. Regression Coefficients for MTBF Prediction.
Predictor β SE t p‑Value

Intercept 212.4 41.5 5.12 <0.001
AI Predictive Maintenance +0.43 0.09 5.11 <0.001

Maintenance Scheduling Score +0.27 0.07 3.49 0.001
Environmental Stress Index −0.31 0.08 −3.88 <0.001

Source: Author.

To enhance the system’s proactive response, super‑
vised machine learning models were trained to predict
failure likelihoodwithin a 30‑day horizon (Appendix C).
The RandomForestmodel achieved 91.2% accuracy and
an AUC‑ROC of 0.94. The XGBoost model showed com‑
parable results, with slightly better interpretability due
to its SHAP‑based feature importance analysis. Critical
predictors of failure included vibration anomalies, tem‑
perature deviations, and operational cycles (Figure 2).

Figure 2. ROC curve showing the predictive accuracy of the AI
maintenance model. A higher AUC indicates better failure clas‑
sification performance.
Source: Author.

When evaluated using grouped cross‑validation,
the Random Forest model achieved an AUC of 0.86 and
RMSE of 0.41. Under time‑blocked validation, the AUC
remained stable (0.84), but RMSE increased slightly to
0.45, indicating lower but more realistic performance
when temporal leakage is controlled. These results con‑
firm the model’s robustness across realistic deployment
conditions. Beyond AUC (Area Under the ROC Curve),
we evaluatedmodel performance using precision (0.72),
recall (0.64), F1‑score (0.68), and PR‑AUC (0.71). The
Brier score was 0.157, indicating reasonable calibration.
The confusionmatrix at the selected threshold (0.35) re‑
flects anoperationally viable trade‑off between false pos‑
itives and missed failures. A calibration curve showed
slight underestimation of risk in the 0.4–0.6 range, while
the decision curve analysis (DCA) demonstrated a net
benefit peakat thresholdsbetween0.3–0.4, aligningwell
with the available maintenance crew capacity and inter‑
vention cost structure.

In parallel, Mixed‑Integer Linear Programming
(MILP) was used to optimize maintenance scheduling
under AI‑informed predictions. The objective function
minimized total cost and risk, represented as:

min[Cm+Rf · Pf + Cd · Td]

where Cm is the scheduled maintenance cost, Rf is the
risk cost per failure, Pf is the predicted probability of fail‑
ure, Cd is the cost of downtime per hour, and Td is the ex‑
pected downtime. The MILP‑based schedule achieved a
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17.8% reduction in total maintenance cost and a 26.4%
reduction in risk‑adjusted downtime compared to his‑
torical baselines. Resource utilization also improved
by 22%, reflecting more efficient deployment of mainte‑
nance crews and materials.

Formal hypothesis testing was conducted to eval‑
uate the theoretical claims of the study. The main hy‑

pothesis (H1) stated that AI‑driven predictive mainte‑
nance would significantly improve operational perfor‑
mance. The sub‑hypothesesH1a throughH1e addressed
specific dimensions of performance. All null hypothe‑
ses (H0a through H0e) were rejected at the 0.001 signif‑
icance level, as shown in the results summarized below
in Table 7.

Table 7. Hypothesis Testing Summary.
Hypothesis Description Test Used p‑Value Result

H2 AI increases MTBF Paired t‑test <0.001 Supported
H3 AI reduces unplanned downtime Paired t‑test <0.001 Supported
H4 AI reduces maintenance cost Paired t‑test <0.001 Supported
H5 AI reduces operational risk Paired t‑test <0.001 Supported
H6 AI + optimization improves maintenance schedules MILP comparison <0.001 Supported

Source: Author.

These results confirm the study’s hypotheses,
demonstrating that AI‑driven predictive maintenance
significantly improves marine logistics infrastructure
performance by extending asset life, reducing cost, min‑
imizing risk, and optimizing maintenance planning.

5. Discussion
The integration of artificial intelligence into pre‑

dictive maintenance systems represents a significant
shift in how marine logistics infrastructure is managed,
aligning with the broader digital transformation of sup‑
ply chain and port operations. This study builds upon
and extends the foundational principles of Reliability‑
Centered Maintenance (RCM), emphasizing not only the
detection of equipment degradation but also the abil‑
ity to proactively optimize interventions through data‑
driven insights. The operational benefits attributed to
AI in this domain mirror those highlighted in earlier
studies conducted within industrial manufacturing con‑
texts [24,41], where machine learning was found to en‑
hance fault detection and reduce life‑cycle costs. How‑
ever, the application of such frameworks to the marine
logistics sector introduces unique challenges including
variable environmental conditions, asset mobility, and
real‑time operational demand that have not been exten‑
sively studied.

Previous literature has predominantly focused on
traditional preventivemaintenancemodels in seaport in‑

frastructure, often limited by static schedules and rule‑
based decision‑making [42–44]. In contrast, this study con‑
tributes to the emerging discourse on adaptive mainte‑
nance by demonstrating howAI systems embeddedwith
predictive analytics can dynamically recalibrate mainte‑
nance plans based on real‑time asset health data and
operational risk profiles. This aligns with findings by
Prabu [45], who emphasized the potential of digital twins
and sensor fusion in enhancing predictive capabilities
for industrial assets.

The theoretical underpinnings of this research
are further supported by operations research litera‑
ture, particularly in the context of maintenance re‑
source optimization. The application of Mixed‑Integer
Linear Programming (MILP) models, informed by AI‑
generated forecasts, reflects a growing trend toward hy‑
brid decision‑support systems, as advocated by Shokare
and Scaife [46,47]. These systems have been shown to out‑
perform traditional scheduling in terms of minimizing
downtime and resource waste, particularly under con‑
ditions of operational uncertainty. The current findings
thus resonate with the theoretical stance that optimiza‑
tion algorithms, when integrated with real‑time predic‑
tive inputs, can significantly improve cost‑risk trade‑
offs.

From a risk management perspective, the incorpo‑
ration of AI‑driven maintenance is also consistent with
principles outlined in the risk‑cost trade‑off theory [48].
By transitioning fromreactive to predictivemaintenance
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regimes, marine logistics operators can not only reduce
the frequency of failure events but also mitigate the po‑
tential consequences associated with high‑severity dis‑
ruptions. This approach aligns with the framework pro‑
posed by Ajayi [49], who argued for the integration of AI
into risk‑aware decision systems for asset‑intensive in‑
dustries. Moreover, the ability to anticipate and pre‑
vent failures contributes to broader system resilience
a concept gaining traction in port studies, especially
in the wake of disruptions such as the COVID‑19 pan‑
demic [50,51].

The study also reinforces the argument made by
Görür et al. [52] that maintenance scheduling efficiency
acts as a critical mediator in realizing the benefits of
predictive maintenance. While the implementation of
AI systems offers theoretical advantages, their practi‑
cal impact is often contingent upon how well predictive
insights are operationalized. This supports the notion
that technological innovation alone is insufficient with‑
out concurrent organizational capabilities and process
alignment.

Notably, the observed reduction in risk exposure
aligns with empirical observations in offshore oil and
gas platforms, where similar AI‑based monitoring sys‑
tems were deployed to detect early signs of struc‑
tural fatigue [53,54]. This cross‑sectoral consistency sug‑
gests that predictive maintenance has universal value
in environments characterized by high asset criticality
and volatile operating conditions. However, while the
study’s results offer compelling support for AI adoption,
it is essential to acknowledge the contextual constraints
of marine environments, such as limited connectivity,
variable weather conditions, and regulatory compliance,
which may affect system performance and scalability.

The role of the Environmental Stress Index (ESI) is
particularly noteworthy in understanding how external
operating conditions influence asset reliability. The re‑
gression results confirm that ESI significantly affects fail‑
ure likelihood, aligning with prior research on environ‑
mental wear and corrosion in marine assets. Interest‑
ingly, the AI models used in this study incorporated ESI‑
related features (e.g., humidity, salinity, temperature) as
part of their training data. As a result, the models were
able to adjust failure predictions based on the severity

of environmental exposure, enabling earlier detection of
stress‑induced failures. This suggests that AI can par‑
tially mitigate the operational risk posed by harsh condi‑
tions not by eliminating the root causes, but by enhanc‑
ing the timing and precision of maintenance interven‑
tions. Nonetheless, in extremely high‑stress zones, tech‑
nical mitigation (e.g., material upgrades or environmen‑
tal shielding)may still be necessary alongside predictive
systems [55].

From a strategic operations standpoint, the find‑
ings contribute to the literature on maritime digital‑
ization and smart port technologies, echoing the senti‑
ments of Pham [56], who identified predictive analytics
as one of the key enablers of next‑generation port op‑
erations. By showcasing the feasibility and benefits of
AI‑driven predictive maintenance, this study addresses
a gap in the current literature, where empirical assess‑
ments of AI applications in port infrastructure remain
scarce. It advances the understanding of how AI can
function not only as a monitoring tool but also as a de‑
cision engine that transforms raw data into actionable
value.

5.1. Managerial Implications

Theoutcomes of this study offer significant insights
for operations managers, port authorities, and infras‑
tructure planners involved in the maritime logistics sec‑
tor. First, the integration of AI‑driven predictive mainte‑
nance systems presents a strategic shift in howasset reli‑
ability ismanaged. Rather than adhering to rigid preven‑
tive maintenance schedules or relying on failure‑based
interventions, managers can now make data‑informed
decisions that dynamically adjust based on asset con‑
dition, usage intensity, and risk factors. This agility
is especially critical in high‑throughput port environ‑
ments where unplanned equipment failure can cause
cascading delays and revenue loss. Second, the study
underscores the financial viability of AI‑based mainte‑
nance, highlighting tangible reductions in cost, down‑
time, and risk exposure. For decision‑makers manag‑
ing capital‑intensive marine infrastructure, the ability
to minimize life‑cycle costs without compromising per‑
formance presents a compelling case for technology in‑
vestment. Furthermore, the application of optimization

32



Sustainable Marine Structures | Volume 08 | Issue 01 | March 2026

models such as Mixed‑Integer Linear Programming en‑
ables managers to better allocate maintenance crews,
prioritize critical assets, and anticipate failure windows
ultimately enhancing the efficiency of resource deploy‑
ment.

Third, the study illustrates that risk management
and safety compliance can be significantly strengthened
through predictive intelligence. In a sector increasingly
scrutinized for environmental compliance and opera‑
tional safety, integrating predictive systems that pre‑
empt hazardous equipment failures enhances not only
reliability but also regulatory alignment. From a man‑
agerial perspective, this translates into lower insurance
premiums, fewer incidents, and improved stakeholder
confidence. Lastly, the successful deployment of AI
in this context demonstrates that the digital maturity
of a port operation is directly correlated with its abil‑
ity to adopt Industry 4.0 technologies. Managers are
therefore advised to invest not just in AI tools, but also
in workforce training, data integration platforms, and
cross‑functional coordination to fully realize the bene‑
fits of predictive maintenance. These findings position
AI not merely as an operational enhancer but as a strate‑
gic lever for competitiveness in the evolvingmaritime lo‑
gistics landscape.

5.2. Theoretical Contributions

This study makes several notable contributions to
the theoretical understanding of maintenance manage‑
ment and digital operations in marine logistics. First,
it extends the applicability of Reliability‑Centered Main‑
tenance (RCM) by integrating AI algorithms into its
decision framework. Traditionally, RCM has focused
on structured, manual assessments of failure modes
and asset criticality. By embedding machine learn‑
ing models into this framework, the study evolves
RCM into a dynamic, continuously learning system that
adapts to real‑time operational contexts an advance‑
ment that addresses longstanding limitations of static
RCM methodologies. Second, the research advances
the discourse in operations research by demonstrating
how AI‑generated failure probabilities can enhance the
performance of classical optimization techniques. The
incorporation of probabilistic input into Mixed‑Integer

Linear Programming models validates the relevance
of hybrid approaches where AI functions as a predic‑
tive layer and optimization models serve as decision‑
execution engines. This synergy contributes to the grow‑
ing body of work advocating for integrated decision ana‑
lytics in infrastructure planning and resource allocation.

Third, the study adds empirical support to the risk‑
cost trade‑off theory, emphasizing that intelligent sys‑
tems can shift the operating curve by simultaneously
reducing both expected risk and incurred cost. This
challenges earlier assumptions that improvements in
one dimensionmust necessarily involve trade‑offs in the
other. By empirically validating that AI‑driven main‑
tenance can optimize both dimensions, the study re‑
frames how theoretical models of trade‑off are applied
in high‑risk infrastructure environments. Furthermore,
the study contributes to the nascent but expanding lit‑
erature on smart port technologies and maritime digi‑
talization, filling a critical gap related to empirical test‑
ing. While prior research has largely been conceptual or
simulation‑based, this study presents real‑world, data‑
driven evidence of AI’s role in improving operational re‑
liability in port environments. It reinforces the view
that digital infrastructure, when appropriately embed‑
ded within operational ecosystems, has transformative
potential both as a performance amplifier and as a cata‑
lyst for organizational change.

5.3. Summary of Findings & Limitations

The study demonstrated that integrating AI‑driven
predictive maintenance with cost‑risk optimization sig‑
nificantly improves marine asset reliability and opera‑
tional efficiency. Empirical results showed a 29% in‑
crease in MTBF, a 54% reduction in unplanned down‑
time, and a 19% drop in maintenance costs. These out‑
comes validate the efficacy of using real‑time sensor
data combinedwithmachine learning andMILP schedul‑
ing. Despite its strengths, the study has certain limita‑
tions. The six‑month observation period, while compen‑
satedbyhigh‑frequencydata,maynot capture long‑term
degradation cycles. The study also focused on South‑
east Asian port environments, limiting generalizability
to other climatic or operational regions. Lastly, while
the risk scoring systemwas developed using expert con‑
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sensus, some subjectivity may remain in its interpreta‑
tion. Future research should extend this framework us‑
ing longitudinal data, test it in diverse global contexts,
and explore real‑time integration into port decision sup‑
port systems.

While the AI‑driven predictive maintenance frame‑
work demonstrated strong results across the sampled
ports, it is important to note that variability in environ‑
mental conditions and operational demand could affect
the scalability and generalizability of themodel. Ports lo‑
cated in drastically different climates (e.g., arid vs. trop‑
ical regions) or operating under different load profiles
(e.g., container vs. bulk cargo) may exhibit different
degradation patterns and failure behaviors. These vari‑
ations introduce risks when deploying a single model
across multiple contexts. To address this, we recom‑
mend implementing site‑specific calibration using local‑
ized environmental and usage data. Additionally, fu‑
ture implementations may benefit from transfer learn‑
ing techniques, wherein a pre‑trained model is fine‑
tuned on smaller datasets from a new operational envi‑
ronment, improving cross‑context adaptation.

While the results demonstrate promising improve‑
ments in predictive maintenance efficiency, they are
based on a dataset spanning six months and collected
fromports within a single geographic region. These tem‑
poral and spatial constraints limit the immediate gener‑
alizability of the findings to other global or seasonal con‑
texts. Operational, environmental, and regulatory dif‑
ferences across regions may influence the model’s per‑
formance and the feasibility of implementation. We rec‑
ommend caution in extrapolating the results beyond the
studied environment without further validation.

5.4. Future Research Directions

To build on the current study, several directions
are proposed. First, longitudinal data collection span‑
ning multiple years would help evaluate the long‑term
predictive validity of the AI models and the lifecycle im‑
pacts of cost‑risk optimization strategies. Second, ex‑
panding the dataset across a wider range of geographic
locations and climatic conditions will improve the gen‑
eralizability and scalability of the framework. Third, fu‑
ture work could integrate this predictive maintenance

system with broader smart port technologies, includ‑
ing IoT sensor networks, real‑time digital twin systems,
and blockchain‑based maintenance records for tamper‑
proof logging. Such integration could transform the pro‑
posed system into a core module within fully automated
and intelligent port ecosystems.

6. Conclusion
This study investigated the impact of AI‑driven

predictive maintenance on operational efficiency, cost
optimization, and risk mitigation in marine logistics
infrastructure. Grounded in the theoretical founda‑
tions of Reliability‑CenteredMaintenance, operations re‑
search, and risk‑cost trade‑off theory, the research devel‑
oped and empirically validated a comprehensive frame‑
work integrating predictive analytics, optimization algo‑
rithms, and real‑time asset monitoring. Through this
lens, the study contributed to both the practical field of
maritime operations management and the scholarly lit‑
erature on smart port systems. The research established
that the integration of machine learning models and
scheduling optimization tools enables dynamic mainte‑
nance strategies that move beyond conventional, reac‑
tive paradigms. In doing so, it addressed a critical gap in
the maritime sector, where maintenance practices have
historically lagged behind other industries in adopting
intelligent systems. The AI‑enabled framework intro‑
duced here not only improved key performance indica‑
tors such as Mean Time Between Failures and resource
utilization but also offered a more resilient, data‑driven
approach to managing risk in complex operational envi‑
ronments.

Importantly, the study affirmed that predictive
maintenance, when implemented with a structured op‑
timization model, could deliver measurable improve‑
ments without requiring large‑scale overhauls of exist‑
ing infrastructure. By leveraging historical sensor data
and environmental conditions, the system allowed for
precise failure forecasting and maintenance prioritiza‑
tion thus preserving operational continuity while reduc‑
ing cost burdens. These findings are particularly valu‑
able for asset‑intensive, safety‑critical environments
such as floating logistics hubs and port terminals, where
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equipment reliability is integral to global trade flows.
While the research offers robust evidence of the bene‑
fits of AI‑enhancedmaintenance, it also underscores the
need for contextual adaptation. External factors such
as environmental stress, regulatory constraints, and or‑
ganizational readiness can influence the effectiveness
of such systems. Therefore, while the model demon‑
strated generalizable potential, its implementationmust
be alignedwith local port conditions, data infrastructure
maturity, and workforce capabilities.
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Appendix A. MILP Model Formula‑
tion and Solver Configuration

Appendix A.1. Indices

• 𝑖 ∈ I : Set of assets
• 𝑡 ∈ T : Discrete time periods (e.g., days or weeks)
• 𝑐 ∈ C : Set of maintenance crews

Appendix A.2. Decision Variables

• 𝑥ᵢₜ ∈ {0,1} : Binary variable, 1 if asset i is scheduled
for maintenance at time t, 0 otherwise

• 𝑧ᵢₜ ∈ ℝ⁺ : Continuous downtime duration for asset i
at time t

• 𝑦𝑐ₜ ∈ {0,1} : Binary variable, 1 if crew c is active at
time t

Appendix A.3. Objective Function

mini ∈ I∑ t ∈ T∑
(Cmaint, i · xit+ Cdowntime, i · zit+ Ri · xit)

Where:
• Cmaint,i: Maintenance cost for asset i
• Cdowntime,i: Cost of unplanned downtime for as‑

set i
• Ri: Risk exposure score (1–10) for asset i

Appendix A.4. Constraints

1. Maintenance Crew Capacity:

i ∈ I
∑

xit ≤ CrewCapacityt ∀t ∈ T

2. Asset Maintenance Window:

xit = 0 if asset i is unavailable at time t

3. Minimum Separation Between Tasks (per asset):

xit+ xi, t+ 1 ≤ 1∀i ∈ I, ∀t ∈ T

4. Downtime Modeling:

zit ≥ Di · xit ∀i, t

Where Di is expected downtime if maintenance oc‑
curs for asset i.
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Appendix A.5. Solver Settings

• Solver: Gurobi Optimizer v10.0.3
• Platform: Python 3.9, Gurobi‑Py API
• Optimality Gap: ≤0.01
• Time Limit: 600 seconds per run
• Avg Runtime per Instance: 95.2 seconds
• Hardware: Intel i9 CPU, 64GB RAM, Windows 11

Pro

Appendix B. Environmental Stress
Index and Risk Scoring Methodol‑
ogy

Appendix B.1. Environmental Stress Index
(ESI) Formula

The Environmental Stress Index for each asset loca‑
tion is computed as

ESI = 0.30 ·H + 0.25 · S + 0.25 · Tv + 0.20 · Ch

Where:
• H = Relative Humidity (%) normalized to [1]

• S = Salinity level (ppt), normalized
• Tv = 24‑hour Temperature Variability (°C), normal‑

ized

• Ch = Corrosion‑prone hours per week (defined as
time above 80% RH and 30 °C)
Each factorwas standardized using z‑score normal‑

ization prior to weighting.

Appendix B.2. Risk Score (1–10) via Delphi
Method

• 9 experts inmarine asset reliability rated each asset
based on five dimensions:
1. Asset criticality to logistics flow
2. Cost of failure
3. Historical failure frequency
4. Downtime severity
5. Safety implications

• Each dimensionwas rated from1–10 and combined
as:

Risk Score = 51 i = 1
∑

5 Di

Reliability Statistics:
• Cronbach’s Alpha (internal consistency): 0.89
• Intraclass Correlation Coefficient (ICC 2,k): 0.86

Disagreement Resolution: Discrepant ratings (≥3‑
point variance) were reviewed in a third Delphi round
involving moderated consensus among five senior engi‑
neers.

Appendix C. Machine LearningWorkflow and Reproducibility Details

Table A1. Input Features and Characteristics.
Feature Name Unit Range Sampling Interval Data Type Source

Operating Temperature °C 25–85 5 min Continuous Sensor
Motor Vibration Level mm/s 0–20 1 min Continuous Sensor

Power Draw kW 0–150 10 min Continuous PLC Log
Maintenance History Flag Binary 0 or 1 Event‑based Categorical Maintenance Log

Asset Age Years 0.5–15 Static Numeric Asset Registry
Environmental Stress Index Composite 0–10 Daily Numeric Derived from Sensors

Appendix C.1. Data Pre‑Processing

• Missing Values: Imputed using median imputation
for numerical features and most frequent value for
categorical features.

• Outliers: Values beyond 3 standard deviations from
the mean were capped.

• Normalization: Z‑score normalization applied to

sensor features before model training.
• Filtering: Assets with >10% missing values across

core features were excluded.

Appendix C.2. Class Imbalance Handling

• Used SMOTE (Synthetic Minority Oversampling
Technique) on training sets
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• Applied class weights in Random Forest and XG‑
Boost models

Appendix C.3. Hyperparameter Tuning

Random Forest:

• Grid:
◦ n_estimators: [100, 300, 500]
◦ max_depth: [10, 20, None]
◦ min_samples_split: [2, 5, 10]

• Final: n_estimators = 300, max_depth = 20, min_
samples_split = 5

XGBoost:

• Grid:
◦ learning_rate: [0.01, 0.05, 0.1]
◦ max_depth: [3, 6, 10]
◦ n_estimators: [100, 300, 500]

• Final: learning_rate = 0.05, max_depth = 6, n_
estimators = 300

Appendix C.4. Runtime Environment

• Programming Language: Python 3.9
• Libraries: Scikit‑learn 1.1.2, XGBoost 1.6.0, Pandas

1.4.3, Numpy 1.22
• Environment: Windows 11, 64GB RAM, Intel i9,

NVIDIA RTX 3080
• Random Seed: Set to 42 for reproducibility across

all experiments
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