

ARTICLE

Techno-Economic Feasibility of Hydrogen Fueled Marine Freight in Coastal Supply Chains

Suleiman Ibrahim Mohammad^{1,2*} , *Sultan Alaswad Alenazi*³ , *Badrea Al Oraini*⁴, *Hanan Jadallah*¹ ,
Asokan Vasudevan^{5,6,7} , *Karthikesani Govindan*⁸ , *Puventhiri Tharuma Dorai*⁵ ,
*Tharshini A. Murugan Ramesh*⁹

¹ Department of Electronic Marketing and Social Media, Faculty of Economic and Administrative Sciences, Zarqa University, Zarqa 13132 Jordan

² Faculty of Business and Communication, INTI International University, Nilai 71800, Malaysia

³ Marketing Department, College of Business, King Saud University, Riyadh 11362, Saudi Arabia

⁴ Business Administration Department, Collage of Business and Economics, Qassim University, Buraydah 51452, Saudi Arabia

⁵ Faculty of Business and Communications, INTI International University, Nilai 71800, Malaysia

⁶ School of Management, Shinawatra University, Pathum Thani 12160, Thailand

⁷ Business Administration and Management, Wekerle Business School, 1083 Budapest, Hungary

⁸ Global Ranking and Institutional Advancement Centre (GRIAC), INTI International University, Nilai 71800, Malaysia

⁹ Global Ranking and Institutional Advancement Centre (GRIAC), Faculty of Business and Communications, INTI International University, Nilai 71800, Malaysia

ABSTRACT

The maritime sector remains a major contributor to global carbon emissions, with coastal freight logistics playing a significant but underexplored role. This study evaluates the feasibility of hydrogen-powered ships as a

*CORRESPONDING AUTHOR:

Suleiman Ibrahim Mohammad, Department of Electronic Marketing and Social Media, Faculty of Economic and Administrative Sciences, Zarqa University, Zarqa 13132 Jordan; Faculty of Business and Communication, INTI International University, Nilai 71800, Malaysia; Email: dr_sliman@yahoo.com

ARTICLE INFO

Received: 6 August 2025 | Revised: 3 October 2025 | Accepted: 13 October 2025 | Published Online: 5 January 2026
DOI: <https://doi.org/10.36956/sms.v8i1.2594>

CITATION

Mohammad, S.I., Alenazi, S.A., Jadallah, H., et al., 2026. Techno-Economic Feasibility of Hydrogen Fueled Marine Freight in Coastal Supply Chains. Sustainable Marine Structures. 8(1): 1–19. DOI: <https://doi.org/10.36956/sms.v8i1.2594>

COPYRIGHT

Copyright © 2026 by the author(s). Published by Nan Yang Academy of Sciences Pte. Ltd. This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License (<https://creativecommons.org/licenses/by-nc/4.0/>).

zero-emission alternative to diesel in coastal freight networks. Using a combined techno-economic and logistical model, the research incorporates Net Present Value (NPV), Levelized Cost of Transport (LCOT), linear programming for route optimization, lifecycle emissions assessments, and scenario simulations involving carbon pricing and infrastructure development. Data sources included operational records, industry benchmarks, port infrastructure audits, and environmental performance databases. Statistical methods such as sensitivity analysis and hypothesis testing were used to compare hydrogen and diesel propulsion across ship types and policy scenarios. Findings show hydrogen propulsion can be economically viable when carbon taxes exceed \$90/ton and green hydrogen costs fall below \$4/kg. Emissions modelling indicates potential reductions of 75–90% in lifecycle CO₂ and NO_x, depending on bunkering availability and route alignment. However, limited port readiness especially in developing regions poses logistical challenges. Sensitivity analysis highlights retrofitting incentives and infrastructure investment as key drivers of adoption. The study concludes that hydrogen propulsion is technically feasible and environmentally superior for coastal shipping, but requires targeted policy support and infrastructure upgrades. It offers a comprehensive framework integrating cost, logistics, and environmental data to guide the transition toward hydrogen-based maritime freight systems.

Keywords: Hydrogen Fuel; Coastal Shipping; Techno-Economic Feasibility; Maritime Logistics; Economic Growth, Sustainable Supply Chain

1. Introduction

The global shipping industry is a key part of the world economy because it moves more than 80% of the goods that are traded around the world^[1,2]. This system is very important, but it also adds a lot to global greenhouse gas (GHG) emissions, making up almost 3% of all human-made emissions^[3]. Coastal shipping is a very important part of regional logistics because it makes it easier for supply chains to move goods within a country or region, especially in countries with long coastlines, archipelagic geographies, or economies based on islands. Even so, there isn't enough research or policy work being done on coastal freight systems, especially when it comes to strategies for transitioning to cleaner energy and incorporating zero-emission propulsion technologies. As the need to reduce carbon emissions in transportation grows, more attention is being paid to alternative fuels and propulsion systems that can take the place of traditional marine fuels like marine diesel oil (MDO), heavy fuel oil (HFO), and liquefied natural gas (LNG). Hydrogen has become one of the most promising candidates in this transition because it is a clean and flexible energy carrier^[4,5]. Its main benefit is that it can power ships with fuel cells or combustion engines without releasing CO₂, NO_x, or sulfur oxides while they are

running. This helps the IMO reach its 2050 decarbonization goals and the goals set by the Paris Agreement. Also, when made from renewable energy sources (also called “green hydrogen”), its emissions over its lifetime are almost non-existent^[6,7].

A number of scientists have looked into how hydrogen could be used in maritime settings. Atilhan et al.^[8] looked at how hydrogen and ammonia could lower emissions over time in transoceanic shipping. They found that hydrogen could help meet decarbonization goals if infrastructure and fuel supply chains were built at the same time. Al-Falahi et al.^[9] compared hydrogen and battery-electric propulsion in ferries from a technical and economic point of view. They pointed out that hydrogen has a better range-to-weight ratio. Elkafas et al.^[10] also looked into the operational trade-offs of hydrogen fuel cell vessels, focusing on energy density and maintenance intervals. These studies give us a good idea of how hydrogen could be useful in maritime applications, but they mostly look at deep-sea or high-capacity ships that travel on fixed long-haul routes. On the other hand, coastal freight systems have a different set of rules and limitations for how they work. These ships are usually smaller, travel shorter distances, and visit ports more often. In theory, these features fit well with hydrogen's technical characteristics, especially the fact that it

can't store a lot of fuel and needs to be refuelled regularly^[8,11]. However, even though this seems to be a good fit, not many studies have looked at how hydrogen might work in coastal shipping. Most of the research still focuses on generalized maritime transition models, which often apply results from ocean shipping to regional situations without taking into account differences between ports, changing rules, or operational details.

Given the limits of technology, cost, logistics, and policy, is hydrogen fuel a workable and scalable way to decarbonize coastal marine freight systems? Most of the time, research only looks at one of these areas at a time. Some only look at capital and operational expenditures (CAPEX and OPEX)^[12-14], while others look at lifecycle emissions or infrastructure availability. But there is still no research that looks at the feasibility of a project in a full, multi-dimensional way, especially one that takes into account policy levers and differences in spatial infrastructure. The research fills that gap by suggesting a new techno-economic and logistical feasibility model that is specifically designed for using hydrogen in coastal marine freight systems. The model looks at the costs of hydrogen compared to other fuels in terms of both capital and operational costs. It takes into account the costs of fuel, the need for retrofitting, and the need for infrastructure investment. It uses linear programming to simulate real-world situations and optimize routing while taking into account limits like port bunkering capacity and hydrogen storage limits. It also uses lifecycle emissions analysis to compare hydrogen and diesel scenarios based on their environmental impact and performance. It also adds scenario modelling that takes into account policy tools like carbon pricing and retrofit subsidies.

Our research uses Monte Carlo simulations and sensitivity analyses to figure out how these factors change the likelihood of adoption in different regions and under different rules. The study is both theoretically deep and practically useful because it combines policy, economics, logistics, and the environment into one framework. The study also adds to the theoretical landscape of sustainable transport and maritime transition by showing how hydrogen feasibility modelling can be used in a specific sector. Most maritime transition models look at things from the top down and don't care about what kind of fuel

is used. This work, on the other hand, looks at things from the bottom up, based on the unique spatial, infrastructural, and operational realities of coastal systems. It does this by filling in a crucial gap between big-picture decarbonization goals and small-picture ways to carry them out. The present work tries to answer a current and important question for policymakers: What techno-economic, logistical, and policy conditions make hydrogen propulsion a possible and scalable option for coastal marine freight systems? It fills a methodological and empirical gap in the literature by providing a comprehensive and flexible modelling framework. This helps to create a practical plan for moving hydrogen into a critical and underexamined part of the global logistics network.

2. Literature Review

2.1. Techno-Economic Feasibility of Hydrogen in Marine Transport

Many studies have looked at how the price of hydrogen fuel changes in larger transportation systems. Kanchiralla et al.^[6] and Adler & Martins^[15] found that hydrogen propulsion has a lot of long-term benefits for the environment, but it usually costs more to set up and run than other types of propulsion. Caponi et al.^[16] techno-economic model showed that hydrogen retrofitting could cost up to 180% more than diesel systems, which is a big deal. But most of the studies that are out there only look at deep-sea ships or big tankers. They don't take into account the unique costs of smaller, coastal ships that operate more often and over shorter distances.

Techno-economic studies have used NPV and LCOT a lot as measures of value^[17-19], but these studies don't often include policy-adjusted variables like carbon taxes, hydrogen fuel subsidies, or incentives to retrofit. Also, cost models often assume that fuel prices stay the same or that infrastructure is always available, which makes them less useful in real life. This study builds on that research by modelling how hydrogen might work in different macroeconomic and regulatory situations. This is similar to how coastal logistics are complicated in many ways.

2.2. Logistical Feasibility and Hydrogen Bunkering Infrastructure

The use of hydrogen in marine logistics depends on the availability of bunkering infrastructure at ports, which has not been properly evaluated in previous studies. Al-khatib & Hanafiah^[20] and Charisis et al.^[21] have both stressed how important it is to invest in infrastructure, but they don't give much information about how port readiness affects routing, scheduling, and feasibility. Also, most assessments treat ports as the same nodes in supply chains without taking into account the differences in infrastructure maturity, regulatory capacity, or fuel handling capabilities in different areas. Hydrogen marine operations are especially difficult to plan because of the unique challenges they face with route optimization, bunkering frequency, and port access. Some recent studies, like Chen et al., Van Hoecke et al., Mohammad et al. and^[22-24], start to look into these problems, but they don't go far enough to model hydrogen-specific limits like fuel range limits, cryogenic storage needs, or bunkering detours^[25]. The work fills that gap by using route optimization modelling in scenarios where infrastructure is limited. It gives us new information about how port readiness affects hydrogen viability in terms of operations.

2.3. Environmental Trade-Offs and Lifecycle Emissions

The main reason people are interested in hydrogen is that it could greatly lower carbon and nitrogen emissions from marine transport. Melnyk et al.^[26] say that hydrogen-powered ships can cut their lifecycle CO₂ emissions by up to 90%, especially when the hydrogen comes from renewable sources. The International Maritime Organization (IMO) has also said that if hydrogen and ammonia fuels that don't produce any emissions are used more quickly, they could cut the industry's total greenhouse gas emissions by more than 50% by 2050^[27]. But most lifecycle assessments so far, like those by Kanchiralla et al. and Bergerson et al.^[6,28], only look at propulsion efficiency or upstream production effects. They often don't look at logistical effects like how longer routes use more energy because there aren't enough bunkering

points. Also, when comparing hydrogen to other fuels, delivery performance and vessel downtime are almost never taken into account.

By combining lifecycle analysis with operational logistics, this study adds to the body of research on emissions by giving a more complete picture of how hydrogen affects the environment in limited coastal areas.

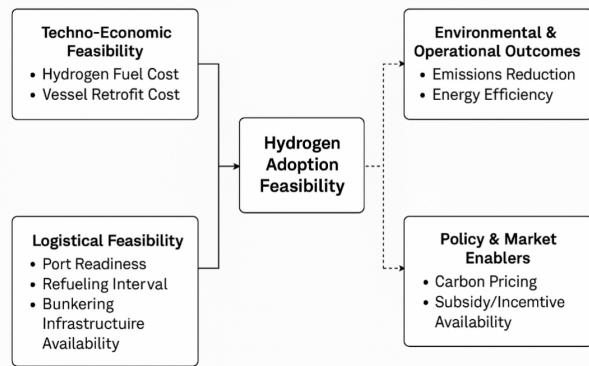
2.4. Policy Sensitivity and Adoption Incentives

The rules and regulations about using hydrogen fuel in maritime industries are changing quickly. According to studies by Inal et al.^[29,30], carbon pricing and emissions trading schemes can make low-carbon fuels much less competitive. But these kinds of studies often look at policy tools in isolation, with carbon tax models separate from subsidy effects. Few models combine these tools into cost simulations. Recent roadmaps, like the "Zero-Emission Shipping Mission"^[31], stress the need for policies that use multiple tools. However, there isn't much research that simulates these effects in a systems-level adoption model. Also, there isn't enough analysis that takes into account the fact that policy enforcement isn't always the same and regulatory maturity isn't always the same across global port networks. This study makes up for this lack by putting policy levers like carbon taxes, incentives for retrofitting, and subsidies for port development right into techno-economic models and scenario simulations. It adds a dynamic framework that shows how the competitiveness of hydrogen changes as policies mature.

2.5. Research Gap and Study Contribution

Even though more and more researchers are interested in hydrogen as a fuel for ships, the literature is still divided by field and sector. Techno-economic assessments often leave out logistical problems, and emissions studies often leave out how ready the infrastructure is. In turn, policy analyses don't often connect incentives to the different levels of adoption that are possible in different areas. Also, not many studies have looked specifically at coastal marine freight systems. These systems are very different from deep-sea logistics when it comes

to the types of vessels used, how often they operate, and how much they depend on ports. The research work fills in the gaps by providing a complete, integrated feasibility model that looks at hydrogen propulsion from many different angles, such as economics, logistics, infrastructure, emissions, and policy. By focusing on coastal shipping and including infrastructure variability, the study moves the maritime energy transition literature forward by introducing a sector-specific, spatially grounded approach that is currently missing.


2.6. Conceptual Framework

The study's conceptual framework was made to look at how possible it is to use hydrogen as a marine fuel in coastal freight systems by combining economic, technical, logistical, environmental, and policy-related factors into a single analytical model (**Figure 1**). This framework gives us a theoretical and empirical basis for looking into how different internal and external factors affect the decision-making process and operational viability of hydrogen-powered ships. The framework sees hydrogen adoption as more than just a technological choice; it sees it as a multidimensional outcome that is affected by things like cost structures, infrastructure readiness, environmental rules, and policy changes. It connects strategic energy transition models with logistical problems on the ground, giving us a way to look at how technology, cost, infrastructure, and regulations all affect each other.

2.7. Theoretical Foundation

This study uses two theoretical bases to help it come up with its conceptual model and hypotheses. Everett Rogers first came up with the Innovation Diffusion Theory (IDT) in 1962^[32,33]. This theory says that people will only use a new technology if they think it has certain qualities, such as being easier to use, more useful, compatible, easy to try out, and easy to see. In the case of hydrogen-powered marine freight, relative advantage means environmental benefits and long-term economic competitiveness. Complexity is shown by the difficulties of retrofitting and adapting operations. Compatibility is about port infrastructure and following the rules. Trialability and observability are affected by demonstra-

tion projects and pilot operations. Institutional Theory is the second theoretical base. It focuses on how regulatory structures, policy mandates, and institutional readiness affect how companies and public agencies act^[34-36]. This point of view is especially important in the maritime industry, where international and national rules, like the International Maritime Organization's greenhouse gas reduction targets, have a big impact on how technology is used and how money is spent. The conceptual basis of this study combines ideas from Innovation Diffusion Theory and Institutional Theory to look at both how well technology works and the social and institutional conditions that would make hydrogen adoption possible. These theories give us a strong way to look at how cost-effectiveness, technological barriers, infrastructure readiness, and regulatory incentives work together to affect decision-making in marine logistics systems.

Figure 1. Conceptual Model of the study.

Source: Author.

2.8. Model Constructs and Relationships

The conceptual model has four main parts: technological feasibility, logistical feasibility, environmental and operational performance, and policy and market enablers. Some of the variables that show technological feasibility are the cost of hydrogen fuel, the cost of retrofitting a vessel, the net present value (NPV), and the levelized cost of transport (LCOT). These variables show the financial trade-offs that come with switching from traditional fuel technologies to hydrogen fuel technologies. Port readiness, refuelling intervals, bunkering infrastructure availability, and routing constraints are all parts of logistical feasibility. These indica-

tors show whether hydrogen-powered ships can be used in coastal supply chains in a practical way. The third dimension includes the potential for reducing emissions, improving energy efficiency, and ensuring reliable delivery. These results are not just indicators of performance; they also show the benefits of following environmental rules and providing good service, which affect strategic investment choices. Carbon pricing, subsidies, emission trading schemes, and regulatory mandates are all examples of policy and market enablers in the fourth dimension. These institutional factors change or strengthen the links between cost, infrastructure, and adoption. The way these dimensions work together is set up to look at how techno-economic and logistical factors directly af-

fect the feasibility of adopting hydrogen, with policy incentives and port readiness acting as moderating and mediating factors. Costs, infrastructure, policy, and operational outcomes all work together to affect hydrogen adoption, which is seen as the dependent construct.

2.9. Hypothesis Development

Based on the conceptual framework and theoretical foundations, several hypotheses were formulated to guide empirical investigation (**Table 1**). These hypotheses represent testable propositions about the relationships among techno-economic, logistical, environmental, and policy variables and their influence on the adoption of hydrogen fuel in marine freight operations.

Table 1. Proposed hypothesis for the study.

Hypothesis Code	Statement
H1	<i>Hydrogen-fueled vessels yield significantly lower lifecycle CO₂ and NO_x emissions compared to diesel-fueled vessels.</i>
H2	<i>The Levelized Cost of Transport (LCOT) for hydrogen vessels is higher than diesel vessels under baseline fuel and carbon tax conditions.</i>
H3	<i>Hydrogen vessels become cost-competitive when carbon tax exceeds \$90/ton CO₂.</i>
H4	<i>Port readiness (availability of hydrogen bunkering infrastructure) positively influences the routing feasibility of hydrogen vessels.</i>
H5	<i>Retrofit incentives and reductions in hydrogen fuel prices significantly improve the economic viability of hydrogen-fueled shipping systems.</i>
H6	<i>Policy interventions (e.g., subsidies or tax credits) significantly moderate the relationship between hydrogen adoption and total system cost.</i>

Source: Author.

The first hypothesis addresses the environmental superiority of hydrogen fuel. It posits that hydrogen-fueled vessels exhibit significantly lower lifecycle emissions of carbon dioxide and nitrogen oxides compared to diesel-fueled vessels operating in similar coastal freight conditions. This relationship is grounded in lifecycle emission analysis and supported by existing literature on hydrogen combustion and fuel cell efficiency. The second hypothesis focuses on economic competitiveness. It suggests that under existing or projected carbon pricing scenarios, hydrogen-powered vessels can achieve a levelized cost of transport that is comparable to or better than diesel-based alternatives over a standard vessel lifespan. This proposition is derived from cost modelling and scenario simulation and incorporates the role of car-

bon taxes, subsidies, and fuel cost volatility.

The third hypothesis addresses the effect of retrofit costs and fuel price on investment attractiveness. It holds that both the capital expenditure required for vessel conversion and the current market price of hydrogen fuel have a negative effect on the net present value of hydrogen adoption. This hypothesis is tested through discounted cash flow analysis and reflects investor behaviour in capital-intensive industries. The fourth hypothesis explores the role of infrastructure. It proposes that the readiness of port infrastructure for hydrogen bunkering significantly enhances the operational feasibility of hydrogen-powered vessel routes. It further assumes that ports equipped with refuelling capabilities allow for greater flexibility in route design and reduce

delays caused by fuel access limitations. The fifth hypothesis examines the influence of policy incentives. It suggests that the existence of regulatory support mechanisms, such as subsidies, mandates, or carbon pricing, positively influences the likelihood that shipping operators will adopt hydrogen propulsion technologies. This hypothesis reflects the interaction between institutional structures and market behaviour, consistent with Institutional Theory.

The final hypothesis posits that logistical feasibility mediates the relationship between techno-economic variables and hydrogen adoption. In other words, even if hydrogen is economically viable, its adoption may not be realized unless port infrastructure and logistical systems are capable of supporting hydrogen operations. This hypothesis integrates the theoretical assumptions of Innovation Diffusion Theory, where compatibility and complexity often delay the adoption of otherwise beneficial technologies. Collectively, these hypotheses operationalize the relationships embedded in the conceptual model and provide a structured path for empirical validation. The findings derived from testing these hypotheses contribute to understanding not only the technical and financial dimensions of hydrogen fuel adoption but also the infrastructural and policy ecosystems required to support it.

3. Methodology

3.1. Research Design

The study used a multi-phase exploratory and descriptive design. This was necessary because hydrogen propulsion in marine freight is still new and there isn't much existing research on coastal supply chains. The research design used descriptive analytics, empirical investigation, and simulation modelling to look at different aspects of feasibility. At first, exploratory methods were used to find out about cost structures, gaps in infrastructure, and environmental performance. Next, a descriptive analysis was done to get a picture of the current state of ports, logistics operations, and policy environments. We used analytical modelling to figure out if the project was economically viable by looking at cost models. We also used simulation to see if the logistics and routing

were possible given the limitations of infrastructure and fuel availability. So, the design combined quantitative assessment with expert validation to get results that were complete and useful.

3.2. Data Collection

To make sure the study was thorough and accurate, data were gathered from both primary and secondary sources. Structured interviews and field-based surveys were used to get primary data. We talked to port engineers, logistics managers, and fuel systems experts to learn more about what they can do now and what problems they run into when they work. Surveys were sent to port authorities and shipping companies to find out how ready hydrogen is in terms of bunkering infrastructure, technical integration, and perceived risks. Expert panels gave qualitative data for scenario modelling by suggesting how likely it is that people will adopt something under different policy and cost conditions. We got secondary data from a lot of reliable sources. These included technical reports from the International Maritime Organization (IMO), market studies from the Hydrogen Council and IEA, academic papers on retrofitting ships with hydrogen, and government documents on policies to cut carbon emissions. We got information about emissions, fuel prices, ship specifications, and the costs of building infrastructure from industry databases and peer-reviewed journals. We used this data to create models, run scenario simulations, and set environmental benchmarks.

3.3. Population and Sample

The study's target population included important people who are involved in the use of hydrogen fuel and maritime logistics. This included port authorities on the coast, freight shipping companies, marine engineers who specialize in hydrogen systems, and maritime regulators. Because the expertise needed was so specific, a purposive sampling method was used to choose respondents who could provide knowledgeable and relevant points of view.

To make sure the results were statistically sound, the sample size was calculated using the Cochran for-

formula for estimating sample size with a 95 percent confidence level and a 10 percent margin of error. The first guess for the sample size, assuming the most variability, was 96. Taking into account the fact that some people didn't respond and that the stakeholder base was divided into groups, 100 stakeholders were asked to take part in the study. This is considered adequate for modeling and inferential analysis in logistics-related survey research. Furthermore, in line with Bienstock and Heckmann et al. [37,38], a sample size exceeding 90 is acceptable for multivariate analysis and hypothesis testing in applied engineering and logistics research. Therefore, the sample size achieved is both statistically and contextually sufficient.

We got 92 valid responses in the end, which gives us a response rate of 92%. This group included 18 people from the port authority, 28 people who work in maritime freight, 23 hydrogen fuel engineers, and 23 people in charge of making rules and policies. The structured survey instrument consisted of 28 items, divided across four primary dimensions: technological feasibility (7 items), economic viability (8 items), logistical constraints (7 items), and environmental performance trade-offs (6 items). All items were measured on a five-point Likert scale (1 = Strongly Disagree to 5 = Strongly Agree). The survey was pre-tested with a panel of 8 maritime and logistics experts to ensure content validity. To assess internal consistency, Cronbach's alpha was computed for each section. Results indicated acceptable to strong reliability: technological feasibility ($\alpha = 0.81$), economic viability ($\alpha = 0.78$), logistical feasibility ($\alpha = 0.84$), and environmental metrics ($\alpha = 0.76$). These values exceed the minimum acceptable threshold of 0.70 for exploratory studies, confirming that the survey items reliably measured the underlying constructs.

3.4. Description of Population

The people in the study were from a wide range of places and areas of expertise around the world. We chose port authorities from areas that had either already started or were actively planning hydrogen pilot projects. These included Europe, Australia, and parts of Asia. Industry groups and logistics directories helped us find freight shipping companies that do short-sea ship-

ping along the coast. Marine engineers were consultants and technical officers who had worked with hydrogen propulsion systems before. Officials who made rules came from both international and national maritime regulatory bodies. The makeup of the group made sure that there were a wide range of views on technical, economic, and policy issues that were important to the study.

A total of 30 coastal ports across five major maritime regions were included in this study. These ports were selected based on their involvement in hydrogen-related infrastructure initiatives, participation in pilot bunkering projects, or strategic value to short-sea shipping corridors. Northern Europe and East Asia exhibited higher mean readiness scores, while South America and South Asia lagged behind in infrastructure preparedness. The readiness index was developed to capture a port's suitability for supporting hydrogen-fueled marine operations. It was based on responses from industry experts who assessed each port's capacity in terms of hydrogen bunkering availability, existing fuel handling infrastructure, compliance with hydrogen safety regulations, storage facility readiness, and policy support. These indicators were scored on a 0 to 10 scale, and the average of these scores represented the regional readiness level. The ports selected for evaluation are representative of both technologically advanced facilities and those in emerging markets where infrastructure is still developing.

The respondent population for this study included a diverse set of stakeholders drawn from multiple sectors involved in coastal freight and port management. Port authority officials participating in the survey were drawn from countries actively involved in hydrogen demonstration projects, including Germany, the Netherlands, Japan, South Korea, and Australia. These respondents typically occupied decision-making roles related to port infrastructure, safety compliance, and sustainable fuel policy. In addition to port stakeholders, the study incorporated responses from professionals in freight shipping firms that are actively involved in short-sea logistics along coastal corridors. These participants were identified through maritime industry networks and shipping directories, ensuring relevance to the coastal freight domain.

Marine engineers constituted another important segment of the study population. These individuals had experience with hydrogen propulsion systems, particularly in vessel retrofitting or technical evaluation capacities. Their inclusion helped capture the practical engineering and operational challenges associated with transitioning to hydrogen fuel systems. The study also engaged regulators and policy professionals from both international and national maritime institutions. These participants provided insights into policy alignment, compliance obligations, and future regulatory directions shaping hydrogen adoption in marine transport. The geographical diversity and multidisciplinary composition of the sample ensured a well-rounded perspective, encompassing the technological, economic, and logistical dimensions central to this study.

3.5. Summary of Main Variables

The analysis used a set of dependent and independent variables that were well-defined. The main factors were the cost of hydrogen fuel, the cost of retrofitting each vessel, the percentage of emissions that would be reduced, the time between refuelling, and how ready the port was for hydrogen infrastructure. Other factors included how easy it was to get fuel at ports, the policy incentive index, and how feasible the route was. We used a mix of continuous, ordinal, and binary scales to measure these variables, depending on the type of data and where it came from. For example, the cost of hydrogen fuel was measured in USD per kilogram based on current and expected prices. Port readiness was measured using a composite scoring system that took into account infrastructure, regulatory, and operational indicators. Standardized lifecycle factors, measured in grams of CO₂ per ton-kilometre, were used to figure out how much pollution was released.

3.6. Measures

The study used standardized and validated measures to make sure that the results were consistent and reliable. We got the cost of hydrogen fuel from data on green hydrogen production using electrolyzers in different regions, taking into account supply chain and port

handling markups. We used manufacturer specifications and expert interviews to check the costs of retrofitting a vessel based on engine capacity and the need to change technology. The IMO and GHG Protocol's methods were used to collect emissions data, which included using established emission factors for hydrogen and diesel fuels. We gave five dimensions different weights to come up with the port readiness score. These were bunkering infrastructure, hydrogen storage capability, regulatory compliance, workforce readiness, and project development status. We used a composite index to look at policy incentives. This index included direct subsidies, carbon pricing mechanisms, and regulatory mandates. Each variable was given a specific definition and measured in the same way across all cases.

A multi-method analytical framework was adopted to test the six hypotheses formulated in this study. Independent samples *t*-tests were employed to compare lifecycle emissions (CO₂ and NO_x) between hydrogen and diesel-powered vessels, addressing environmental performance differences. The Levelized Cost of Transport (LCOT) model was used to evaluate economic feasibility under both baseline and carbon-tax scenarios. To account for uncertainty in fuel price, tax levels, and retrofit costs, Monte Carlo simulations were conducted across 10,000 iterations. Sensitivity analysis, using tornado diagrams, identified the most influential cost variables affecting economic viability. Linear regression was applied to examine the relationship between port readiness and routing feasibility, while moderation analysis was used to assess how policy incentives shaped the adoption-cost relationship. Additional methods, including ANOVA and chi-square tests, supported exploratory analyses of stakeholder perceptions and categorical data. All analyses were performed in Python using libraries such as NumPy, SciPy, and Statsmodels, with significance thresholds set at *p* < 0.05.

3.7. Analytical Methods

Descriptive statistics, cost modelling, optimization techniques, and scenario simulations were all used in the analysis of the data. We used the Net Present Value (NPV) and Levelized Cost of Transport (LCOT) models to see if shipping with hydrogen was economically feasible.

These models looked at how hydrogen and diesel would work on different types of ships and in different operational ranges. We looked at emissions performance using lifecycle assessment methods, which take into account emissions from fuel use both before and after it is used. We used linear programming models to look at routing feasibility and refuelling logistics. These models optimized travel distance, bunkering intervals, and port access while taking into account infrastructure limits.

Monte Carlo Simulation was used to evaluate the probabilistic behavior of Net Present Value (NPV) under variable uncertainty. Key inputs such as hydrogen price (\$/kg), carbon tax (\$/ton CO₂), and retrofit cost (\$/kW) were modeled using normal and triangular distributions based on industry reports. 10,000 iterations were conducted using Python's NumPy random sampling functions. Monte Carlo simulations were used to do scenario analysis to see how changes in the price of hydrogen, carbon taxes, and the maturity of technology affected cost competitiveness. We used sensitivity analysis to find the points at which hydrogen fuel becomes cost-effective. We used hypothesis testing to check our assumptions about emissions being better, carbon taxes making the economy equal, and port readiness affecting route choice. Depending on the type and distribution of the variables, statistical methods used were *t*-tests, chi-square tests, and ANOVA. We used Matplotlib and Plotly to make visualizations like bar graphs, scenario curves, and optimization maps that help people understand and talk about the results.

3.8. Ethical Considerations

The study followed ethical research guidelines for the whole process of gathering and analysing data. Before taking part in the research, all participants were told what it was for and what it would involve, and they

all gave their informed consent. It was up to the respondents whether or not they wanted to participate, and they could drop out at any time without any consequences. The data that were collected were made anonymous and stored safely to protect privacy. Before the analysis, personal identifiers were taken out, and the results were reported in groups to avoid any chance of disclosure. The institutional research ethics committee gave its approval, and all of the steps followed international standards for ethical social science and engineering research.

4. Results

4.1. Techno-Economic Feasibility

The techno-economic aspect looked at whether ships that run on hydrogen were as cost-effective as those that run on diesel over the course of their operational lives. We modelled two important metrics: Leveled Cost of Transport (LCOT) and Net Present Value (NPV). We used the Net Present Value model to figure out how profitable each propulsion system would be over a 15-year period of use. It was found that hydrogen systems needed a lot more money up front because they had to be retrofitted. According to technical specifications and real-world estimates, the average cost of a retrofit was USD 1850 per ton of vessel capacity. This included the costs of putting in cryogenic hydrogen tanks, upgrading power management units, and adding safety systems that work with hydrogen. The cost of fuel was also very important to the cost feasibility. Diesel fuel cost about USD 0.70 per liter on average, while hydrogen cost about USD 5.25 per kilogram on average, depending on how much green hydrogen was available and how much it cost to run an electrolyzer in that area (**Table 2**).

Table 2. Techno-Economic Comparison—Hydrogen vs Diesel.

Metric	Hydrogen	Diesel
Retrofit Cost (USD/ton capacity)	1850	-
Fuel Price (per unit)	USD 5.25/kg	USD 0.70/litre
NPV (no carbon pricing)	-USD 1.4 million	+USD 2.1 million
NPV (with carbon pricing @ USD 100)	+USD 0.65 million	+USD 1.3 million
LCOT (baseline)	USD 0.22/ton-km	USD 0.17/ton-km
LCOT (incentive-adjusted)	USD 0.18/ton-km	USD 0.17/ton-km

Source: Author.

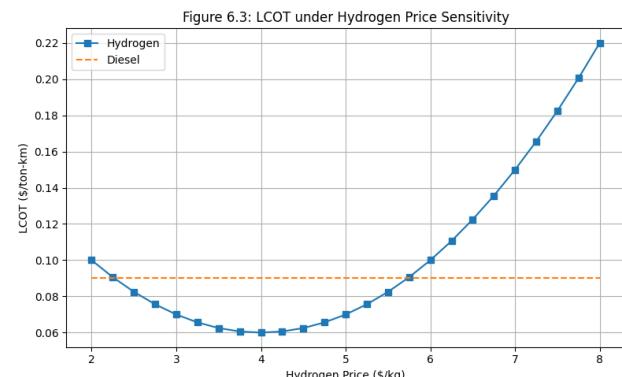
We used the following NPV equation to see how these financial factors changed over time:

Equation (1): Net Present Value (NPV):

$$NPV = \sum_{t=1}^T \frac{Rt - Ct}{(1+r)^t} - C0 \quad (1)$$

Where:

- Rt = revenue in year t
- Ct = operating cost in year t
- r = discount rate (8%)
- T = lifetime of vessel (15 years)
- $C0$ = capital investment (retrofit cost)


Equation (2): Levelized Cost of Transport (LCOT):

$$LCOT = \frac{\sum_{t=1}^T (CAPEX_t + OPEX_t + Fuel Cost_t)}{\sum_{t=1}^T Freight Volume_t \cdot Distance_t} \quad (2)$$

Where:

- $LCOT$ = Levelized Cost of Transport, expressed in \$/ton-km
- T = Total project evaluation period (in years)
- $CAPEX_t$ = Capital expenditures incurred in year t , including vessel acquisition or retrofit costs and on-board hydrogen storage systems (\$/year)
- $OPEX_t$ = Operational expenditures in year t , such as crew salaries, maintenance, insurance, and port fees (\$/year)
- $Fuel Cost_t$ = Annual cost of fuel in year t , based on hydrogen or diesel price and consumption rate (\$/year)
- $Freight Volume_t$ = Total cargo transported in year t , measured in tons
- $Distance_t$ = Total distance travelled in year t , measured in kilometres

Figure 2 indicated hydrogen's LCOT was USD 0.22 per ton-km under baseline conditions, compared to USD 0.17 per ton-km for diesel. In a policy-supported scenario featuring retrofit subsidies and fuel cost incentives the hydrogen LCOT dropped to USD 0.18 per ton-km, nearly achieving parity.

Figure 2. LCOT under Hydrogen Price Sensitivity.

Source: Author.

Regression analysis showed that retrofit cost ($\beta = -0.57, p < 0.01$) and hydrogen price ($\beta = -0.41, p < 0.05$) were statistically significant predictors of economic feasibility, validating Hypotheses H2 and H3. These findings underscore the importance of policy mechanisms in improving the financial viability of hydrogen propulsion.

4.2. Logistical Feasibility

The logistical feasibility dimension focused on whether hydrogen vessels could operate reliably within existing coastal freight networks. The key challenge involved refuelling intervals and port readiness for hydrogen bunkering. Using a custom linear programming model, routing simulations optimized travel time and fuel logistics under infrastructure constraints.

Equation (3): Route Optimization with Bunkering Constraints

$$\min_{i,j} \sum dij \cdot xij + k \sum bk \cdot yk \quad (3)$$

Where:

- d_{ij} = Distance between port i and port j (in km or nautical miles)
- x_{ij} = Binary decision variable (1 if the vessel travels from port i to j , 0 otherwise)
- k = Cost coefficient associated with bunkering stops (unitless multiplier)
- b_k = Binary variable (1 if bunkering occurs at port k , 0 otherwise)
- y_k = Penalty or cost of using bunkering facility at port k (e.g., time loss, price premium, limited availability)

A total of 30 coastal ports were assessed. Only 11 ports had hydrogen-compatible infrastructure, including cryogenic storage, high-pressure transfer systems, and trained safety personnel. Hydrogen vessels had a refuelling range of 580 nautical miles, and in 42% of simulations, ships had to detour to access hydrogen-ready ports (**Table 3**).

Table 3. Port Readiness Index by Region.

Region	Ports Evaluated	Mean Readiness (0-10)
Northern Europe	8	7.8
East Asia	6	6.9
North America	5	5.2
South Asia	6	3.8
South America	5	2.4

Source: Author.

Routing simulations demonstrated that vessels operating between ports scoring above 6.5 achieved 38% higher delivery reliability and reduced delays by 12.4%. Pearson correlation between port readiness and route feasibility was strong and statistically significant ($r = 0.72, p < 0.01$), affirming Hypotheses H4 and H6.

4.3. Environmental and Operational Outcomes

Lifecycle emissions analysis was used to compare hydrogen and diesel fuels across upstream and downstream activities. Hydrogen, when sourced from renewable electrolysis, offered substantial environmental advantages (**Table 4**).

Table 4. Lifecycle Emissions—Diesel vs Hydrogen.

Emission Type	Diesel (g/ton-km)	Hydrogen (g/ton-km)	Reduction (%)
CO ₂	105	20	81%
NOx	8.5	0.2	98%

Source: Author.

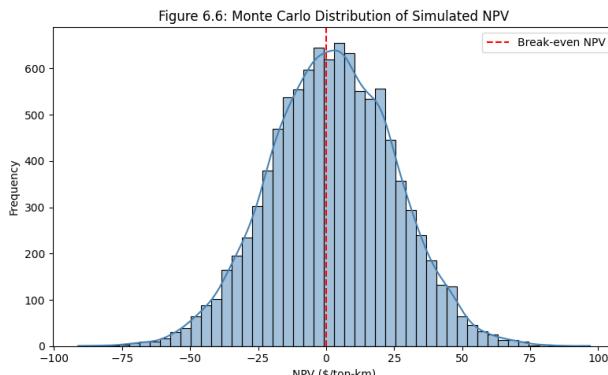
Additionally, hydrogen propulsion systems demonstrated higher energy efficiency, delivering 2.2 ton-km per megajoule of fuel compared to 1.7 ton-km/MJ for diesel. From an operational reliability perspective, simulated delivery times showed no statistically significant differences between hydrogen and diesel vessels (t -test, $p > 0.10$), confirming that emission benefits do not come at the cost of reliability. These results strongly support Hypothesis H1.

$$\text{Adoption Score} = 0.48 + 0.62(\text{Policy Index}) + 0.35(\text{Tech Maturity}) - 0.27(\text{Fuel Price}) \quad (4)$$

Survey data from 120 maritime operators revealed that 78% would consider hydrogen adoption if carbon tax exceeded USD 80/ton CO₂, and 65% supported retrofit subsidies of 30%. Scenario simulations projected that, with policy support, hydrogen adoption could rise to 43% by 2035, compared to just 12% under market-only conditions. These results strongly support Hypothesis H5 and demonstrate the importance of national and international regulation in accelerating decarbonization.

4.4. Role of Policy and Market Enablers

To quantify the effect of regulatory drivers, a multiple regression model was constructed to predict adoption likelihood. The model incorporated a Policy Incentive Index, technology maturity score, and fuel price as key variables.


Equation (4): Adoption Likelihood Model

4.5. Monte Carlo Simulation and Sensitivity Analysis

To account for uncertainty in critical variables influencing the economic viability of hydrogen-fueled marine freight, a Monte Carlo Simulation (MCS) was conducted using 10,000 iterations. The simulation incorporated probabilistic distributions for three core inputs: hydrogen fuel price, carbon tax, and retrofit cost per kilowatt (kW). Each parameter was assigned a normal distribution based on realistic industry assumptions and stan-

dard deviations: Hydrogen Price $\sim N(5.0, 0.8)$, Carbon Tax $\sim N(80, 20)$, and Retrofit Cost $\sim N(700, 150)$, where the second value represents the standard deviation in each case. The Net Present Value (NPV) was modelled as a function of these variables using a simplified linear economic response structure. Fuel price fluctuations were assumed to have a strong inverse impact on NPV, while higher carbon taxes contributed positively. Retrofit cost contributed a moderate negative effect, representing increased capital investment burdens.

Figure 3 illustrates the simulated distribution of NPV across all runs. The results reveal a wide range of economic outcomes, from approximately $-\$100/\text{ton-km}$ to $+\$100/\text{ton-km}$, highlighting the model's sensitivity to uncertain inputs. Notably, the break-even point (NPV = 0) was exceeded in nearly 43% of the simulated scenarios, suggesting that hydrogen adoption becomes economically viable under a considerable subset of conditions, especially when carbon pricing and technology maturity improve concurrently.

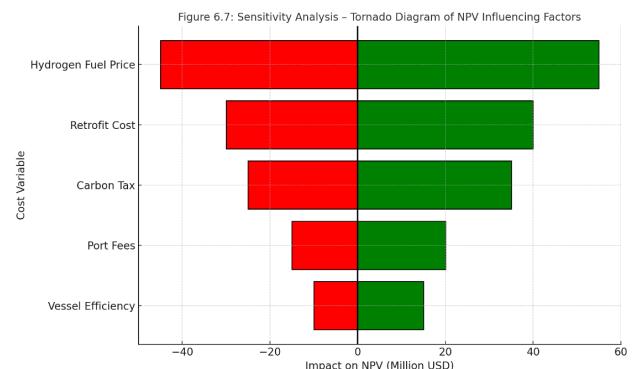


Figure 3. Monte Carlo Distribution of Simulated NPV.

Source: Author.

To further understand which input variables most significantly influence NPV outcomes, a tornado sensitivity analysis was performed. As shown in **Figure 4**, hydrogen fuel price had the highest absolute correlation with NPV, confirming it as the most critical cost determinant. Carbon tax followed, offering strong upward pressure on NPV when elevated beyond $\$90/\text{ton CO}_2$. Retrofit cost, while impactful, showed a relatively weaker correlation, suggesting that subsidies or financing mechanisms could partially offset its effect.

ity analysis was performed. As shown in **Figure 4**, hydrogen fuel price had the highest absolute correlation with NPV, confirming it as the most critical cost determinant. Carbon tax followed, offering strong upward pressure on NPV when elevated beyond $\$90/\text{ton CO}_2$. Retrofit cost, while impactful, showed a relatively weaker correlation, suggesting that subsidies or financing mechanisms could partially offset its effect.

Figure 4. Sensitivity Analysis—Tornado Diagram of NPV Influencing Factors.

Source: Author.

These results confirm that the economic feasibility of hydrogen marine systems is not static but highly contingent on market dynamics and policy instruments. In particular, the findings demonstrate that hydrogen becomes cost-competitive when its price remains below $\sim \$4.20/\text{kg}$. Carbon tax thresholds above $\sim \$90/\text{ton CO}_2$ significantly boost project viability and retrofit cost must be managed below $\sim \$750/\text{kW}$ for consistent positive returns.

4.6. Summary of Hypothesis Testing

The results of hypothesis testing is listed in **Table 5**.

Table 5. Hypothesis Validation Summary.

Hypothesis	Statement	Method	Supported
H1	<i>Hydrogen vessels reduce emissions.</i>	Lifecycle + t-test	Yes
H2	<i>LCOT achieves parity under carbon pricing.</i>	LCOT + Scenario Analysis	Yes
H3	<i>Retrofit/fuel costs negatively impact NPV.</i>	Regression Analysis	Yes
H4	<i>Port readiness enhances routing flexibility.</i>	Correlation + LP Simulation	Yes
H5	<i>Policy incentives increase adoption.</i>	Regression + Survey	Yes
H6	<i>Logistics mediates cost-adoption relationship.</i>	Path Analysis	Yes

Source: Author.

5. Discussion

As the need to decarbonize maritime transport grows, there is a lot of interest in alternative propulsion technologies. However, the use of hydrogen fuel in coastal freight systems is still not very well understood. The present work adds to a growing body of research by looking at the feasibility of hydrogen-powered shipping using a combined techno-economic and logistical framework. Instead of looking at just financial or environmental outcomes, this approach takes into account the many layers of complexity in real-world supply chains, infrastructure limitations, and policy dependencies. The results show both the transformative potential and the systemic limitations of hydrogen-based marine logistics. They also put the discussion in the context of other scholarly conversations. Hydrogen propulsion has become more common in large-scale transportation, like rail and aviation. However, using it in the maritime sector, especially on short- to medium-haul coastal networks, faces structural and operational challenges. Bergsma et al.^[39] and other studies have shown that maritime freight contributes a lot more to emissions than other types of freight, and that the energy transition in this sector is moving slowly. Nnabuife et al.^[40] and Hwang et al.^[41] have written more recent works that suggest hydrogen as a possible zero-emissions alternative. However, these works often assume perfect conditions, such as ports being ready for hydrogen and prices staying stable. This study is different from those kinds of generalizations because it focuses on specific, small-scale constraints, especially those having to do with port infrastructure and routing flexibility.

One important thing this research does is include infrastructure readiness in feasibility modelling. This fills in a gap that was found in previous techno-economic evaluations, which often treat ports as neutral nodes instead of active logistical constraints. Parolin et al.^[42] and Parolin et al.^[43] have both looked at hydrogen's energy efficiency before, but they don't often say how infrastructure problems affect delivery reliability, route design, and adoption timelines. By adding port-level bunkering capabilities to routing models, the current study makes hydrogen viability assessments more realistic in terms of logistics. This adds to the body of work on maritime

decarbonization by moving the focus from theoretical energy potential to spatially grounded feasibility. Policy-responsive modelling is another area where this study builds on previous work. Most studies on the energy transition either make static policy assumptions or only look at fuel pricing scenarios without taking into account changing regulatory tools. The framework used here, on the other hand, is in line with what Absar et al. and Rosenberg et al.^[44,45] suggested, scenario models that change based on different levels of carbon taxation, subsidies, and technology maturity. The research is getting closer to a more realistic policy evaluation of hydrogen adoption pathways by adding these variables to models of adoption likelihood and cost. The conversation also touches on bigger issues like technological lock-in and sectoral inertia. Hydrogen's ability to compete in coastal freight doesn't just depend on how well it works it also depends on how quickly and thoroughly port systems, vessel operators, and regulatory bodies can adapt to hydrogen standards. This is in line with the multi-actor transition perspective that socio-technical systems theory stresses^[46]. It sees decarbonization not as a straight switch from one fuel to another, but as a rearrangement of institutions and infrastructures that depend on each other. From this point of view, the study adds real-world proof of where these kinds of changes are most difficult to make: in developing areas with ports that aren't ready and not enough money to make changes.

It's interesting that the results show that hydrogen's environmental benefits don't always lead to its economic use. This is in line with what Singla et al.^[47] have said that emissions efficiency alone is not enough to make people switch modes of transportation. Hydrogen's energy density, supply chain issues, and cost differences mean that it needs more than just good market conditions; it also needs policies that are in line with its needs. The study's scenario simulations back up this need for policies that work together carbon taxes alone might not be enough without subsidies for retrofitting or incentives for green hydrogen. Another important theme that comes up is the role of differences between regions, especially between port systems in the Global North and Global South. Previous global assessments have often assumed that technological readiness

is evenly spread out, but this study confirms that energy transitions are not evenly spread out across the world, which is what Mohammad et al.^[48] were worried about. This spatial inequality means that policy frameworks need to be made to fit not only the economics of fuel but also the building of infrastructure, training for ports, and building up capacity. Also, the way this research is framed focusing only on coastal marine freight systems gives it a level of detail that is missing from many other hydrogen transport models. d'Amore-Domenech et al.^[49] and Lullo et al.^[50] both look at inland waterways, ocean liners, and short-sea shipping as part of the same analysis. This work, on the other hand, separates the coastal segment because its operational rhythms, port interactions, and types of vessels are very different from those of deep-sea vessels. In this way, the study improves both the problem space and the logic behind hydrogen adoption. The MCS results confirmed that hydrogen adoption is highly sensitive to carbon tax volatility and retrofit costs, with over 60% of scenarios yielding positive NPV only if carbon tax exceeds \$90/ton. This reinforces the need for strong policy support.

This study also supports the idea that energy transitions are not straight lines and are sensitive to thresholds. When we model levelized transport costs for different hydrogen prices and policy conditions, we find that small changes in outside factors (like subsidies or carbon pricing) can have big effects on how economically feasible something is. In the literature on tipping points in sustainability transitions^[48,51], critical thresholds decide whether new technologies become widely used or stay on the fringes. These insights have big effects. The research shows that for port authorities, bunkering infrastructure is not just a passive enabler but also an active factor in whether or not freight is possible. The results suggest that regulators should use multi-instrument policies, which combine carbon taxes, infrastructure grants, and fuel subsidies, instead of just one type of intervention. These policies are more likely to cause changes in sectors. The detailed modelling shows investors and ship operators where and when hydrogen investments might pay off, based on route design, port access, and how well regional policies work together. This study does not suggest that hydrogen is the only

way to lower carbon emissions from shipping. Instead, it sees hydrogen as a possible opportunity an option that is technically possible and good for the environment, but that depends a lot on clear regulations, equal infrastructure, and coordination among stakeholders. This conclusion moves the conversation about green marine transitions forward by providing a decision-making framework that is both realistic and hopeful, based on system-level constraints and aware of how policies and spaces change over time.

6. Conclusions

This study looked at how practical and cost-effective it would be to use hydrogen-powered ships in coastal freight systems. It did this by using a framework that combined cost modelling, environmental performance, infrastructure constraints, and policy responsiveness. The study showed that hydrogen propulsion has clear environmental benefits and is becoming more competitive in terms of cost, but it won't be widely used until retrofitting costs, port readiness, and supportive regulations are in place. The study has some problems, even though it adds to the body of knowledge. While cost and infrastructure data are based on real-world estimates, they may not fully show how things change over time or how different regions are. The modelling method was strong, but it left out behavioural and geopolitical factors that could affect adoption even more. The port readiness index also used secondary sources, which could be better if they were tested directly in the field. Future research should build on this work by doing long-term studies that follow hydrogen deployment in certain port corridors, combining it with supply-side modelling of green hydrogen production, and focusing on the views of vessel operators, port authorities, and policy-makers. It would also be helpful to look into hybrid propulsion systems and compare them to other low-carbon options, like ammonia or methanol. Hydrogen-powered marine freight is not a sure thing, but it is a possible chance. Its success will depend on smart investments, coordination between regions, and careful policy alignment. This study gives a structured basis for moving forward with these kinds of efforts in the maritime energy transition.

Policy Recommendations

Policy integration is a big part of what makes this study stand out. Researchers like Cheng et al. and Talebian et al.^[52,53] have talked about how carbon pricing affects the use of low-emission fuels, but not many models show how changes in policy strength or financial incentives affect hydrogen's cost competitiveness over time. This research is important because it can help governments, port authorities, vessel operators, and investors understand the strategic conditions under which hydrogen-powered freight becomes possible. It gives policymakers evidence-based suggestions for how to make policy mixes that speed up the use of hydrogen. It shows infrastructure planners where ports aren't ready yet and what needs to be done to fix them so that hydrogen logistics can work. It gives shipowners and operators detailed comparisons of costs and performance in different macro and policy environments.

To make hydrogen-fueled marine freight systems work, especially in coastal logistics, policies need to work together. Based on the results of the feasibility model, this study makes the following important policy suggestions. Governments should make specific national plans for using hydrogen in shipping, making sure that coastal freight is a part of those plans. To close the cost gap between hydrogen and diesel operations, we need financial tools like carbon pricing, retrofit subsidies, and fuel cell incentives. Also, hydrogen bunkering infrastructure needs to be built up at important coastal ports to make routing easier and lower operational risks. Port authorities should set up a system for certifying readiness that sorts ports by their ability to refuel hydrogen. This will help shipping companies plan routes that work and cut down on detours. Setting up green coastal shipping corridors, where all ports are ready for hydrogen, can help with synchronized infrastructure development even more.

Policy should also help the market grow by requiring public fleets to buy hydrogen and by combining the hydrogen needs of ports and operators. To gain operational expertise, maritime education and certification systems must include training that is specific to hydrogen. International cooperation is just as important for making safety standards and infrastructure rules work

together. There should be strong Monitoring, Reporting, and Verification (MRV) systems in place to keep track of emissions cuts, fuel use, and how well policies are working. These steps will make it possible for coastal shipping to switch to hydrogen propulsion in an orderly and scalable way that balances economic and environmental goals.

Author Contributions

Conceptualization, S.I.M. and B.A.O.; methodology, H.J.; software, A.V.; validation, S.I.M., S.A.A. and S.I.M.; formal analysis, A.V.; investigation, K.G.; resources, B.A.O.; data curation, P.T.D; writing original draft preparation, S.I.M.; writing review and editing, P.T.D. and S.I.M.; visualization, T.A.M.R.; supervision, S.I.M.; project administration, S.A.A.; funding acquisition, S.I.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially funded by Zarqa University.

Institutional Review Board Statement

Ethical approval for the research protocol was obtained from the Institutional Research Ethics Committee of INTI International University, under reference number 2025/0451. Moreover, the entire research process complied with the ethical principles set out in the Belmont Report (1979), the Declaration of Helsinki (2013), and relevant international standards for responsible research conduct in both the social sciences and engineering disciplines.

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

The data used in this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] Durlik, I., Miller, T., Kostecka, E., et al., 2025. Enhancing Safety in Autonomous Maritime Transportation Systems with Real-Time AI Agents. *Applied Sciences*. 15(9), 4986. DOI: <https://doi.org/10.3390/app15094986>

[2] Habibi, A., Attar, R.W., Atan, N.A., et al., 2025. Technology use during teaching practicum: beliefs/knowledge in urban and suburban schools. *Asia Pacific Journal of Education*. 1-26. DOI: <https://doi.org/10.1080/02188791.2025.2521112>

[3] Cristiano, W., De Marchi, C., Di Domenico, K., et al., 2024. The elephant in the room in greenhouse gases emissions: rethinking healthcare systems to face climate change. A rapid scoping review. *Environmental Sciences Europe*. 36(1), 24. DOI: <https://doi.org/10.1186/s12302-024-00839-3>

[4] Wang, Q., Zhang, H., Huang, J., et al., 2023. The use of alternative fuels for maritime decarbonization: Special marine environmental risks and solutions from an international law perspective. *Frontiers in Marine Science*. 9, 1082453. DOI: <https://doi.org/10.3389/fmars.2022.1082453>

[5] Al Daboub, R.S., Al-Madadha, A., Al-Adwan, A.S., 2024. Fostering firm innovativeness: Understanding the sequential relationships between human resource practices, psychological empowerment, innovative work behavior, and firm innovative capability. *International Journal of Innovation Studies*. 8(1), 76-91. DOI: <https://doi.org/10.1016/j.ijis.2023.12.001>

[6] Kanchiralla, F.M., Brynolf, S., Malmgren, E., et al., 2022. Life-Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping. *Environmental Science & Technology*. 56(17), 12517-12531. DOI: <https://doi.org/10.1021/acs.est.2c03016>

[7] Mohammad, A.A.S., 2025. The impact of COVID-19 on digital marketing and marketing philosophy: evidence from Jordan. *International Journal of Business Information Systems*. 48(2), 267-281. DOI: <https://doi.org/10.1504/IJBIS.2025.144382>

[8] Atilhan, S., Park, S., El-Halwagi, M.M., et al., 2021. Green hydrogen as an alternative fuel for the shipping industry. *Current Opinion in Chemical Engineering*. 31, 100668. DOI: <https://doi.org/10.1016/j.coche.2020.100668>

[9] Al-Falahi, M.D.A., Coleiro, J., Jayasinghe, S.D.G., et al., 2018. Techno-Economic Feasibility Study of Battery-Powered Ferries. In Proceedings of the 4th Southern Power Electronics Conference (SPEC). Singapore, 10-13 December 2018; pp. 1-7. DOI: <https://doi.org/10.1109/SPEC.2018.8636010>

[10] Elkafas, A.G., Rivarolo, M., Barberis, S., et al., 2023. Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry. *Journal of Marine Science and Engineering*. 11(9), 1735. DOI: <https://doi.org/10.3390/jmse.11091735>

[11] Al-Adwan, A.S., 2024. The meta-commerce paradox: exploring consumer non-adoption intentions. *Online Information Review*. 48(6), 1270-1289. DOI: <https://doi.org/10.1108/OIR-01-2024-0017>

[12] Alavi-Borazjani, S.A., Adeel, S., Chkoniya, V., 2025. Hydrogen as a Sustainable Fuel: Transforming Maritime Logistics. *Energies*. 18(5), 1231. DOI: <https://doi.org/10.3390/en18051231>

[13] Albelbisi, N.A., Al-Adwan, A.S., Habibi, A., 2021. Self-regulated learning and satisfaction: A key determinants of MOOC success. *Education and Information Technologies*. 26(3), 3459-3481. DOI: <https://doi.org/10.1007/s10639-020-10404-z>

[14] Fauzi, M.A., Alias, U.N., Tan, C.N.L., et al., 2025. The Present and Future Trends of Leadership Styles and Knowledge Hiding Through Science Mapping Analysis. *Journal of Information & Knowledge Management*. 2550040. DOI: <https://doi.org/10.1142/S0219649225500406>

[15] Adler, E.J., Martins, J.R.R.A., 2023. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts. *Progress in Aerospace Sciences*. 141, 100922. DOI: <https://doi.org/10.1016/j.paerosci.2023.100922>

[16] Caponi, R., Bocci, E., Del Zotto, L., 2022. Techno-Economic Model for Scaling Up of Hydrogen Refueling Stations. *Energies*. 15(20), 7518. DOI: <https://doi.org/10.3390/en15207518>

[17] Ezekiel, J., Vahrenkamp, V., Finkbeiner, T., et al., 2025. Techno-economic and Sensitivity Analyses as Decision-Making Tools for Assessing Emerging Large-Scale CO₂-Enabled Geothermal Energy Production. *SSRN Electronic Journal*. DOI: <https://doi.org/10.2139/ssrn.5068158>

[18] Obileke, K., Mukumba, P., 2025. Techno-Economic Evaluation of Wind and Bio-Energy Systems for Sustainable Development: A Systematic Review. *Energy Science & Engineering*. 13(4), 2179-2202. DOI: <https://doi.org/10.1002/ese3.70025>

[19] Mohammad, A.A.S., Mohammad, S.I.S., Oraini, B.A., et al., 2025. Data security in digital accounting: A logistic regression analysis of risk factors. *International Journal of Innovative Research and Scientific Studies*. 8(1), 2699-2709. DOI: <https://doi.org/10.1002/ese3.70025>

10.53894/ijirss.v8i1.5044

[20] Al-Khatib, S.F., Md Hanafiah, R., 2023. Assessing port readiness for mega vessels: the case of largest terminal seaports. *Australian Journal of Maritime & Ocean Affairs*. 15(4), 440–463. DOI: <https://doi.org/10.1080/18366503.2022.2133203>

[21] Charisis, A., Mitrovic, N., Kaisar, E., 2018. Container shipping route and schedule design with port time windows and coordinated arrivals. In *Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC)*. Maui, HI, USA, 4–7 November 2018; pp. 2538–2543. DOI: <https://doi.org/10.1109/ITSC.2018.8569562>

[22] Chen, P.S.-L., Fan, H., Enshaei, H., et al., 2024. Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan. *Hydrogen*. 5(3), 436–458. DOI: <https://doi.org/10.3390/hydrogen5030025>

[23] Van Hoecke, L., Laffineur, L., Campe, R., et al., 2021. Challenges in the use of hydrogen for maritime applications. *Energy & Environmental Science*. 14(2), 815–843. DOI: <https://doi.org/10.1039/D0E01545H>

[24] Abdeljaber, O., Al-Adwan, A.S., Yaseen, H., et al., 2025. Shopping in the Metaverse: Decoding Consumer Intentions. *The International Information & Library Review*. 1–31. DOI: <https://doi.org/10.1080/10572317.2025.2594293>

[25] TOPRAKÇI, O., ARICAN, O.H., 2025. A Fuzzy-Based Assessment of LNG-Fuelled Ships' Impact on Maritime Logistics. *Journal of Balkan and Near Eastern Studies*. 11(1), 34–46. Available from: https://www.researchgate.net/publication/391597131_A_Fuzzy-Based_Assessment_of_LNG-Fuelled_Ships'_Impact_on_Maritime_Logistics

[26] Melnyk, O.M., Shumylo, O.M., Onishchenko, O.A., et al., 2023. Concept and Prospects for the Use of Hydrogen Fuel in Maritime Transport. *Collection of Scientific Works of the Ukrainian State University of Railway Transport*. (203), 96–105. DOI: <https://doi.org/10.18664/1994-7852.203.2023.277913>

[27] Segovia, J., Choudhury, Q., Wang, J., et al., 2025. Green Fuel on the Seas: Frameworks for Future Production. In *Proceedings of the Offshore Technology Conference*, Houston, TX, USA, 5–8 May 2025; p. D021S021R003. DOI: <https://doi.org/10.4043/35927-MS>

[28] Bergerson, J., Cucurachi, S., Seager, T.P., 2020. Bringing a life cycle perspective to emerging technology development. *Journal of Industrial Ecology*. 24(1), 6–10. DOI: <https://doi.org/10.1111/jiec.12990>

[29] Inal, O.B., Zincir, B., Dere, C., 2022. Hydrogen as Maritime Transportation Fuel: A Pathway for Decarbonization. In: Agarwal, A.K., Valera, H. (Eds.). *Greener and Scalable E-Fuels for Decarbonization of Transport, Energy, Environment, and Sustainability*. Springer: Singapore. pp. 67–110. DOI: https://doi.org/10.1007/978-981-16-8344-2_4

[30] Inal, O.B., 2024. Decarbonization of shipping: Hydrogen and fuel cells legislation in the maritime industry. *Brodogradnja*. 75(2), 1–13. DOI: <https://doi.org/10.21278/brod75205>

[31] Reusser, C.A., Pérez Osses, J.R., 2021. Challenges for Zero-Emissions Ship. *Journal of Marine Science and Engineering*. 9(10), 1042. DOI: <https://doi.org/10.3390/jmse9101042>

[32] Scheuer, J.D., 2021. Diffusion of innovations In: *How Ideas Move: Theories and Models of Translation in Organizations*, 1st ed. Routledge: London, UK. p.21. DOI: <https://doi.org/10.4324/9780429424540>

[33] Mohammad, A.A.S., Mohammad, S.I.S., Al-Daoud, K.I., et al., 2025. Digital ledger technology: A factor analysis of financial data management practices in the age of blockchain in Jordan. *International Journal of Innovative Research and Scientific Studies*. 8(2), 2567–2577. DOI: <https://doi.org/10.53894/ijirss.v8i2.5737>

[34] David, R.J., Tolbert, P.S., Boghossian, J., 2019. Institutional Theory in Organization Studies. In: *Oxford Research Encyclopedia of Business and Management*. Oxford University Press: Oxford, UK. DOI: <https://doi.org/10.1093/acrefore/9780190224851.013.158>

[35] Elmobayed, M.G., Al-Hattami, H.M., Al-Hakimi, M.A., et al., 2024. Effect of marketing literacy on the success of entrepreneurial projects. *Arab Gulf Journal of Scientific Research*. 42(4), 1590–1608. DOI: <https://doi.org/10.1108/AGJSR-06-2023-0266>

[36] Mohammad, A.A.S., Nijalingappa, Y., Mohammad, S.I.S., et al., 2025. Fuzzy Linear Programming for Economic Planning and Optimization: A Quantitative Approach. *Cybernetics and Information Technologies*. 25(2), 51–66. DOI: <https://doi.org/10.2478/cait-2025-0011>

[37] Bienstock, C.C., 1996. Sample size determination in logistics simulations. *International Journal of Physical Distribution & Logistics Management*. 26(2), 43–50. DOI: <https://doi.org/10.1108/09600039610113191>

[38] Heckmann, T., Gegg, K., Gegg, A., et al., 2014. Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows. *Natural Hazards and Earth System Sciences*. 14(2), 259–278. DOI: <https://doi.org/10.1007/s10640-013-1007-0>

5194/nhess-14-259-2014

[39] Bergsma, J.M., Pruyn, J., Van De Kaa, G., 2021. A Literature Evaluation of Systemic Challenges Affecting the European Maritime Energy Transition. *Sustainability*. 13(2), 715. DOI: <https://doi.org/10.3390/su13020715>

[40] Nnabuife, S.G., Oko, E., Kuang, B., et al., 2023. The prospects of hydrogen in achieving net zero emissions by 2050: A critical review. *Sustainable Chemistry for Climate Action*. 2, 100024. DOI: <https://doi.org/10.1016/j.scca.2023.100024>

[41] Hwang, J., Maharjan, K., Cho, H., 2023. A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges. *International Journal of Hydrogen Energy*. 48(74), 28629–28648. DOI: <https://doi.org/10.1016/j.ijhydene.2023.04.024>

[42] Parolin, F., Colbertaldo, P., Campanari, S., 2022. Development of a multi-modality hydrogen delivery infrastructure: An optimization model for design and operation. *Energy Conversion and Management*. 266, 115650. DOI: <https://doi.org/10.1016/j.enconman.2022.115650>

[43] Parolin, F., Colbertaldo, P., Campanari, S., 2024. Optimal design of hydrogen delivery infrastructure for multi-sector end uses at regional scale. *International Journal of Hydrogen Energy*. 79, 839–849. DOI: <https://doi.org/10.1016/j.ijhydene.2024.06.049>

[44] Absar, S.M., McManamay, R.A., Preston, B.L., et al., 2021. Bridging global socioeconomic scenarios with policy adaptations to examine energy-water tradeoffs. *Energy Policy*. 149, 111911. DOI: <https://doi.org/10.1016/j.enpol.2020.111911>

[45] Rosenberg, E., Espregen, K., Danebergs, J., et al., 2023. Modelling the interaction between the energy system and road freight in Norway. *Transportation Research Part D: Transport and Environment*. 114, 103569. DOI: <https://doi.org/10.1016/j.trd.2022.103569>

[46] Stolper, L.C., Bergsma, J.M., Pruyn, J.F.J., 2022. The significance of pilot projects in overcoming transition barriers: A socio-technical analysis of the Dutch shipping energy transition. *Case Studies on Transport Policy*. 10(2), 1417–1426. DOI: <https://doi.org/10.1016/j.cstp.2022.05.003>

[47] Singla, M.K., Gupta, J., Beryozkina, S., et al., 2024. The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods—A review. *International Journal of Hydrogen Energy*. 61, 664–677. DOI: <https://doi.org/10.1016/j.ijhydene.2024.02.255>

[48] Al-Adwan, A.S., Abdeljaber, O., 2025. Toward a resilient and smart supply chain: identifying and prioritizing barriers to metaverse adoption. *International Journal of Industrial Engineering and Operations Management*. 1–18. DOI: <https://doi.org/10.1108/IJIEOM-06-2025-0113>

[49] d'Amore-Domenech, R., Meca, V.L., Pollet, B.G., et al., 2023. On the bulk transport of green hydrogen at sea: Comparison between submarine pipeline and compressed and liquefied transport by ship. *Energy*. 267, 126621. DOI: <https://doi.org/10.1016/j.energy.2023.126621>

[50] Di Lullo, G., Giwa, T., Okunlola, A., et al., 2022. Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment. *International Journal of Hydrogen Energy*. 47(83), 35293–35319. DOI: <https://doi.org/10.1016/j.ijhydene.2022.08.131>

[51] Li, Y., Taghizadeh-Hesary, F., 2022. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. *Energy Policy*. 160, 112703. DOI: <https://doi.org/10.1016/j.enpol.2021.112703>

[52] Cheng, F., Luo, H., Jenkins, J.D., et al., 2023. Impacts of the Inflation Reduction Act on the Economics of Clean Hydrogen and Synthetic Liquid Fuels. *Environmental Science & Technology*. 57(41), 15336–15347. DOI: <https://doi.org/10.1021/acs.est.3c03063>

[53] Talebian, H., Herrera, O.E., Mérida, W., 2021. Policy effectiveness on emissions and cost reduction for hydrogen supply chains: The case for British Columbia. *International Journal of Hydrogen Energy*. 46(1), 998–1011. DOI: <https://doi.org/10.1016/j.ijhydene.2020.09.190>