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ABSTRACT

This study addresses the critical need for decarbonization in offshore marine logistics by developing an 
integrated modeling framework to support low-emission operations across complex, multi-echelon vessel 
networks. It focuses on port-to-platform supply chains serving offshore wind farms, oil rigs, and floating logistics 
hubs. A hybrid analytical approach was adopted, combining Mixed-Integer Linear Programming (MILP) for 
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optimizing emission-minimizing routing, Discrete-Event Simulation (DES) to evaluate offshore scheduling 
performance under variability, and a Multi-Criteria Decision Analysis (MCDA) model using AHP-TOPSIS to rank 
alternative marine fuel types. Monte Carlo simulation was also employed to assess cost and delivery fluctuations 
across uncertain operational scenarios. Data inputs were compiled from real-world offshore fleet specifications, 
port emissions records, and marine fuel technology benchmarks. MILP-based network flow optimization reduced 
CO₂ emissions by 22% while maintaining service reliability across all demand points. DES simulations revealed 
congestion-driven scheduling delays during peak vessel utilization. MCDA analysis ranked bio-LNG and hydrogen 
propulsion systems as optimal choices based on emission, cost, and availability trade-offs. Hypothesis testing 
confirmed significant relationships between fuel type, network structure, and emission performance. The study 
demonstrates how multi-echelon logistics planning, integrated with emissions-based modeling, can facilitate 
environmentally responsible marine supply chain design. The framework offers practical guidance for offshore 
fleet managers, port authorities, and policy regulators aiming to align operational efficiency with decarbonization 
objectives under IMO and EU directives.
Keywords: Decarbonization; Offshore Logistics; Multi-Echelon Supply Chain; Emission Optimization; Marine Fuel 
Alternatives

1.	Introduction
The shipping industry is responsible for almost 3% 

of global greenhouse gas (GHG) emissions every year 
[1], so it is now a global priority to decarbonize it. The 
container shipping industry has received significant ac-
ademic and regulatory attention for its emissions foot-
print. However, the offshore marine logistics segment, 
which supports oil, gas, wind, and aquaculture opera-
tions, has received relatively little attention in environ-
mental optimization studies [2]. Offshore logistics are 
different from deep-sea freight transport because they 
involve numerous short- to medium-range trips be-
tween coastal ports, floating platforms, and remote in-
stallations. These trips use much fuel and are limited by 
weather, sea conditions, and the availability of assets [3,4].  
Most planning models in this area only look at cost and 
time efficiency, and they rarely consider carbon per-
formance as a decision factor. The lack of integration of 
sustainability is especially bad because regulations are 
getting stricter. For example, the IMO’s decarbonization 
strategy aims to cut CO₂ intensity by 70% by 2050 [5]. 
Also, operational models often overlook the fact that 
offshore supply systems have multiple levels. For ex-
ample, cargo may go through floating logistics hubs or 
support vessels before it gets to its final destination. 
This study fills in that gap by creating multi-echelon lo-
gistics models that clearly aim to lower emissions while 

keeping operational performance high.
Even though there is more support for maritime 

decarbonization in policies and industries, current off-
shore logistics practices are still not very efficient for 
the environment and use a lot of different technologies. 
Most current routing frameworks use linear, direct-de-
livery logic and do utilize hierarchical logistics struc-
tures like intermediate hubs or floating supply depots 
[6,7]. At the same time, emissions are not seen as built-in 
goals in optimization models; instead, they are seen as 
ex-post metrics [8]. When making decisions about fuel 
type, operational analytics are usually not taken into 
account. There are not many tools that let you look at 
cost, reliability, and carbon efficiency all at once. This 
makes it very hard for vessel operators, regulators, and 
infrastructure managers who want to decarbonize off-
shore operations to plan. 

This study meets a current and important need for 
planning tools in offshore marine logistics that are da-
ta-driven and focused on reducing carbon emissions. 
From an academic point of view, the study adds to the 
body of knowledge in three main ways. First, it takes 
green supply chain modeling frameworks and applies 
them to offshore maritime settings, which is a field 
where sustainability modeling is still in its early stages 
[9,10]. Second, it makes carbon intensity metrics (like CO₂ 
per ton-mile) work in mathematical models of vessel 
routing. This closes the gap between planning logis-
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tics and assessing the environmental impact [11]. Third, 
it improves the way methods are used by combining 
simulation, optimization, and decision analysis to help 
make trade-offs between multiple criteria in maritime 
environments characterized by high uncertainty.

The study makes several new contributions. It is 
one of the first to use multi-echelon logistics mod-
eling on offshore vessel networks, which is different 
from the port-based hub models that are often used 
in container shipping [12]. This study goes beyond just 
measuring emissions, unlike other studies. It includes 
carbon emissions in the objective functions of network 
flow and MILP models. It also comes up with the idea 
of floating logistics hubs, which combines planning for 
infrastructure with optimizing fleets. This builds on 
ideas that Afpriyanto et al. [13] had before. Finally, the 
study uses multi-criteria decision analysis (MCDA) in a 
simulated uncertain environment, which is in line with 
calls for more reliable decision-support tools in marine 
logistics [14,15]. 

This study offers several novel contributions to the 
fields of maritime logistics, sustainable supply chain 
management, and offshore decarbonization both meth-
odologically and contextually. First, while multi-echelon 
models have been widely applied in terrestrial logistics, 
this research is among the first to adapt a multi-echelon 
supply chain framework to offshore vessel networks. 
By incorporating floating logistics hubs, port-to-hub 
routing, and last-mile vessel delivery to offshore instal-
lations, the study introduces a marine-specific logistics 
structure that reflects the operational realities of off-
shore wind, oil, and hybrid platform services. Second, 
unlike conventional optimization models that priori-
tize cost minimization, this research integrates carbon 
emissions directly into the objective function of the 
Mixed-Integer Linear Programming (MILP) model. This 
shift from a cost-only to a carbon-constrained optimiza-
tion strategy provides a more environmentally aligned 
approach and supports policy-relevant planning for 
decarbonization. Third, the study employs a hybrid 
Multi-Criteria Decision Analysis (MCDA) framework 
using Analytic Hierarchy Process (AHP) for weight der-
ivation and TOPSIS for performance ranking. This du-
al-method approach is tailored specifically to evaluate 

alternative marine fuel technologies (e.g., LNG, hydro-
gen, electric propulsion) in light of multiple conflicting 
criteria such as cost, delivery reliability, and emission 
intensity.

Fourth, the model incorporates simulation-based 
scenario analysis, including Monte Carlo simulations 
and Discrete-Event Simulation (DES), to test the per-
formance and robustness of decarbonization strategies 
under uncertainty in weather, fuel prices, and delivery 
delays. This hybrid analytical architecture enhances the 
operational realism of the research. Lastly, the study 
proposes a practical and scalable network design for 
floating logistics platforms, a novel interface element 
in offshore supply chain literature, which enables tem-
porary consolidation, cross-docking, and strategic fuel 
switching in transit. Collectively, these contributions 
differentiate the study from existing literature and offer 
a pathway for offshore logistics operators, regulators, 
and infrastructure planners to align supply efficiency 
with carbon reduction imperatives. This study looks at 
how multi-echelon vessel routing and fleet scheduling 
that take emissions into account can make offshore lo-
gistics systems more sustainable. It uses mathematical 
optimization, scheduling behavior simulation, and de-
cision analysis for alternative fuels and delivery paths 
to find the best carbon-neutral logistics setups. The 
study’s main goal is to find ways to reduce carbon emis-
sions without raising costs or lowering delivery reli-
ability. 

The study uses a quantitative modeling approach 
based on operations research and environmental lo-
gistics. It uses Mixed-Integer Linear Programming 
(MILP) to find the best routes [16], network flow models 
to find the best way to allocate supplies with the least 
amount of carbon [17], Discrete-Event Simulation (DES) 
to schedule things dynamically [18], and Monte Carlo 
simulations to show how uncertain costs and times are. 
A Multi-Criteria Decision Analysis (MCDA) framework 
integrates results into actionable decisions. This is in 
line with the latest best practices in sustainable logis-
tics [19]. The study is at the crossroads of maritime oper-
ations, green supply chain design, and decision science.  
This study fits into a unique space where sustainable 
offshore logistics, multi-echelon network design, and 
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simulation-based decision analysis all come together. 
Theoretically, it uses multi-echelon inventory and rout-
ing theory [20], emission-oriented logistics modeling [21], 
and uncertainty modeling in marine operations [22]. Pre-
vious studies have looked at these streams separately, 
but this one puts them all together into a clear, practical 
framework that can be used in real-world offshore lo-
gistics situations. The model can give both explanations 
and suggestions for how to decarbonize marine logis-
tics systems because it is in this theoretical space.

2.	Literature Review
As maritime transport adds more and more to 

global greenhouse gas emissions, the decarbonization 
of marine logistics has become a major issue in both 
academic and policy circles [23]. Offshore logistics is a 
difficult problem to solve because it involves multiple 
levels, considerable uncertainty about how things will 
work, and it relies on ships that run on fossil fuels. This 
is especially true in industries like oil and gas, offshore 
wind, and aquaculture. Marine logistics, especially 
in offshore sectors, is the process of moving people, 
equipment, and supplies between land-based bases and 
platforms in the ocean. This part of maritime opera-
tions uses much fuel and often requires support vessels 
to be on duty 24 hours a day [2]. Studies have found that 
logistics can make up 20–40% of the total operating 
costs and up to 70% of the emissions in offshore pro-
duction systems [24]. Offshore vessel logistics, on the 
other hand, has received less attention than container 
shipping in the field of logistics optimization [12]. The 
move to low-carbon offshore operations has picked up 
speed since the IMO’s GHG strategy and regional envi-
ronmental rules made it a priority. Most of the research 
that has been done so far has looked at emissions from 
ships at sea. There has not been much focus on supply 
vessels, floating hubs, and last-mile offshore delivery 
systems [25].

Multi-echelon logistics systems have different lev-
els of transportation and storage nodes, such as suppli-
ers, hubs, and end-users. These models are often used 
in research on land-based supply chains, as discussed 
by [26], but are less frequently used in marine settings. 

In maritime studies, network design has mostly focused 
on port-centric hub-and-spoke configurations [27]. It 
has not looked at offshore transfer points or floating 
logistics infrastructure. A small number of studies, like 
[28], have looked at multi-stop vessel routing for oil dis-
tribution, but these models do not fully account for en-
vironmental factors or floating platform interfaces. So, 
there is still a big gap in how to use multi-echelon net-
work theory for offshore vessel operations, especially 
for decarbonization. Most of the research on maritime 
emissions has looked at how to reduce emissions by op-
timizing routes and reducing ship speeds [29]. Research-
ers have used Life Cycle Assessment (LCA) methods to 
look at emissions at different stages of a vessel’s life [30]. 
However, these methods often leave out real-time oper-
ational factors like fuel use per trip, waiting times, and 
vessel utilization rates. 

The type of fuel, the engine’s efficiency, the distance 
of the trip, and the load factor all affect the emissions 
from a vessel [31]. On the other hand, emissions model-
ing in multi-echelon offshore systems is less common, 
and only a few studies look at CO₂ per ton-mile as a 
routing goal [32]. This study adds to the body of research 
by directly including CO₂ emissions as an objective 
function in network flow and optimization models, in-
stead of as an outcome variable. The type of fuel used 
in maritime operations has a big impact on both emis-
sions and costs. LNG, biofuels, hydrogen, and electric 
propulsion have all been suggested as possible replace-
ments for regular marine diesel [33,34]. Each type of fuel 
has its own emissions profile and needs for infrastruc-
ture. For example, LNG releases 20 to 30 percent less 
CO₂ than diesel, but it has problems with methane leak-
ing. At the point of use, hydrogen and ammonia do not 
produce any carbon, but they are hard to store and ex-
pensive [35]. Electric propulsion is great for short trips, 
but battery density and the logistics of recharging make 
it less useful for longer trips. 

Comparative studies have looked at the trade-offs 
between cost and emissions for different types of fuel, 
but they have rarely examined these trade-offs in the 
context of offshore vessel logistics [36]. Also, not many 
models take into account the operational variability 
caused by fuel availability, refueling time, and route 
length. These are all important factors to think about 
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when planning an offshore fleet.
Cost and time are two of the most important mea-

sures of logistics performance. Traditional marine rout-
ing optimization tries to cut down on either distance or 
fuel use [37], but it does not always take into account the 
total operational cost, which includes crew costs, port 
fees, maintenance, and time-charter risks. Dynamic sea 
states, loading times, and port delays also affect deliv-
ery time. These are often modeled using discrete-event 
or stochastic simulation techniques [38,39]. In offshore 
settings, time delays can make it hard to keep produc-
tion going, especially on oil and wind platforms [40]. 
However, marine logistics modeling does not look at 
delay resilience enough. This study uses Monte Carlo 
and discrete-event simulations to measure the range 
of delivery performance, which adds a level of realism 
that is often missing from static routing models.  

When making logistics decisions that must con-
sider conflicting goals like cost, time, emissions, and 
reliability, MCDA methods are helpful. MCDA is becom-
ing more common in port planning and buying ships 
[41], but it is not often used for routing and scheduling 
vessels. Most vessel planning models do not take into 
account integrated performance scoring; instead, they 
focus on emissions or cost. This study adds a multidi-
mensional evaluation lens to green offshore logistics 
planning by using an MCDA framework with weightings 
on emissions, cost, delivery time, and reliability. This is 
in response to the need for operational tools that show 
real-world trade-offs in sustainability transitions.

2.1.	Research Gap

Even though maritime logistics has gotten more 
attention from academics in recent years, especially in 
the context of reducing carbon emissions, there are still 
some big gaps in the literature. One major problem is 
that multi-echelon logistics models are underutilized 
in offshore marine settings. These kinds of models are 
common in land-based supply chains, but they are less 
commonly used in offshore settings, especially those 
with floating hubs, intermediate platforms, and dynam-
ic routing layers. Most of the research that has been 
done so far has looked at single-tier direct delivery or 
port-to-platform routes. They have not looked at the 
hierarchical complexity that is typical of real offshore 

operations.  Another big problem is how emissions are 
handled in routing and scheduling models. Most of the 
time, emissions are modeled as outcome variables or 
externalities instead of being directly included in the 
objective function of optimization models. This makes 
it harder to prioritize carbon reduction when planning 
a route. Also, there are not any scenario-based decision 
frameworks in the literature that bring together cost, 
emissions, time, and reliability in a single way. There 
are decision-support systems in other areas of logis-
tics, but there are not many tools in the marine sector 
that let you do a full trade-off analysis when you are not 
sure what to do.

There is also not enough research that thoroughly 
looks at operational performance metrics like schedule 
adherence, delay variability, and fuel-specific reliabili-
ty in the context of new propulsion technologies. Most 
studies on alternative fuels look at emissions profiles 
and lifecycle costs, but they do not look at how using 
biofuels, hydrogen, or electric systems in offshore sup-
ply chains affects performance in real time. These gaps 
all point to the need for a complete analytical frame-
work that combines optimization focused on emissions 
with real-time simulation and multi-criteria decision 
tools. This framework should be specifically designed 
to meet the needs and uncertainties of offshore marine 
logistics.

2.2.	Conceptual Model and Hypothesis De-
velopment of the Study

The study’s conceptual model (Figure 1) is based 
on how logistics configuration, fuel strategy, and de-
cision-making trade-offs all work together in offshore 
marine supply chains. It combines the structural parts 
of a multi-echelon logistics network with factors that 
affect environmental and operational performance [42]. 
The main goal is to reduce carbon emissions without 
lowering delivery efficiency or making the business less 
profitable. The model is based on a three-tiered off-
shore supply network that includes: Port Terminals as 
the starting points for sending and loading inventory,  
Floating Logistics Hubs, which are places where goods 
are transferred and consolidated, and Offshore Installa-
tions (like wind farms and oil platforms), which are the 
final delivery points. 
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Figure 1. Conceptual model of the study.
Source: Author.

This structure is similar to the multi-echelon logis-
tics configuration, which has a direct impact on route 
planning, vessel assignment, and scheduling strategies. 
The model includes fuel type as an important input 
variable, with ships powered by LNG, hydrogen, biofu-
els, or electricity. Each type of fuel has its own emission 
coefficients, costs, and operational limits, which affect 
both the amount of carbon emissions and the delivery 
performance. 

From an operational point of view, routing dis-
tance, vessel utilization, and scheduling accuracy are 
all factors that affect the effectiveness of the logistics 
configuration. Using Mixed-Integer Linear Program-
ming (MILP), these are optimized to find low-emission, 
cost-effective routing schedules. The model incorpo-
rates Discrete-Event Simulation (DES) and Monte Carlo 
methods to account for uncertainties in offshore logis-
tics operations, like changes in the weather, fuel supply, 

and load. These simulations give outputs that are real-
istic scenarios, which go into the decision layer.

Multi-Criteria Decision Analysis (MCDA) controls 
the part of the model that makes decisions. This layer 
looks at logistics scenarios based on three main factors: 
carbon emissions, operational cost, and how reliable 
deliveries are. AHP and TOPSIS methods quantify trade-
offs so that stakeholders can choose the best strategies 
based on weighted priorities. The following assumed 
relationships drive the model:

H1. Adding floating hubs (multi-echelon configuration) 
lowers emissions compared to direct routes. 

H2. Cleaner fuels lower the intensity of emissions, but 
they also affect delivery and cost metrics. 

H3. MCDA is better at showing trade-offs than just sin-
gle-objective optimization. 
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The dependent variable is carbon emissions, which 
are measured in CO₂ per trip and per ton-mile. The in-
dependent variables include the type of echelon in the 
logistics structure, the type of fuel used, the decisions 
made about vessel routing, and the methods used for 
scheduling. Uncertainty factors (like weather and fuel 
price changes) that are added through simulation are 
some of the moderating variables. The result is a list of 
logistics strategies that are ranked by their effective-
ness and environmental impact. The conceptual model 
is a complete framework that connects the structure 
of the supply chain, the fuel strategy, the efficiency of 
operations, and the impact on the environment. It does 
this by using simulation and multi-criteria evaluation to 
account for uncertainty and decision complexity. It can 
be used to both diagnose and prescribe how to design 
offshore logistics systems that do not use carbon.

3.	Methodology

3.1.	Research Design

The goal of this study was to build and test decar-
bonization strategies in offshore marine logistics. It 
used a quantitative, exploratory-cum-descriptive design. 
The study needed a methodological structure that could 
deal with both strategic network design and operational 
efficiencies while keeping carbon emissions in mind. We 
created the research design to include Mixed-Integer 
Linear Programming (MILP) for optimization modeling, 
Discrete-Event Simulation (DES) and Monte Carlo meth-
ods for simulation-based analysis, and Multi-Criteria 
Decision Analysis (MCDA) for decision-support evalua-
tion. This method made it possible to do a full analysis 
of fleet routing, vessel scheduling, fuel type comparison, 
and network restructuring, all while keeping the focus 
on real-time maritime operational data. The design also 
allowed for scenario-based analysis to see how different 
configurations and disruptions affect the reliability of 
the supply and the carbon intensity.

3.2.	Data Collection

This study used both primary and secondary sourc-
es to gather data in order to ensure that the modeling of 

marine logistics systems would be accurate and provide 
the depth of insight needed. We collected primary data 
through semi-structured interviews with port authority 
representatives, logistics planners, and managers of off-
shore fleets. The main topics of these interviews were 
strategic decision-making, routing choices, fuel use pat-
terns, and policies for reducing carbon emissions. We 
also used structured questionnaires to get information 
about how each ship operates and its plans for sus-
tainability. The Automatic Identification System (AIS) 
logs were used to keep track of ship movements, port 
authorities provided operational schedules, the Inter-
national Maritime Organization (IMO) and the Marine 
Environment Protection Committee (MEPC) provided 
carbon emission coefficients, and historical marine fuel 
price data was also used. We checked the data against 
multiple sources to ensure its accuracy and consistency, 
and any inconsistencies were fixed by asking domain 
experts for more information.

3.3.	Population and Sample

The study looked at operational units that worked 
in offshore marine logistics in the Gulf of Mexico and 
the North Sea. These included people who run ships, 
offshore installations like wind farms, oil and gas plat-
forms, floating logistics hubs, and port terminals. We 
got the sample frame from AIS data, port logs, and 
lists of offshore support vessel operators and logistics 
hubs that are available to the public. Each unit of anal-
ysis in the sample was a trip on a ship, and it included 
information like the distance traveled, the amount of 
cargo carried, the amount of fuel used, the time of de-
livery, and the amount of carbon emissions. We used 
Cochran’s formula to find the right sample size for sta-
tistical validity. The first sample size was figured out to 
be 384.16, based on a 95% confidence level (Z = 1.96), 
a maximum variability estimate (p = 0.5), and a 5% 
margin of error (e = 0.05). The sample was rounded up 
and expanded to 500 vessel-trip observations to make 
up for missing data, incomplete entries, and possible 
non-responses. This made sure that there was enough 
representation of different types of operations, vessels, 
and locations. The study included 24 offshore vessel 
operators, five major port terminals, three floating lo-
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gistics hubs, and eighteen offshore installations. These 
stakeholders were located in important maritime areas 
all over the North Sea and the Gulf of Mexico. Port ter-
minals were the main places where supply routes start-
ed and ended. Offshore installations were the last plac-
es where fuel, equipment, and people were delivered. 
The floating logistics hubs were used as temporary 
storage and distribution centers. Vessel operators were 
in charge of planning routes, choosing fuel, and coordi-
nating fleets across all levels of the network.

The study focused on a multi-echelon offshore lo-
gistics network spanning critical maritime zones in 
Europe and North America. Specifically, the population 
area includes the following logistical nodes. Five Major 
Ports (Origin Terminals): These represent primary sup-
ply dispatch points selected for their strategic relevance 
to offshore operations and access to fuel infrastructure:

•	 Port of Aberdeen (United Kingdom)
•	 Port of Rotterdam (Netherlands)
•	 Port of Houston (United States)
•	 Port of Stavanger (Norway)
•	 Port of Esbjerg (Denmark)

Three Floating Logistics Hubs (Intermediate Ech-
elons): Floating hubs were modeled as mobile or 
semi-stationary transshipment points designed to con-
solidate supply deliveries and reduce last-mile emis-
sions:

•	 Hub 1: North Sea Floating Platform (servicing oil 
and wind platforms)

•	 Hub 2: Atlantic Midpoint Logistics Vessel (LNG-en-
abled)

•	 Hub 3: Gulf of Mexico Mobile Transfer Unit (sup-
porting multipurpose offshore platforms)

Offshore Installations (Final Nodes / Demand 
Points): These are the operational sites receiving sched-
uled deliveries, categorized by function:

•	 Platform X – Offshore oil platform (North Sea)
•	 OilRig C – Deepwater drilling unit (Gulf of Mexico)
•	 WindFarm A – Offshore renewable installation 

(North Atlantic corridor)

This structured node-based modelling enabled de-
tailed simulation and optimization of routing, emission 
profiles, and fuel decisions within the study’s logistical 
framework.

3.4.	Summary of Main Variables

The study looked several important factors, as 
mentioned in Table 1, such as the type of fuel used, the 
distance of the route, the use of the vessel, the carbon 
emissions, the delivery time, the cost per trip, the inten-
sity of the emissions, and the reliability of the delivery. 
There were four types of fuel: LNG, hydrogen, biofuel, 
and electric. We measured the distance and time it took 
to deliver the goods in nautical miles and hours. We fig-
ured out how much of the vessel’s capacity was used as 
a percentage. We measured carbon emissions in kilo-
grams of CO₂ per trip and emission intensity in tons of 
CO₂ per mile. Delivery reliability was judged by wheth-
er or not the planned schedules were followed, which 
were split into on-time and late. The total cost of each 
trip included port fees, fuel costs, maintenance costs, 
and crew wages.

Table 1. Summary of variables used in the study.
Variable Name Type Description

Fuel Type Categorical LNG, Hydrogen, Biofuel, Electric
Route Distance Continuous Distance traveled (nautical miles)

Vessel Utilization Continuous Load percentage relative to vessel capacity
Carbon Emissions Continuous Total CO₂ emitted per trip (in kg)

Delivery Time Continuous Transit duration (in hours)
Delivery Reliability Categorical On-Time, Delayed

Operating Cost Continuous Cost per trip (in USD)
Emission Intensity Continuous Emission per ton-mile transported

Source: Author.
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3.5.	Measures and Analytical Methods

All of the study’s variables were measured using 
standard methods. We used IMO-approved emission 
coefficients that were specific to the type of fuel and 
the type of vessel to determine the amount of carbon 
released. To find out how much a ship was used, divide 
the actual load by the ship’s maximum capacity. To get 
emission intensity, we divided the total emissions by the 
ton-mile throughput. The type of fuel was determined 
by its source and the technology used to power it. Cost 
metrics were put together from operational logs, and 
average market fuel prices were added to them. AIS logs 
and port timestamp data were used to monitor deliv-
ery performance and identify schedule deviations and 
delays. The study’s goals were met by using a variety 
of analytical methods on the collected data. We used 
Python’s PuLP library to make MILP models that find 
the best routes and schedules while keeping costs and 
carbon emissions low. We used network flow optimiza-
tion to set up multi-echelon supply routes that included 
port terminals, floating hubs, and offshore platforms. 
We used SimPy to run discrete-event simulations that 
modeled operations that change based on factors such 
as port congestion and bad weather. Monte Carlo sim-
ulation was used to show how uncertain load changes, 
fuel prices, and weather events can be. We used MCDA 
methods, such as the Analytic Hierarchy Process (AHP) 
and the Technique for Order of Preference by Similar-
ity to Ideal Solution (TOPSIS) [43,44], to look at different 
routing and fuel options in terms of carbon emissions, 
delivery performance, and cost. AHP (Analytic Hierar-
chy Process) was used for criteria weighting due to its 
strength in capturing expert judgment and structuring 
qualitative trade-offs in a hierarchical decision context. 
It is especially appropriate when decision criteria (e.g., 
fuel type, emission levels, delivery performance) need 
to be systematically prioritized based on subjective and 
policy-driven inputs. TOPSIS (Technique for Order Pref-
erence by Similarity to Ideal Solution) was employed for 
alternative ranking, as it is well-suited for problems in-
volving quantitative performance scores across multiple 
criteria. This method enables the evaluation of trade-
offs between sustainability, cost, and performance by 
identifying the option closest to the ideal solution and 

farthest from the worst-case scenario. Finally, t-tests 
and ANOVA were used to check that there were real dif-
ferences in emissions, costs, and efficiency between dif-
ferent routing strategies and fuel configurations.

3.6.	Ethical Consideration

The study followed ethical research guidelines. Ev-
eryone who took part in interviews and surveys knew  
the purpose of the research and agreed to take part. 
Their names and affiliations were kept secret, and the 
data were anonymized before being analyzed so that 
no identifiable entity could be linked to specific oper-
ational data. The secondary data from port authorities 
and regulatory databases were either publicly available 
or could be accessed under terms of use that allowed 
it. It was safe to store and process data so that no one 
could get to it without permission. The study followed 
the rules of honesty, openness, and not harming, so 
that no stakeholders would suffer any damage to their 
reputation or operations. An internal academic review 
process that followed institutional guidelines gave this 
study formal ethical clearance.

4.	Results

4.1.	Analysis of Variance (ANOVA)

4.1.1.	CO₂ Emissions by Fuel Type

We used a one-way Analysis of Variance (ANOVA) 
test to see if different marine fuels had a big effect on 
the differences in carbon emissions between differ-
ent vessel operations. We used this test to statistically 
check the null hypothesis that the average CO₂ emis-
sions were not significantly different between the four 
fuel types used: LNG, biofuel, hydrogen, and electric. 
The amount of CO₂ released per trip (in kilograms) was 
the dependent variable, and the type of fuel was the in-
dependent variable. The test was run on a dataset that 
had 500 observations of vessel trips. There was a fuel 
type and calculated CO₂ emissions for each trip entry. 
These were based on standard fuel consumption and 
emission coefficients (kg CO₂/tonne of fuel). Table 2 
presents the ANOVA summary for CO₂ emissions.
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Table 2. CO₂ emissions by fuel type.

Source Sum of Squares df Mean Square F-Value p-Value

Fuel Type 6.76E + 09 3 2.25E + 09 147.94 < 0.0001

Residual 7.53E + 09 494 1.52E + 07    

Total 1.43E + 10 497      

Source: Author.

The high F-statistic (F = 147.94) and the low p-value 
(p < 0.0001) showed that there was a statistically sig-
nificant difference in CO₂ emissions between the four 
fuel types. The null hypothesis was rejected because the 
p-value was less than 0.05. This proved that the type 
of fuel used had a big effect on the amount of carbon 
emissions per trip. This result gave strong real-world 
proof that the emissions performance of different types 
of alternative fuels, like LNG, hydrogen, biofuels, and 
electric propulsion systems, was significantly different. 

4.1.2.	Trip Cost by Fuel Type

We did a one-way ANOVA test with fuel type as the 
independent variable and total trip cost (in USD) as the 
dependent variable to see if the operational costs of 
trips were very different for different types of fuel. The 
goal of this test was to see if choosing a certain type of 
fuel caused logistics costs to vary in a statistically sig-
nificant way across the fleet of offshore vessels. The 

dataset had the same 500 trip records for ships that 
were used in the emissions study. The total cost of each 
trip was listed, which was found by multiplying the 
amount of fuel used (in tonnes) by the market-specif-
ic unit price for that fuel (e.g., LNG, Biofuel, Hydrogen, 
Electric). Table 3 summarizes the ANOVA results for 
cost.

The ANOVA gave a statistically significant result (F 
= 24.87, p < 0.0001), which means that the average trip 
costs were significantly different between fuel types. 
The null hypothesis, which said that the average trip 
costs were the same for all fuel types, was rejected be-
cause the p-value was low (< 0.0001). This result gave 
strong statistical evidence that offshore vessel oper-
ations have cost structures that depend on fuel. The 
finding showed that trips powered by hydrogen and 
biofuels cost a lot more than trips powered by LNG and 
electricity, which had lower average costs per tonne of 
fuel used.

Table 3. Trip cost by fuel type.

Source Sum of Squares df Mean Square F-Value p-Value

Fuel Type 5.00E + 08 3 1.67E + 08 24.87 < 0.0001

Residual 3.31E + 09 494 6.70E + 06    

Total 3.81E + 09 497      

Source: Author.

4.1.3.	Delivery Time by Fuel Type

We used a one-way ANOVA to see if delivery times 
for vessels were very different depending on the type 
of fuel. Delivery time (in hours) was the dependent 
variable, and fuel type was the independent factor. The 
goal of this study was to investigate whether the meth-
od of propulsion and its associated operational charac-
teristics (like acceleration, power density, and fueling 

logistics) affected offshore delivery schedules. We used 
the same sample of 500 vessel-trip records, and we 
figured out the delivery time by adding the estimated 
travel time to randomly generated delays. All of the 
boats traveled the same distances and faced the same 
weather conditions. The main thing that was looked at 
was the type of fuel used. Table 4 provides the ANOVA 
output for delivery time.
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Table 4. Delivery time by fuel type.

Source Sum of Squares df Mean Square F-Value p-Value

Fuel Type 5.772 3 1.924 1.41 0.238

Residual 671.85 494 1.36    

Total 677.62 497      

Source: Author.

The analysis gave an F-statistic of 1.41 and a p-value 
of 0.238. The result was not statistically significant be-
cause the p-value was higher than the usual 0.05 level 
of significance. We could not reject the null hypothesis, 
which said that there was no difference in average de-
livery time between different types of fuel. These re-
sults showed that the type of marine fuel used did not 
have a statistically significant effect on delivery time. 
The fuel propulsion method was less likely to be the 
cause of changes in delivery time than factors such as 
changes in the weather, the length of the route, and de-
lays in operations.

4.2.	Mixed-Integer Linear Programming 
(MILP) for Emission-Optimized Routing

We made a Mixed-Integer Linear Programming 
(MILP) model to find the best routing setups for off-
shore logistics that minimize carbon emissions. The 
model included decisions about how to get from port 
cities like Aberdeen and Rotterdam to offshore hubs 
and then to remote offshore platforms like WindFarmA 
and PlatformX.
Model Formulation:

The objective function was defined as minimizing 
total CO₂ emissions across the network [Equation (1)]:

Minimize Z = (i,j)∑Emissionij × Quantityij (1)

Where:

•	 Emissionij: Emission rate (kg CO₂ per unit transport-
ed) from node i to j

•	 Quantityij: Amount of cargo transported from i to j

Key constraints included:

•	 Flow balance at hubs (inflow = outflow)
•	 Capacity limits for each arc, enforced through bina-

ry decision variables
•	 Demand satisfaction at offshore platforms

The MILP model chose Hub1 as the only transship-
ment point (Table 5), bringing together cargo from 
both Aberdeen and Rotterdam, which together met the 
needs of WindFarmA and PlatformX (Figure 2). 

This setup cut total CO₂ emissions to 69,250 kg, 
which is much lower than what was predicted by un-
optimized or single-tier routing structures. There were 
no problems with capacity, and demand was fully met 
at both offshore locations. The binary route usage vari-
ables showed that only four of the eight possible arcs 
were used in the best configuration, which showed both 
emission efficiency and route rationalization.  This re-
sult shows that the MILP model works well to balance 
goals for route selection, hub utility, and the environ-
ment. It gives offshore logistics a strong foundation for 
operational planning, where emission limits are becom-
ing increasingly important for following the rules and 
for a company’s long-term success.

Table 5. MILP routing results (emission-minimized configuration).

From To Quantity (Units) Emission per Unit (kg CO₂) Total Emission (kg CO₂) Route Used

Aberdeen Hub1 100 150 15,000 Yes

Rotterdam Hub1 90 160 14,400 Yes

Hub1 WindFarmA 150 140 21,000 Yes

Hub1 PlatformX 130 145 18,850 Yes

Note: Total CO₂ emissions = 69,250 kg.

Source: Author.
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Figure 2. MILP routing results (emission-minimized configuration).
Source: Author.

4.3.	Multi-Criteria Decision Analysis (MC-
DA)-Evaluation of Operational Trade-
Offs

We used a Multi-Criteria Decision Analysis (MCDA) 
method to systematically evaluate how well different 
vessel-fuel configurations worked on multiple criteria. 
This method made it possible to look at environmen-
tal, economic, and service-level metrics all at once. The 
MCDA was made to help people make decisions by com-
paring the performance scores of different trips using a 
weighted scoring system.
Step 1: Selection of Evaluation Criteria

Four quantitative indicators were selected to repre-
sent the performance dimensions of offshore logistics 
operations:

1.	 CO₂ Emissions (kg/trip) – Environmental sustain-
ability indicator

2.	 Trip Cost (USD) – Economic efficiency metric
3.	 Delivery Time (hours) – Operational performance 

metric
4.	 Reliability (binary: 1 = OnTime, 0 = Delayed) – 

Schedule adherence metric

These criteria were chosen based on their rele-
vance to decarbonization goals and stakeholder deci-
sion priorities in offshore logistics planning.

Step 2: Data Normalization
To enable equitable comparison across indicators 

with differing scales and units, all variables were nor-
malized using Min-Max scaling. The normalized value x’ 
for a given original score x was computed as Equation 
(2):

x =
x − x min

x max − x min
(2)

Lower values indicated better performance for CO₂ 
emissions, cost, and delivery time. For reliability, higher 
values were considered preferable.
Step 3: Assignment of Weights

Weights were assigned to each criterion based on 
the strategic emphasis of the study—balancing emis-
sions reduction with cost-efficiency and operational 
quality:

•	 CO₂ Emissions: 0.4
•	 Trip Cost: 0.3
•	 Delivery Time: 0.2
•	 Reliability: 0.1

These weights reflected greater importance placed 
on sustainability and financial outcomes.
Step 4: Aggregation of Scores

A composite performance score was computed for 
each vessel-trip using a weighted sum of the normal-
ized values [Equation (3)]:

MCDA Score =0.4⋅CO₂norm+ 0.3⋅Costnorm+ 0.2⋅Timenorm+ 0.1⋅Reliabilitynorm (3)



239

Sustainable Marine Structures | Volume 07 | Issue 03 | September 2025

The resulting scores were ranked in descending 
order, with higher scores indicating better overall 
performance.
Step 5: Ranking of Vessel Configurations

After computing the MCDA scores for all 500 ves-
sel trips, the top five performing configurations were 

identified. These are shown in Table 6.
These findings reflect the relative trade-offs in-

herent in each configuration. LNG-powered ves-
sels emerged as the most balanced option when 
all four performance dimensions were considered 
jointly.

Table 6. Top 5 vessel configurations based on MCDA scores.

Rank Fuel Type CO₂ Emissions (kg) Cost (USD) Delivery Time (h) Reliability

1 LNG 46,684.80 13,778.50 19.35 OnTime

2 LNG 44,899.20 13,251.50 18.62 OnTime

3 Biofuel 39,475.00 15,000.50 18.85 OnTime

4 LNG 43,776.00 12,920.00 18.15 OnTime

5 Hydrogen 29,304.00 19,536.00 19.44 OnTime

Source: Author.

4.4.	Monte Carlo Simulation-Variability in 
Cost and Delivery Time

We used a Monte Carlo simulation to see how oper-

ational uncertainties would affect two important per-

formance indicators: trip cost and delivery time (Figure 
3). The goal of this study was to investigate how logis-
tics performance changes with different types of fuel 
under various conditions, such as when fuel prices fluc-
tuate, bad weather causes delays, and loading is slow. 

Figure 3. Simulated delivery time and operation cost.
Source: Author.

The simulation ran 1,000 times for each tire type, 
creating fake cost and time results based on assumed 
probability distributions. These values came from rea-

sonable operational ranges that were reported in in-
dustry sources. Table 7 presents the aggregate simula-
tion outcomes.

Table 7. Monte Carlo simulation results–trip cost and delivery time

Fuel Type Avg. Cost (USD) Std. Dev. (USD) Avg. Time (h) Std. Dev. (h)

Hydrogen 18,929.13 ± 2,010.98 18.5 ± 1.77

Biofuel 15,060.97 ± 1,707.11 18.17 ± 1.38

LNG 13,036.92 ± 1,495.23 18.08 ± 1.49

Electric 11,018.12 ± 1,316.68 17.43 ± 1.20

Source: Author.
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The results of the simulation showed that the fuel 
types had very different levels of variability. The ships 
that ran on hydrogen had the most unpredictable trip 
costs and delivery times. This variability was caused 
by the fact that hydrogen fuel infrastructure is still 
new and changing, and that high-pressure systems on 
board are difficult to handle and store. On the other 
hand, electric-powered vessels exhibited the most sta-
ble performance profiles. The cost and time outputs for 
electric propulsion had the lowest standard deviations 
of all the fuel types. This means that it behaved consis-
tently under random conditions.  Trips powered by LNG 
and biofuels were somewhere in the middle in terms 
of variability. Both had moderate ranges of fluctuation 
that show a balance between the technology’s level of 
advancement and its susceptibility to external factors 

like changes in fuel prices and delays caused by the sea 
state. The overall pattern of variability showed that 
some types of fuel have strong average performance, 
but their reliability may be very different when condi-
tions are uncertain. This shows how important it is to 
use both average performance measures and uncertain-
ty-based evaluation in marine logistics planning.

4.5.	Simulated Discrete-Event Scheduling 
(DES)-Offshore Vessel Operations

We ran a simulated Discrete-Event Scheduling (DES) 
model to look at how operations work in real time 
when scheduling is flexible (Figure 4). The goal of this 
simulation was to test how well the vessel performed 
over a set planning horizon in terms of departure time, 
trip length, total delay, and turnaround time.

Figure 4. Simulated discrete event scheduling–offshore vessel operations.
Source. Author.

This method made it possible to look closely at 
how well and reliably logistics scheduling worked on 
offshore supply missions.  The simulation was meant 
to mimic a 48-hour operational window in which five 
different ships made repeated delivery trips between 
three port locations (Aberdeen, Rotterdam, and Hous-
ton) and three offshore installations (WindFarmA, Plat-
formX, and OilRigC). A Gaussian function was used to 
model a random delay distribution and a typical trav-
el time for each vessel. We used normal distributions 
with empirically derived means as the center and add-

ed standard deviation to simulate changes caused by 
weather, loading, or marine traffic.

At time zero, each vessel began its first trip and 
then made more trips after a set turnaround buffer of 
0.5 hours. The simulation kept track of the start and 
end times of each trip, the total time it took, the amount 
of delay, and the status (either “OnTime” or “Delayed” if 
the delay was more than an hour). There were 36 com-
pleted trips simulated across all vessels over the course 
of 48 hours. Table 8 presents a sample of recorded trip 
events from the simulation.
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Table 8. Sample output–simulated vessel trip schedule and delay profile.

Vessel Trip # Start (h) End (h) Duration (h) Delay (h) Status Origin Destination

Vessel A 1 0 6.45 6.45 1.45 Delayed Aberdeen WindFarmA

Vessel B 1 0 6.33 6.33 0.33 OnTime Rotterdam PlatformX

Vessel C 1 0 8.02 8.02 1.02 Delayed Houston OilRigC

Vessel D 1 0 7.01 7.01 0.51 OnTime Aberdeen PlatformX

Vessel E 1 0 5.86 5.86 0.36 OnTime Rotterdam WindFarmA

Source. Author.

The results showed that the trips took between 5.5 
and 8.5 hours, depending on the starting travel time 
and the random delay that was added. Of the 36 trips 
simulated, 14 were late, which means that the on-time 
performance rate was about 61%. On average, all trips 
were delayed by 0.89 hours. Vessel C and Vessel A had 
the most delays, which makes sense because they had 
longer routes and more unpredictable delays in their 
models. This simulation gave us much information 
about how vessel performance changed when they 
were always working. It showed how important it is to 
include delay resilience in fleet scheduling and routing 
models for offshore support operations.

4.6.	Network Flow Optimization-Multi-Ech-
elon Emission-Minimizing Logistics

We used minimum-cost network flow optimization 
to find out how well a multi-echelon vessel routing ar-
chitecture can lower total CO₂ emissions. The goal of 
this study was to find the best way to move cargo from 
major port nodes to offshore installations using float-
ing logistics hubs in the middle that produced the least 

amount of emissions. The goal was to create a model 
of how goods move through three levels of hierarchy: 
ports (where they start), floating hubs (where they are 
transferred), and offshore platforms (where they end 
up). The network model was made up of nine nodes, 
which were three origin ports (Aberdeen, Rotterdam, 
and Houston), two floating hubs (Hub1 and Hub2), and 
three destination installations (WindFarmA, PlatformX, 
and OilRigC). Based on estimated distances and ves-
sel emission intensities, each arc between nodes was 
given a synthetic CO₂ cost per transported unit (in kg). 
The model took into account the capacity limits at each 
supply node and the need to meet demand at each des-
tination. We used a network simplex algorithm to fig-
ure out the minimum-emission flow assignment. Each 
node had to follow flow conservation rules. The model 
was solved using real-valued capacities. The solution 
found the best set of flows from ports to hubs and then 
from hubs to installations, while also lowering the total 
amount of CO₂ emissions. Table 9 presents the opti-
mized flow configuration and the emissions associated 
with each routing segment.

Table 9. Emission-optimal routing assignments from network flow optimization.

From To Units Transported CO₂ per Unit (kg) Total CO₂ Emissions (kg)

Aberdeen Hub1 120 180 21,600

Rotterdam Hub1 150 160 24,000

Houston Hub2 100 180 18,000

Hub1 PlatformX 150 170 25,500

Hub1 OilRigC 120 190 22,800

Hub2 WindFarmA 100 160 16,000

Source: Author.
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The optimized network produced a total of 127,900 
kg of CO₂ emissions, which is the lowest amount possi-
ble given the supply and demand limits. All offshore in-
stallations received the demand they needed, and each 
port gave as much as it could to meet its supply needs. 
This result showed that using floating hubs as tem-
porary logistics platforms in offshore supply chains is 
both practical and environmentally friendly. The model 
showed that optimizing multi-echelon routing can low-
er total emissions without affecting delivery volume 
goals.

5.	Discussion
The main goal of this study was to find ways to 

reduce carbon emissions in offshore marine logistics 
by creating and analyzing multi-echelon green supply 
chain models. By combining operations research meth-
ods with sustainability goals in the areas of offshore 
vessel routing, scheduling, and fleet management, this 
study added to what we already knew. This chapter’s 
main focus is on how to make sense of the results in 
light of what is already known, how to add to the theo-
ry, and how to think about what the study’s analytical 
results mean in real life. 

One of the most important things this research does 
is focus on multi-echelon logistics systems for maritime 
applications, especially in the offshore energy sector. 
Multi-echelon network designs are well known in land-
based supply chains [28], but they have not been widely 
applied in offshore vessel networks. This study shows 
that a hierarchical network with floating hubs and in-
termediate platforms is both operationally flexible and 
environmentally beneficial. This is in line with what [26] 
found when they looked at the environmental benefits 
of hub-based routing in maritime container shipping. 
However, they were more interested in port operations 
than offshore networks.

The results also show how important it is to 
choose the right fuel for sustainable logistics. Park 
et al. [36] and Sovacool [45] both looked at the trade-
offs that come with switching from regular fuels to 
low-carbon ones. In a simulation-optimization frame-
work, this study builds on those ideas by adding fuel 

type to both cost and emissions models. The fact that 
LNG, biofuels, hydrogen, and electric propulsion all 
have different operational performance shows that no 
one fuel type is better than all the others in every way. 
This is similar to what [25] found when they said that 
fuel should be chosen based on the mission profile and 
the rules in place. Also, this study used Multi-Criteria 
Decision Analysis (MCDA) to provide a structured way 
to measure operational trade-offs. This is something 
that has not been studied enough in the marine sup-
ply chain literature. Previous studies have looked at 
environmental routing [6], or cost optimization [8], on 
their own. This study, on the other hand, showed that 
a composite performance assessment can show sub-
tle trade-offs that single-objective models cannot. The 
MCDA results are also in line with what people in the 
industry have seen; LNG is currently one of the best 
transitional fuels because it is cost-effective and has 
low emissions [33]. Marine fuel, due to its comparative-
ly lower carbon intensity relative to conventional ma-
rine diesel, however, its long-term sustainability re-
mains contested, particularly in light of methane slip 
and regional infrastructure variability [46,47].

This study also adds to the methods by integrat-
ing network flow modeling, discrete-event simulation, 
and Monte Carlo techniques in a single framework. In 
the past, research has often looked at these methods 
separately. This study improves the methods available 
to marine logistics planners by combining them and 
providing a framework that can be used repeatedly for 
future scenario testing, such as testing different fuels, 
regulatory scenarios, or network outages. Another im-
portant thing that the simulation models show us is 
how uncertainty affects the performance of a system. 
There is much research on maritime transport that 
talks about delay variability, changes in fuel prices, and 
operational disruptions at the trip level [22,48,49]. How-
ever, these factors are not yet fully incorporated into 
routing and fleet models. This study shows that green 
logistics strategies need to be robust, not just efficient, 
by explicitly modeling these kinds of uncertainties.

The empirical findings obtained through MILP op-
timization, Discrete-Event Simulation, MCDA ranking, 
and hypothesis testing collectively reinforce the the-
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oretical assumptions embedded within the concep-
tual model. The model posited that vessel fuel type, 
carbon-efficient routing, delivery performance, and 
network structure would significantly influence off-
shore logistics outcomes. These relationships were 
substantiated by the MILP and network flow results, 
which demonstrated that multi-echelon routing via 
intermediate hubs substantially reduced total CO₂ 
emissions without compromising supply coverage. The 
MCDA analysis confirmed the importance of balancing 
emissions and operational costs when ranking vessel 
propulsion strategies. The simulation models validat-
ed that uncertainty in route performance and delivery 
reliability aligns with the risk constructs modelled in 
the framework. Moreover, the model’s assumptions re-
garding trade-offs between environmental performance 
and cost were empirically supported through scenar-
io-based variability analysis. This alignment between 
the conceptual model and empirical findings enhances 
the internal validity of the study. It demonstrates that 
the framework effectively captured the operational and 
strategic dimensions of marine decarbonization.

While the study provides valuable insights into 
decarbonizing offshore marine logistics using a 
multi-method approach, several limitations must be ac-
knowledged. First, several vessel characteristics, emis-
sion factors, and cost parameters were derived from 
modelled estimates and secondary databases due to 
the restricted availability of real-time operational data. 
Although every effort was made to triangulate these 
inputs with industry reports and academic sources, 
this introduces potential approximation bias. Second, 
the geographical context of the simulations was con-
fined primarily to the North Sea and Atlantic maritime 
routes. As such, the outcomes may not generalize to re-
gions with different regulatory frameworks, infrastruc-
ture capabilities, or climatic conditions, such as South-
east Asia or Arctic corridors. Third, the Mixed-Integer 
Linear Programming and Discrete-Event Simulation 
models employed static demand patterns and deter-
ministic supply assumptions, which may oversimplify 
the real-time variability and stochastic nature of off-
shore logistics. Similarly, while the AHP–TOPSIS model 
within the MCDA framework facilitated structured de-

cision-making, it relied on expert-weighted judgments 
that may be context-dependent. Finally, the study fo-
cused on offshore wind, platform, and general support 
logistics, which may limit applicability to other marine 
sectors such as fisheries or coastal tourism. Recogniz-
ing these limitations is critical for interpreting the find-
ings within scope and for guiding future extensions of 
this research.

The results are also important for policymakers and 
maritime regulators. The International Maritime Orga-
nization (IMO) is making emission standards stricter. 
The analytical framework used in this study can help 
both operators and regulatory bodies find vessel con-
figurations that are both feasible and environmentally 
beneficial. The ability to model and compare different 
fleet compositions under different regulatory or opera-
tional constraints is a useful decision-support tool that 
works well with existing policy frameworks like the 
IMO’s Energy Efficiency Existing Ship Index (EEXI) and 
Carbon Intensity Indicator (CII) mechanisms. 

6.	Conclusion
This study looked into ways to reduce carbon emis-

sions in offshore marine logistics by creating and study-
ing multi-echelon green supply chain models. It filled 
in a major gap in research at the crossroads of sustain-
ability, operational efficiency, and maritime logistics 
design. The study showed how vessel routing, fleet 
composition, and fuel selection affect the carbon inten-
sity, cost, and reliability of offshore supply networks by 
combining optimization models, simulation techniques, 
and decision analysis tools. The study used a network 
flow optimization model to show that multi-echelon 
routing structures are better at cutting CO₂ emissions 
than flat, direct-delivery systems. Discrete-event sched-
uling and Monte Carlo simulations showed how uncer-
tain conditions like delays and changes in the fuel mar-
ket can make things less predictable. This showed how 
important it is to plan logistics that can handle these 
changes. Also, Multi-Criteria Decision Analysis gave us a 
strong way to look at operational trade-offs. It showed 
that LNG-based strategies are currently the best way 
to balance emissions, cost, and service reliability. This 
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study adds to the field of sustainable marine logistics 
in both theoretical and methodological ways. It builds 
on previous work on environmental shipping by using 
advanced modeling techniques in a complicated and lit-
tle-studied offshore setting. It connects the operational 
and strategic areas by giving fleet managers, offshore 
infrastructure operators, and policy institutions that 
care about maritime decarbonization information that 
is both mathematically sound and useful in real life.

There are several ways that the results of this study 
can be used in real life. Planners of offshore logistics 
can use the network models created here to improve 
the routing of ships with a focus on carbon efficiency, 
especially when using floating logistics hubs or mod-
ular supply vessels. The information about how fuel 
affects performance variability helps decision-makers 
choose propulsion systems that meet both budget and 
emission goals. The MCDA framework is a tool that can 
be used repeatedly to help make decisions in real time 
about fleet configuration and following rules. Also, reg-
ulatory bodies like the IMO and regional maritime or-
ganizations may find the study’s method useful for fig-
uring out how future decarbonization rules will affect 
operations.

This study’s findings directly reinforce the concep-
tual model established at the outset of the research. 
The hypothesized links between fuel decisions, rout-
ing efficiency, carbon impact, and delivery outcomes 
were empirically validated through multiple analytical 
approaches. The model served not only as a structural 
guide for methodological design but also as a theoreti-
cal lens through which to interpret the results. The co-
herence between the model and observed data confirms 
its suitability for framing decarbonization strategies in 
offshore marine logistics networks. The study offers a 
strong framework for modelling and analysis, but some 
limitations must be recognized. First, the data used to 
model vessel trips, fuel emissions, and costs came from 
publicly available ranges and synthetic simulations. 
These were based on realistic assumptions, but they 
may not fully show the complexity of all offshore envi-
ronments or vessel types. Second, the optimization and 
simulation models assumed that capacities were fixed 
and emissions were linear per unit transported. This 
may not be true in the real world, where fuel consump-

tion changes depending on the load or the state of the 
sea. Third, the scenarios did not take into account out-
side factors like port congestion, equipment failure, and 
geopolitical restrictions. Lastly, the study only looked at 
four types of fuel, so it may not have included new pro-
pulsion technologies like ammonia and methanol that 
could become important in the near future.

Future studies should think about adding real-time 
operational data from offshore vessel operators to the 
current framework to improve model calibration and 
validation. Adding more types of propulsion technol-
ogies and taking into account all emissions through-
out the life cycle, including fuel production upstream, 
would give a better picture of the environmental im-
pact. Also, hybrid optimization models that take into 
account both environmental goals and service-level 
agreements when there are uncertain and changing 
constraints could help make decisions in offshore logis-
tics even better. Finally, long-term studies that look at 
how regulatory changes affect things over time would 
be helpful in determining the flexibility of green logis-
tics strategies in the maritime sector.
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