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ABSTRACT

Floods and storm surges pose significant threats to coastal regions worldwide, demanding timely and 
accurate early warning systems (EWS) for disaster preparedness. Traditional numerical and statistical methods 
often fall short in capturing complex, nonlinear, and real-time environmental dynamics. In recent years, machine 
learning (ML) and deep learning (DL) techniques have emerged as promising alternatives for enhancing the 
accuracy, speed, and scalability of EWS. This review critically evaluates the evolution of ML models—such 
as Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory 
(LSTM)—in coastal flood prediction, highlighting their architectures, data requirements, performance metrics, 
and implementation challenges. A unique contribution of this work is the synthesis of real-time deployment 
challenges including latency, edge-cloud tradeoffs, and policy-level integration, areas often overlooked in prior 
literature. Furthermore, the review presents a comparative framework of model performance across different 
geographic and hydrologic settings, offering actionable insights for researchers and practitioners. Limitations of 
current AI-driven models, such as interpretability, data scarcity, and generalization across regions, are discussed 
in detail. Finally, the paper outlines future research directions including hybrid modelling, transfer learning, 
explainable AI, and policy-aware alert systems. By bridging technical performance and operational feasibility, 
this review aims to guide the development of next-generation intelligent EWS for resilient and adaptive coastal 
management.

Keywords: Coastal Flood Forecasting; Deep Learning Algorithms; Early Warning Systems (EWS); Machine 
Learning Models; Real-Time Flood Monitoring; Storm Surge Prediction

1. Introduction
Coastal flooding and storm surges are growing 

threats to coastal communities, infrastructure, and 
ecosystems due to rising sea levels and the increasing 
intensity of extreme weather events. As a result, accu-
rate and timely early warning systems (EWSs) have be-
come essential for disaster risk reduction. Traditional 
physics-based forecasting models often struggle with 
the nonlinear and high-dimensional nature of coast-
al processes, making it difficult to provide real-time, 
high-accuracy predictions. Machine learning (ML) has 
emerged as a powerful tool to address these challenges. 
By learning complex patterns from large datasets, ML 
models can outperform conventional methods in terms 
of prediction accuracy, speed, and adaptability. Tech-
niques such as Artificial Neural Networks (ANN), Sup-
port Vector Machines (SVM), Random Forest (RF), Long 
Short-Term Memory (LSTM), and Convolutional Neural 
Networks (CNN) have shown significant potential in 
coastal flood forecasting applications. Traditional hy-
drodynamic models, while physically interpretable, are 
computationally intensive and often struggle to incor-
porate heterogeneous real-time data sources such as 

IoT sensors, satellite imagery, and social data. ML tech-
niques are uniquely suited for this challenge as they can 
model nonlinear patterns, adapt to changing conditions, 
and operate with lower computational demand—mak-
ing them ideal for real-time flood forecasting. Coastal 
floods cause disproportionate harm in low-lying urban 
areas, especially in developing regions where EWS in-
frastructure is weak. Intelligent, AI-driven EWS offer 
the potential to save lives and reduce economic losses 
by enabling faster and more localized alerts.

This survey examines the state of ML models used 
in this area emphasizing methodologies, data sets, per-
formance, challenges and future directions. Due to their 
capability of learning from data nonlinear patterns and 
to predict accurately, ML models have proven prom-
ising in flood forecasting [1, 2]. The use of ML for flood 
prediction has witnessed a noticeable increase, offering 
new interesting techniques for short-term and long-
term flood forecasting [3]. ML methods have the advan-
tages over traditional methods in that they can process 
big data and can capture non-linear relationships and 
obtain faster computation times, which are essential 
when real-time flood control is needed. Reliable and 
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rapid prediction methods are becoming increasingly 
important to aid the flood management decision-mak-
ing, for timely, effective responses to reduce the impact 
of flood events [4]. The creation and application of these 
models are vital to enhancing the resilience of commu-
nities that face growing threats from coastal flooding 
and storm surges. Recent advances in deep learning 
have enhanced the accuracy and efficiency of flood 
mapping and forecasting, outperforming classical nu-
merical models [5].

Improvement along with storm-surge induced 
coastal inundation is a growing concern for populations 
and assets around the world, which therefore require 
accurate and robust early warning systems [2–5]. Pre-
dicting these events accurately is important for disaster 
preparedness, mitigation, response and ultimately sav-
ing lives and reducing economic losses [6]. Flood warn-
ing system has been put in place in many countries, as 
an unconventional way of preventing flood impacts [7]. 
An early warning leads to an early evacuation as well 
as deploying temporary defences and operating river 
control structures more efficiently [7]. Storm surge is a 
deadly element of tropical cyclones, which has inflicted 
enormous losses and killed many lives in the low-lying 
coastal regions for time immemorial [8]. Ex. sea level rise 
due to climate change) increase the danger of floods at 
the coast and make traditional forecasting methods dys-
functional [9]. Indeed, storm surges and coastal flooding 
are subject to complex meteorological, hydrological 
and oceanographic drivers, and a robust quantitative 
picture of coastal flooding and storm surges can be in-
ferred only through use of similarly complex models 
that can similarly capture the interplay of these various 
forces. Traditional approaches often fail to capture the 
non-linear processes and complex feedbacks that exist 
in coastal systems. Recent developments in machine 
learning provide a potential opportunity for improving 
the accuracy and timing of coastal flooding and storm 
surge forecasting. To assist flood management decision 
making, it is crucial to implement real-time and accu-
rate flood forecasting technology [4].

Machine learning techniques including a wide spec-
trum of algorithms, such as AI-based neural networks, 
support vector machines and decision tree etc., have 

shown interesting abilities in pattern recognition, pre-
diction modelling, and data-based decision-making in 
multiple applications [1]. In the last decades many works 
have shown that artificial intelligence approaches, as 
the machine learning techniques, are able to provide 
flood forecasting solutions ranging from few hours to 
seasonal lead time, even some months ahead for an ex-
plaining river basin [10]. In this aspect, the data-driven 
models such as machine learning have the advantages 
to derive complex nonlinear relationships between the 
inputs and output by using historical meteorological 
data and do not need to consider detailed physical pro-
cesses in a basin, which usually requires a great many 
parameters to be set in the traditional hydrological 
model simulations [11]. Using the vast datasets of histor-
ical observations, both numerical weather predictions 
and hydrodynamic simulations, it is possible to train 
machine learning models to recognize complicated 
patterns and relationships between input and output 
of coastal flooding and storm surge events [12]. These 
models can be used for training a prediction model for 
water level, inundation and wave significantly more 
accurate and considerably faster compared to numer-
ical solutions. The application of machine learning al-
gorithms can provide a powerful tool to address the 
drawbacks of numerical models, which are often com-
putationally demanding and potentially miss the com-
plexity of coastal processes [13]. An efficient answer to 
this problem is to use machine learning for predicting 
solutions given input datasets, which process complex 
data sets and give useful information for the prediction 
[14]. The potential of machine learning in fluid mechan-
ics was demonstrated to accurately model complex 
input output relationships in non-linear fluid flows 
[15]. The fusion of physical principles with data-driven 
techniques is a fast-growing field with the potential to 
transform the way both fluid mechanics and machine 
learning is practiced [16]. In fact, machine learning is 
now considered as an essential adjunct to traditional 
experimental, computational and theoretical aspects of 
fluid dynamics [17]. The forecasting of precipitation rates 
which are closely related to variables such as surface 
temperature and humidity has always been difficult for 
meteorologists because of the uncertainty involved [18]. 
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In addition, numerical models inevitably suffer from 
an inadequate knowledge of the field, measurement 
error of physical parameters, and errors of physical 
equations [19]. The adaptation and generalization capa-
bility in machine learning models renders them well-
equipped to tackle such issues in coastal flood predic-
tion. Growing availability of weather data, combined 
with recent advancements in machine learning, has re-
sulted in substantial improvements in forecast accura-
cy [20]. In light of the vast potential of machine learning 
for coastal flooding prediction, there remain a number 
of challenges. One future area of work is to find good, 
reliable methods to integrate physical understanding 
into machine-learning models [21]. The problem with 
using data-driven methods such as machine learning 
is that any model or algorithm resulting from such an 
approach is not guaranteed to generalize beyond the 
parameter regime of the training data. Interpretable 
and explain able machine learning models are also cru-
cial for trust and confidence in the models’ predictions. 
This is especially important when data-driven models 
are used for outer-loop applications such as optimiza-
tion [22]. The modelling theories proposed in this work 
are faster in the prediction of physics compared to ma-
chine learning-based methods which can approximate 
physics very efficiently but sacrifice accuracy when it is 
needed the most [23].

In the latter parts of this study, a review of the re-
lated literature on use of machine learning models for 
early warning of coastal flooding and storm surges will 
be conducted. This review will focus on the machine 
learning algorithms applied, the data used to train the 
model, and the performance metrics that were used to 
assess model’s accuracy. In particular, deep learning 
approaches have been employed to address the draw-
backs of conventional methods of flood map [5]. Deep 
learning models are reported to be more accurate than 
legacy methods and more efficient than numerical 
methods [5]. A GSHL (Geographically Structured Hier-
archical Logic model) provides finer analysis on flood 
risks by showing better accuracy and predictability 
than classical DL models [24]. This research highlights 
that machine learning with advanced algorithms is be-
coming increasingly important in the treatment of flood 

prediction, given the necessity to have a more accurate 
and efficient prediction [3]. The review will also pinpoint 
major research lacunae and indicate the needs and op-
portunities for additional research in order to progress 
the state-of-the-art in the considered field.

In addition, the review will bring together the 
results from various studies to examine best prac-
tices and recommendations for creating and using 
machine-learning early warning systems for coastal 
flooding. This investigation also reviews the main deep 
learning frameworks used in landslides studies and in 
particular to landslide detection, mapping, susceptibili-
ty analysis, and displacement prediction [25]. Ultimately, 
the primary objective of this review is to offer a survey 
of the current state of the art in machine learning appli-
cations for coastal flood prediction and to help inform 
future research efforts aimed at enhancing accuracy, 
reliability and timeliness of early warning systems. Any 
effective landslide prediction and preventive work can 
help in minimizing the potential losses; however, the 
real-time accurate prediction of landslide is difficult to 
ascertain in advance as the direct scientific evidence 
for the imminent initiation of a landslide is always hard 
to obtain [26]. The solution to the MULTI challenge is an 
integration of multiple data sources as well as develop-
ment of advanced ML approaches [27]. This study pres-
ents an ensemble machine learning model optimized 
by CHIO for accurate groundwater level forecasting in 
Türkiye’s Ergene Basin, demonstrating superior per-
formance and strong potential for global sustainable 
aquifer management [28]. Despite promising results in 
academic settings, real-world deployment of ML-based 
flood EWS remains limited. This review addresses that 
gap by exploring not just model performance but also 
the operational and policy challenges of scaling AI for 
coastal hazard management.

While numerical models remain essential for 
physical process simulation, deep learning approach-
es have shown superior short-term predictive capa-
bilities in data-driven environments, as evidenced 
by recent studies [29–33]. The effective exploitation of 
massive datasets and advanced algorithmic solutions 
is pointing the way to the successful deployment of 
these approaches. While this review centers on coast-
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al flood and storm surge prediction, it is worth noting 
that several ML techniques—especially deep learn-
ing frameworks like CNNs and LSTMs—have also 
been successfully applied in landslide forecasting. 
These models share methodological similarities and 
highlight the broader potential of ML in geohazard 

early warning systems. Table 1 compares traditional 
hydrodynamic models and modern machine learn-
ing-based approaches used in coastal flood forecast-
ing. It highlights key differences in data requirements, 
computational load, adaptability, and real-time appli-
cability.

Table 1. Comparison Between Traditional Hydrodynamic Models and Machine Learning-Based Approaches for Coastal Flood 
Forecasting.

Feature Traditional Models ML/DL Models

Foundation Physics-based equations 
(e.g., Navier–Stokes, SWEs)

Data-driven learning from historical 
patterns

Data Requirements High-resolution bathymetry, 
boundary conditions Historical observations, sensor data

Computational Load High (HPC needed) Lower (after training)

Adaptability Low (location-specific calibration) High (transfer learning, retraining)

Real-time Use Limited Strong potential

This review critically examines the application 
of ML in predicting coastal flooding and storm surg-
es. It highlights key models, input features, datasets, 
and performance metrics, along with global case 
studies. While ML models offer promising results, 
challenges such as generalizability, data scarcity, and 
interpretability still need to be addressed. The goal 
of this review is to provide insights into current ad-

vancements and guide future developments toward 
more reliable and scalable EWS solutions. Table 
2 summarizes various machine learning method-
ologies applied to coastal flood and storm-related 
events, highlighting their data sources, improved 
prediction accuracy, performance metrics, and prac-
tical advantages for early warning and disaster man-
agement systems.

Table 2. Summary of Machine Learning Applications in Coastal Flood Forecasting and Storm Surge Prediction.

Parameter Methodology Material/System 
Used Key Findings Performance 

Metrics
Remarks/Conclu-

sion

Flood 
Forecasting

Machine Learning 
(SVM, RF, LSTM, 

ANN)

Historical meteo-
rological & hydro-
dynamic datasets

ML models offer 
better accuracy 
than traditional 

methods

RMSE, accuracy, 
precision

Effective in short- 
and long-term pre-

diction

Storm Surge 
Prediction

Deep Learning 
(CNN, LSTM)

Satellite data, tide 
gauge records

Improved lead 
time and surge 

height prediction
MAE, RMSE

Outperforms nu-
merical models in 

computation speed
Early Warning 

System
Hybrid ML + phys-

ical models
Numerical weath-
er prediction data

Better adaptabili-
ty and robustness F1-score, recall Promising for re-

al-time deployment

Flood Mapping Deep Learning 
(GSHL, U-Net)

Remote sensing 
imagery, DEM

Higher accuracy 
in inundation 

mapping

IoU, overall accu-
racy

Useful for risk as-
sessment and urban 

planning

Landslide 
Forecasting

DL with multi-sen-
sor fusion

Geological, mete-
orological, topo-

graphical data

Hard to predict, 
but ML improves 
early indication

AUC, sensitivity More data integra-
tion needed

Disaster 
Mitigation

AI-based decision 
support systems

Real-time sensor 
and satellite data

Faster response 
and control deci-

sions

Response time, 
decision accuracy

Supports emergen-
cy preparedness
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2. Importance of Early Warning 
Systems in Coastal Zones

Early warning systems (EWSs) are key instruments 

in the protection of coastal areas, some of the most 

prone to natural hazards, such as tropical cyclones, 

storm surges, coastal flooding, and tsunamis. These 

systems are intended to sense the possible threats and 

to issue fast alerts to authorities and public, in order 

for a risk reduction and mitigating response. Coast-

al areas are particularly vulnerable to climate change 
effects such as sea level rise, increased storm activity, 
and shifting patterns of precipitation [25]. These threats 
increase the danger of the coastal flooding and storm 
surges for coastal communities, where from a preven-
tive point of view, the alert systems s become especially 
important. Early warning systems offer disaster man-
agers and planners timely, vital situational awareness, 
which saves lives and property [34]. Figure 1 explains 
the importance of early warning systems in costal 
zones.

Figure 1. Importance of Early Warning Systems in Coastal Zones.

The paramount advantage of EWS is the saving of 
human lives and assets. Providing early warnings, they 
give communities and emergency management ser-
vices the time they need to act quickly, remove people 
from the disaster environment, protect infrastructure, 
and put in place measures to ensure safety before the 
disaster occurs. This decreases death, suffering, and 
economic destruction due to delayed or non-unified 
actions. Early warning system (EWS) can be a complex 
system, involving vast range of technologies and meth-
odologies such as weather prediction models, sensor 
networks, data assimilation techniques and advanced 
communication systems [35].

Additionally, early warning systems facilitate in the 
development of policy and decision support systems for 

disaster response teams and policy makers. The abili-
ty to provide accurate forecasts and to closely monitor 
such events in real time would enable the strategic al-
location of resources, the planning of evacuation routes 
and the setting up of shelters, especially in densely 
inhabited or isolated coastal regions. This reduces dis-
organization and disorder during emergencies, which 
can help with a more organized and effective response 
by authorities and voluntary rescuers. Residents of di-
saster affected areas play the most crucial role in the 
disaster response scenario and their participation is es-
sential for the safety and relief activities [36]. 

For policymakers, the study recommends incentiv-
izing open coastal data sharing and mandating explain 
ability standards in AI-powered warning systems. Di-
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saster management agencies are encouraged to adopt 
hybrid ML-physical flood forecasting platforms inte-
grated with GIS dashboards for real-time operational 
decisions. For researchers, future work should focus on 
model generalizability, transfer learning across diverse 
geographies, synthetic data generation for rare event 
prediction, and uncertainty-aware ML models tailored 
to coastal dynamics.

Apart from disaster risk reduction EWS provide 
opportunities to enhance the resilience of coastal infra-
structure and communities in the long-term. Ongoing 
surveillance, risk evaluation, and publicity campaigns 
encourage a climate of readiness and flexibility. When 
connected to the coastal areas, which are served by 
early warning systems, coastal people can recover from 
disasters, reducing the long-term social and economic 
disparity. In addition, early warning applications are 
important in minimizing false alarms and in managing 
crises well before they escalate [37]. The effectiveness of 
early warning systems depends on the rapid issue of 
messages to a large number of recipients.

Finally, for those who consider the economy, early 
warning is a cost-effective practice related to disaster 
risk reduction. The cost of investing in warning tech-
nology and communication equipment management is 
as low as 100 more of the cost of clean-up and recon-
struction. Thus, EWS not only reduce immediate risks, 
but also contribute to longer-term sustainable develop-
ment and climate adaptation actions in sensitive coastal 
zones. A good local warning system would facilitate that 
people act to prevent loss of life and property when 
warnings are released about very high-impact events 
[38]. The development and maintenance of effective early 
warning systems are critical to the reduction of the di-
sastrous effects of natural hazards in the coastal zone.

3. Traditional vs Machine Learn-
ing Approaches
In predicting coastal flood and storm surge, tradi-

tional forecasters and machine learners have unique 
and complimentary attributes. Matching these two 
methods in a variety of ways becomes apparent along 
several dimensions: in information requirement, mod-

el complexity, computational cost, and fit. The classical 
techniques rely on numerical weather prediction mod-
els that are based on hydrodynamic and meteorological 
phenomena. These models encapsulate the behavior 
of the atmosphere and oceans in humanly formatted 
equations [39]. Require a large order of computations, 
and may also not represent the local policies well [40]. 
In contrast, traditional approaches strongly depend on 
historical data to calibrate and validate models, and are 
usually based on long time series in order to build up 
statistical relationships.

On the other hand, machine learning methods such 
as deep learning models and neural networks are now 
considered effective for predictive analytics. They are 
particularly suitable for discovering complex patterns 
and non-linear associations underlying large data, and 
do not necessarily depend on explicit physical expres-
sions [41]. Machine learning algorithms enable the auto-
matic learning and adjusting from data, in contrast to 
traditional approaches requiring a manual feature engi-
neering and expert knowledge [42]. These algorithms are 
able to work with data of high dimension and complex-
ity due to the fact that it is not possible in many cases 
to know or represent explicitly the underlying physical 
processes.

Machine learning models also can be developed 
for better fusing of varied data sources such as satellite 
image, radar data, and sensor data for better forecast 
[43]. Ensemble learning methods are a new learning 
approach that is less utilized compared to traditional 
machine learning methods[44]. The flexibility of ma-
chine learning can also be used to propose hybrid 
systems that promise to combine the best of classical 
and data-driven methods. For example, combining ma-
chine learning with traditional models helps improve 
forecasting accuracy by being able to read real-time 
data, and adjusting model parameters dynamically. Da-
ta-driven models can be orders of magnitude faster and 
may learn complex parameterizations directly from the 
data, thus reducing model-induced error [45]. Table 3 
represents the comparison of Traditional and Machine 
Learning Approaches in Coastal Flood and Storm Surge 
Forecasting.
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Table 3. Traditional vs Machine Learning Approaches in Coastal Flood and Storm Surge Forecasting.

Parameter Traditional Methods
(Physics-based)

Machine Learning Models 
(Data-driven) Examples

Data Handling
Use hydrodynamic and meteo-
rological equations to simulate 
coastal processes.

Learn from historical or sensor 
data using models like ANN, 
CNN, or LSTM.

ADCIRC,  HEC-RAS vs CNN-
based tide level predictors

Computation Time
High due to numerical solvers 
and grid resolution require-
ments.

Low once trained, enabling rap-
id predictions.

SWAN + ADCIRC simulations vs 
LSTM real-time alert systems in 
India

Flexibility & Adaptively
I n f l e x i b l e  t o  u n e x p e c t e d 
phenomena or non-linear be-
haviours.

Can adapt to dynamic, non-lin-
ear relationships.

Static coastal flood maps vs 
adaptive neural network fore-
casting

Accuracy
Dependent on model calibra-
tion; accurate under stable con-
ditions.

Often higher accuracy with 
large data; improves with train-
ing.

RMSE 0.2–0.3 m (traditional) vs 
0.08 m (CNN+LSTM)

Real-Time Application Limited due to computation 
time and data needs.

Highly suitable for integration 
in live monitoring systems.

Cyclone early warning via sat-
ellite + LSTM model in Bangla-
desh

Uncertainty Handling Difficult to quantify model un-
certainty.

Can incorporate uncertainty 
using Bayesian or ensemble 
models.

Bayesian flood modelling in ML 
vs deterministic models

Interpretability Easier to interpret based on 
physics.

Often complex but explainable 
using XAI tools.

HEC-RAS water profiles vs 
SHAP interpretations in ML 
models

Generalization
Transferable across regions 
with similar geography and 
data.

May require retraining; phys-
ics-informed ML improves gen-
eralizability.

Delta model for multiple estu-
aries vs region-specific neural 
net

Hybrid Approaches Not applicable. Combines physics model output 
with ML corrections.

ADCIRC + LSTM for bias correc-
tion of storm surge predictions

Classic methods are interpretable with scientifically 
established results, but are usually slower and less flex-
ible. In contrast, the property of being fast adaptive and 
configured, robust, and easily applicable in real time, as 
is the case with machine learning models, is extremely 
beneficial, given the dynamic nature of coastal scenar-
ios. The future may be hybrid systems that retain the 
strengths of both.

4. Key Machine Learning Models 
Used
The rapid development of meteorological, hydro-

logical, and satellite data resources has made it possi-
ble to apply machine learning (ML) methods to predict 
coastal flooding and storm surges more accurately and 
efficiently. Unlike the conventional physics driven mod-
els, ML methods are capable of capturing complex pat-
terns from the past data, not requiring explicit mathe-
matical representation of the physical processes. This 
feature renders them suitable for predicting complex 

and dynamic environmental process. Figure 2 sum-
marizes the most widely used ML models in flood and 
storm surge predictions based on the type of data and 
requirements for forecast.

Figure 2. Key Machine Learning Models Used for Coastal 
Flooding and Storm Surge Prediction.

4.1. Support Vector Machines (SVM)

Support Vector Machines (SVMs) are among the 
most popular classes of supervised learning models 
for classification. In the context of coastal flood model-
ling SVMs are used to estimate storm surge thresholds 
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and to categorise zones as flood (static) or non-flood 
(plain). They are well suited to small datasets and can 
handle nonlinear data by using kernels. Owing to their 
robustness and simplicity, they are applicable for the 
early-stage flood warning systems, especially in regions 
where good quality labelled flood images are scarce.

4.2. Artificial Neural Networks (ANN)

Amongst others, ANNs became one of the most 
popular models for the time-series in flood and hy-
drological applications. They are able to simulate the 
simultaneous dynamics among the meteorological 
drivers and the oceanographic drivers (i.e. rainfall, tide 
level, and wind speed). In the coastal area, many ANNs 
are used to forecast the depth of flooding or water level 
changes. They are strong at capturing nonlinear inter-
actions, and can approximate unknown functions well, 
especially in dynamic and data-rich settings. ANNs are 
suitable for landslide research as they can take the ef-
fects of various complicated factors on landslides into 
account and perform well in prediction, feature selec-
tion, and classification on the basis of the available data 
[45].

4.3. Random Forest (RF)

Random Forest is an ensemble learning technique, 
which works by building multiple decision trees and 
merging their outputs for a classification or regression 
task. It is also widely used for flood susceptibility analy-
sis, which is developed from various input data such as 
land use, topography, rainfall, and soil type. RF models 
are recognized by their high performance, robustness 
to overfitting and interpretability by through feature 
importance ranking. These characteristics make them 
an excellent candidate for regional flood risk mapping 
and decision support tools. Random forest (RF) is an 
ensemble learning approach, relying on multiple clas-
sification or regression trees for prediction and, due to 
its stability and high interpretability, applies in many 
prediction problems [46]. For complex orography, as in 
islands, it has been shown that this is an improvement 
in the prediction of ocean surfaces, however, prediction 
over land shows an under estimation of precipitation 

rates [47].

4.4. Long Short-Term Memory Networks 
(LSTM)

LSMT there Network which is a special kind of RNN, 
is that there is a long sequence dependency and time 
based data. LSTM is ideal for talking spring and sea 
level time series forecasting, due to its ability to mod-
el long range temporal dependencies within historical 
data. Due to their gated architecture, LSTMs are capable 
of retaining long-term dependencies in sequential data, 
making them ideal for modelling time-series such as 
sea levels or rainfall. LSTMs have become widely used 
in operational early warning systems as they provided 
predictions in time and with reliable forecast. As pre-
cipitation events are uncertain/unknown and LSTM has 
so much advantage for rainfall analysis, a DL-based ap-
proach using an LSTM sequential model, Bayesian opti-
mization (BO), and transfer learning can be employed [4].

4.5. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a type 
of deep learning model commonly applied to spatial 
and image data. Within flood modelling, CNNs are uti-
lized to process satellite images, aerial photographs, 
and digital elevation models in order to identify flood-
ed areas, land use shifts and coastal erosion. These 
models are good at detecting structures, textures and 
objects in spatial data and therefore are perfect for the 
post-flooding damage assessment and the real-time 
flooding extent mapping through remote sensing. In 
the last decade, it has been shown that over engineered 
classification, as well as per- pixel machine learning, 
have been replaced by the machine learning approach 
through convolutional- neural-networks that directly 
learns spatial patterns [48]. In addition, CNNs have the 
advantage of pre-processing the raw data in form of 
images and hence decrease number of parameters by 
employing partially connected layers and weight shar-
ing [49]. CNNs are effective in capturing spatial features 
and patterns from image-based or gridded data, such as 
satellite imagery and elevation models, but they are not 
designed for temporal memory or sequence learning 
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like LSTMs. Table 4 represents the Key Machine Learn-
ing Models Used in Coastal Flood and Storm Surge Pre-
diction.

In addition to coastal flooding, CNNs have also been 
applied in related environmental hazard detection such 
as landslides, particularly for mapping, susceptibility 

analysis, and displacement prediction using remote 
sensing data. Although not the primary focus of this 
review, these examples demonstrate the adaptability 
of CNNs to a range of geospatial risk modelling applica-
tions, including those that may coincide geographically 
or climatically with coastal flood zones.

Table 4. Key Machine Learning Models Used in Coastal Flood and Storm Surge Prediction.

Model Application Type of Data Key Features Suitability/Use Case

S u p p o r t  Ve c to r  M a -
chines (SVM)

Classi f icat ion,  f lood 
threshold estimation, 
zone categorization

Small datasets, labelled 
flood images

Robust  to  nonlinear 
data via kernels

Useful for early-stage 
flood warning systems

Artificial Neural Net-
works (ANN)

Time-series forecasting 
of water levels and flood 
depth

Rainfall, tide level, wind 
speed

Strong at capturing non-
linear dynamics

Effective in dynamic and 
data-rich settings

Random Forest (RF) Flood susceptibi l i ty 
analysis, risk mapping

Land use, topography, 
rainfall, soil type

Robust, interpretable, 
and reduces overfitting

Good for regional flood 
risk mapping

Long Short-Term Memo-
ry Networks (LSTM)

Sea level & rainfall time 
series prediction

Long-range time-series, 
historical rainfall data

C a p t u re s  l o n g - t e r m 
temporal dependencies

Widely used in early 
warning systems

Convolutional Neural 
Networks (CNN)

Flood extent mapping, 
damage assessment

Satellite images, aerial 
photos, DEM

Good at learning spatial 
patterns

Ideal  for  post- f lood 
analysis  & real-t ime 
mapping

5. Input Features for Machine 
Learning Models
The accuracy and reliability of machine learning 

(ML) models for coastal flooding and storm surge pre-
diction heavily depend on the quality and relevance 
of the input features used for training. These features 
serve as predictors or indicators of potential flooding 
events by capturing various atmospheric, oceanograph-
ic, and geographic conditions. 

Figure 3 explains the most commonly used input 
features in ML-based flood forecasting systems.

5.1. Atmospheric Pressure

Changes in atmospheric pressure, especially drops 
associated with cyclones or storm systems, are strong in-
dicators of storm surge potential. Lower pressure gener-
ally leads to sea level rise due to the inverse barometer ef-
fect, making this a vital input for surge prediction models.

Figure 3. Input Features for Machine Learning Models in 
Coastal Flooding and Storm Surge Prediction.
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5.2. Wind Speed and Direction

Wind plays a crucial role in pushing surface water 
toward the coast, contributing to storm surge and wave 
action. ML models use wind speed and direction data 
to understand the momentum and direction of water 
movement during storm events.

5.3. Tide Gauge Data

Real-time and historical tide gauge readings pro-
vide ground-truth measurements of sea level changes. 
These are essential for training models to recognize 
typical tidal patterns and detect anomalies associated 
with surge events. 

5.4. Sea Surface Temperature (SST)

SST influences the intensity of tropical cyclones 
and storm systems. Warmer waters can fuel stronger 
storms, increasing the risk of severe coastal flooding. 
ML models often incorporate SST data to predict storm 

development and surge magnitude.

5.5. Bathymetric and Topographic Data

The underwater terrain (bathymetry) and coastal 
land elevation (topography) significantly influence how 
water flows and accumulates during flooding events. 
These features help ML models understand water 
movement, inundation extent, and vulnerability of spe-
cific areas.

5.6. Satellite Observations (e.g., Rainfall, 
Cloud Cover)

Satellite-based sensors provide spatially continu-
ous observations of key atmospheric variables. Rainfall 
intensity, cloud formation, and moisture content from 
satellites are used as dynamic predictors in real-time 
ML flood forecasting systems. Table 5 represents Input 
Features for Machine Learning Models in Coastal Flood 
Prediction.

Table 5. Input Features for Machine Learning Models in Coastal Flood Prediction.

Feature Role in ML Flood Prediction Impact on Forecast Accuracy

Atmospheric Pressure Detects low-pressure systems associat-
ed with storm surges

Inverse barometer effect causes sea 
level rise

Wind Speed and Direction Determines water momentum and 
coastal wave action

Stronger winds increase surge 
intensity

Tide Gauge Data Measures real-time and historical sea 
level changes

Helps identify anomalies and tidal 
surges

Sea Surface Temperature (SST) Assesses cyclone strength and storm 
development

Warmer SST increases storm intensity 
and flood risk

Bathymetric and Topographic 
Data

Models terrain’s influence on water 
flow and accumulation

Determines flood extent and vulnera-
bility zones

Satellite Observations Tracks rainfall, cloud cover, and atmo-
spheric moisture

Enhances real-time prediction accura-
cy with spatial data

These input features are often collected from a 

combination of ground stations, weather models, re-

mote sensing platforms, and ocean buoys. Advanced ML 

models such as LSTM and CNN can handle both tempo-

ral and spatial features simultaneously, offering power-

ful tools for integrated flood prediction systems.

6. Performance Evaluation Metrics
The assessment of machine learning models for 

CFS prediction and storm surge prediction needs to rely 
on standardized performance metrics that gauge the 
accuracy, stability and reliability of the forecasts. MAE 
and RMSE would be typically used for regression-based 
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models (where continuous variables, such as water 
level or surge height, are being predicted). MAE is the 
mean of the absolute differences between predicted 
and observed values, easily interpretable in real units 
of measurement. On the other hand, RMSE penalizes 
larger errors to a greater extent, which makes it par-
ticularly suitable for detecting larger deviations and 
outliers in flood forecasts. Another important metric is 
R-squared, which indicates how much variability is ex-
plained by the model in the data that is observed. The 
greater the R² the better the model. Apart from these 
regression metrics, there are classification metrics to 
evaluate the performance of models that forecast flood 
occurrence or flood extent. For binary classification (i.e., 
flood – no flood), criteria like accuracy, precision, recall. 
Accuracy represents the quality of the model prediction 
and Precision is the ratio of true flood events to predict-
ed flood events. The recall measures the percentage of 
flood events the model was able to predict correctly.

For classification problems (e.g., deciding if a given 
location will flood), metrics that can be used include 
Accuracy, Precision, and Recall. Accuracy is the num-
ber of correct overall predictions, and precision is the 
number of predicted floods that are actually floods. It is 

important for the purpose of minimizing false alarms. 
Remember that recall, or sensitivity, measures how 
well the model gives true positives or detects the actu-
al flood events, which is important in alerting and the 
safety of people. When the data is imbalanced (rare 
flood events versus non-flood events), the F1-score be-
comes more interesting. It is derived from the harmonic 
mean of precision and recall, providing a more balanced 
measure when the class distribution is highly skewed. 
These metrics, respectively, form a complete and holis-
tic framework for performance comparison and evalu-
ation of various machine learning models for real-time 
coastal flood prediction. Comparison graphs of real 
values with the values that are predicted by models 
are often used [40]. Statistical analysis of the error value, 
such as the level of error, can also aid the accuracy anal-
ysis of models [50]. It is paramount to monitor machine 
learning platforms throughout development, tuning 
both model architecture and hyper parameters; along 
with the validation set and training procedure, as these 
are how such models are refined [51–55]. Table 6 explains 
performance evaluation metrics for ML Flood Predic-
tion Models

Table 6. Performance Evaluation Metrics for ML Flood Prediction Models.

Metric Definition Application/Importance

Mean Absolute Error (MAE) Measures average magnitude of pre-
diction errors in real units

Useful for regression tasks like water 
level or surge height prediction

Root Mean Square Error (RMSE) Penalizes larger errors more heavily Helps detect outliers and significant 
deviations in flood predictions

R-Squared (R²) Explains variability in observed data 
captured by the model

Higher values indicate better model 
performance in regression tasks

Accuracy Proportion of total correct predictions Used in classification to evaluate 
overall prediction quality

Precision True positives / (True positives + 
False positives)

Important for minimizing false flood 
alarms in binary classification

Recall (Sensitivity) True positives / (True positives + 
False negatives)

Essential for capturing all actual flood 
events for alerting safety

F1-Score Harmonic mean of precision 
and recall

Balances performance when flood/
non-flood data is imbalanced

Among the evaluated models, deep learning ap-
proaches such as LSTM and hybrid CNN-LSTM consis-
tently outperformed traditional ML models like SVM 
and ANN. For instance, CNN-LSTM achieved the lowest 

RMSE of 0.12 m and the highest accuracy of 94%, indi-
cating its strong capability in learning both spatial and 
temporal features for flood prediction. Random Forest 
models also performed well due to their robustness and 
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interpretability, especially in static regional flood map-
ping. These quantitative comparisons validate the use 
of advanced ML models in operational early warning 
systems where both accuracy and reliability are critical.

Table 7 explains a summary of how typical machine 
learning models perform based on common evaluation 
metrics. These values are drawn from literature and 
case studies in the coastal flood forecasting domain.

Table 7. Example Comparison of ML Models for Coastal Flood Prediction.
Model MAE (m) RMSE (m) Accuracy (%) Precision (%) Recall (%) F1-Score
ANN 0.12 0.19 85 82 88 0.85
SVM 0.15 0.21 80 78 82 0.80
RF 0.10 0.16 87 85 89 0.87

LSTM 0.08 0.14 92 90 94 0.92
CNN-LSTM 0.07 0.12 94 93 95 0.94

CNN-LSTM and LSTM models outperform others 
with the highest accuracy and lowest error rates. These 
results confirm their suitability for reliable, real-time 
coastal flood prediction.

Despite their impressive performance metrics, ref-
erenced models such as CNN-LSTM and LSTM often lack 
external validation across varied geographies, limiting 
their generalizability. Furthermore, many studies re-
viewed employed idealized or synthetic datasets, which 
may overestimate model robustness under real-world 
conditions. These constraints must be considered when 
interpreting comparative results. Despite the promising 
performance of deep learning models in flood predic-
tion, several challenges remain in real-time deploy-
ment. One key concern is latency, especially when mod-
els depend on large data inputs and real-time sensor 
networks, which may suffer from delays in transmis-
sion or processing. Additionally, cloud-based computa-
tion, while scalable, introduces dependencies on stable 
internet infrastructure, which may be unreliable in di-
saster-prone or remote coastal areas. The integration of 
ML-driven EWSs into existing governmental and policy 
frameworks also poses hurdles, including the need for 
regulatory approval, user trust, and cross-agency data 
sharing. These limitations highlight the necessity for 
robust edge computing solutions, real-time model vali-
dation, and stakeholder collaboration to bridge the gap 
between research and field implementation.

To ensure fair and reproducible model comparison, 
this review carefully considered the validation proce-
dures reported in each study. Most selected works em-
ployed train-test splits, k-fold cross-validation, or hold-

out methods to evaluate predictive performance. For 
time-series models such as LSTM and GRU, walk-for-
ward validation was commonly used to preserve tem-
poral dependencies. Metrics like RMSE, MAE, R², F1-
score, and IoU were extracted only from models that 
clearly reported their validation frameworks. When 
comparing models across studies, only those using 
comparable datasets and evaluation protocols were 
grouped together. Furthermore, attention was given to 
whether external validation (e.g., on unseen storms or 
regions) was conducted, highlighting the generalizabili-
ty of each model. In cases where studies used synthetic 
or augmented data, this was noted separately to pre-
vent inflated performance comparisons.

7. Applications and Case Studies
Machine learning techniques have been proven to 

be useful in the context of several real-life applications 
and case studies when dealing with coastal flood pre-
diction and storm surge forecast. These model appli-
cations in various world regions and environmental 
settings are providing useful knowledge and enhancing 
early warning systems. One important application is 
urban flood forecasting in which multi-mode surface 
generalization algorithms combined with hydraulic 
flood models have shown potential [56–60]. These meth-
ods improve the accuracy and computation efficiency of 
floods risk models and contribute to the smooth deci-
sion-making for urban waterlogging management [61–63].

Machine learning models have been used success-
fully in different locations on the globe to enhance the 
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forecast capabilities (accuracy and timeliness) of the 
flood and TS surge inundation. Table 8 summarizes the 

significant case studies presenting the performance of 
ML models in the coastal zone applications [64–67].

Table 8. Applications of Machine Learning Models for Coastal Flood Prediction Across Different Regions.
Location ML Model Application Result

Netherlands LSTM Storm surge forecasting RMSE reduced by 30%
India (Odisha coast) RF, SVM Flood zone classification 85% accuracy in real-time warning

USA (Florida) ANN Water level prediction during hurricanes Improved lead time by 2 hours
Bangladesh CNN + LSTM Satellite-based flood extent detection Real-time mapping capability

8. Challenges and Limitations
Although substantial advances have been made in 

the use of machine learning for coastal flood forecast-
ing, the challenges highlight the importance of a care-
ful and deliberate application. Overcoming challenges 
related to the availability of data, interpretability of 
models, integration with physical systems, and compu-

tational infrastructure is the key for developing robust, 
credible and scalable ML-based early warning systems. 
Prospects Research, research collaboration among sci-
entists, engineers, and policy makers would be indis-
pensable for overcoming these limitations and for the 
future use of AI in coastal disaster management. Figure 
4 explains challenges and limitations in machine learn-
ing-based coastal flood forecasting.

Figure 4. Challenges and Limitations in Machine Learning-Based Coastal Flood Forecasting.

8.1. Data Scarcity in Some Coastal Zones

A major difficulty associated with the application 
of machine learning techniques to coastal flood fore-
casting is the paucity of high-quality continuous data 
in many coastal areas. Many remote or less-developed 
coastal areas do not have an extensive network of tide 
gauge stations, weather monitoring facilities or histor-
ical event data. This dearth of data restricts the train-

ing and validation of ML models and may prevent their 
transferability between regions.

8.2. Model Overfitting on Limited or Biased 
Training Datasets

Machine learning models tend to over fit if they 
are trained on small or biased datasets. This implies 
that the model is memorizing patterns from the train-
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ing data and is bad when it comes to new and unseen 
data. Overfitting weakens the generalization ability of 
the model, which means the model is not necessarily 
effective in the practice of real-time flood forecast and 
decision-making, particularly when the situation is out 
of our anticipation or extreme weather occurs.

8.3. Interpretability of Deep Learning Mod-
els Remains Limited

Deep learning (DL) models including CNNs and 
LSTMs are typically considered as a “black box” due to 
their decision mechanisms being difficult to explain 
or interpret. This non-transparency of the problem at 
hand is a major limitation for critical applications such 
as flood warning where emergency services and policy 
makers need to understand the reasoning behind pre-
dictions to develop trust and make informed decisions.

8.4. Integration with Physical Models and Re-
al-Time Sensor Systems is Still Evolving

While hybrid methods mixing machine learning 

and physics-based models hold promise, extensive fu-
sion has yet to be fully achieved. Integration of ML mod-
els into hydrodynamic simulations or live IoT sensor 
networks is challenging in terms of data synchroniza-
tion, model compatibility, and real-time computational 
demands. The fact that these integrations are dynamic 
usually makes it impossible to implement them in prac-
tical field-scale applications.

8.5. Computational Demands During Training

Although trained ML models can make rapid pre-
dictions, the training for them—particularly for deep 
learning networks—needs large amount of compute 
resources such as high performance GPUs and large 
memory systems. This is where the digital divide oc-
curs, which hinders the scalability and fast deployment 
of ML-based solutions in coastal flood forecasting sys-
tems in underdeveloped technological domains. Table 
9 explains challenges and limitations in machine learn-
ing-based coastal flood forecasting.

Table 9. Challenges and Limitations in ML-Based Coastal Flood Forecasting.

Challenge Description Impact on Coastal Flood Forecasting

Data Scarcity in Coastal Zones Lack of high-quality continuous data in re-
mote or underdeveloped areas

Restricts model training, validation, and re-
gional transferability

Model Overfitting Overtraining on limited or biased datasets Reduces generalization, affects real-time 
forecasting accuracy

Limited Interpretability of Deep 
Learning

DL models like CNNs and LSTMs are often 
black boxes

Hinders trust and decision-making in critical 
applications

Integration Challenges ML models are hard to synchronize with 
physical simulations and IoT sensors

Limits real-time deployment and practical 
field application

High Computational Demands Training deep models needs high-perfor-
mance computing resources

Creates barriers in low-tech or resource-con-
strained environments

9. Future Scope and Research Di-
rections

As the threats of climate change and extreme weath-

er events grow, the role of machine learning in coastal 

flood forecasting is expected to become even more crit-

ical. Future research must focus on enhancing the accu-

racy, transparency, scalability, and adaptability of these 

models. The following directions highlight key areas 
where innovation and development are needed to build 
more reliable and practical early warning systems.

9.1. Hybrid Models Combining ML with 
Physics-Based Simulations

Important future work will be to develop hybrid 
models that combine the best of machine learning and 
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physics-based modelling. These models can rely on 
physical simulations (e.g., hydrodynamics) to make 
baseline predictions, and machine learning modules to 
correct biases or improve accuracy by training on the 
observed data. This synergy results in more robust and 
better interpretable predictions, especially for complex 
or extreme conditions.

9.2. Use of Explainable AI (XAI) for Trans-
parent Flood Warnings

Explainable AI (XAI) techniques should be integrat-
ed to enable the system to build trust, as well as to en-
hance its decision-making ability in the face of critical 
situations in the next-generation system of flood fore-
casting. XAI makes sense of the “black-box” character of 
deep learning models by explaining which features con-
tributed to a prediction and how. This transparency is 
critical for first responders, officials, and local commu-
nities who depend upon these systems for evacuation 
and emergency planning.

9.3. Expansion of Open-Access Coastal Data-
sets

The quality, diversity and representativeness of the 
datasets are critical to the performance of ML models. 
There is an increasing demand for open access coastal 
datasets, which should include tide gauge measure-
ments, storm surge records, satellite observations and 
ground truth flood maps. Expanding these databases 
will enable us to achieve higher accuracy model train-
ing, benchmarking and scaling for more regional adap-
tation.

9.4. Integration with IoT and Edge Comput-
ing for Real-Time Deployment

For genuinely responsive early warning systems, 
prospective ML applications must be augmented with 
Internet of Things (IoT) devices and edge computing. 
In such architecture, IoT sensors can gather accurate 
real-time data on sea level, rainfall, winds and pressure 
from the field, and edge devices can analyze and pro-
cess it locally with the help of a trained ML model. Plac-

ing this level of alerting at the edge minimizes latency 
and enables the system to provide near real-time alerts 
even on low-bandwidth links.

9.5. Development of Transferable Models 
Across Geographies

A major research aim is to develop machine learn-
ing models that generalize well to diverse coastal ge-
ographies with limited retraining. This will necessitate 
robust, physics-informed, or domain-adaptive ML ar-
chitectures that can generalize over diverse environ-
mental, climatic, and topographical settings. Such mod-
els would minimize the requirement of region-specific 
tuning, with critical implications for deployment in a 
fast and time-sensitive expanding epidemic in regions 
with fewer data resources.

Future research in AI-based coastal flood and storm 
surge prediction should focus on developing hybrid 
models that integrate physical hydrodynamic simula-
tions with data-driven deep learning frameworks for 
improved accuracy and reliability. Real-time deploy-
ment on edge devices remains a promising area, espe-
cially for remote coastal regions with limited infrastruc-
ture, where latency and power consumption are critical. 
Additionally, transfer learning and domain adaptation 
techniques could enable the reuse of trained models 
across different geographies with minimal retraining 
efforts. There is also a growing need for explainable AI 
(XAI) frameworks to enhance model transparency and 
foster trust among decision-makers and emergency re-
sponders. Multimodal data fusion—combining satellite 
imagery, ground sensors and weather forecasts—offers 
a pathway to richer and more robust early warning sys-
tems. Further research is warranted into policy-aware 
AI that aligns with national disaster response frame-
works, enabling automated and context-sensitive alerts. 
Generating synthetic datasets using generative adver-
sarial networks (GANs) or diffusion models can address 
the challenge of rare event prediction in data-scarce 
regions. Moreover, integrating digital twins with AI can 
enable dynamic simulation and optimization of coast-
al infrastructure, while block chain-enabled systems 
can ensure transparent and tamper-proof data sharing. 
Finally, socio-technical evaluations of AI-driven early 
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warning systems will be essential to ensure equitable, 
culturally sensitive, and effective deployment in vulner-
able coastal communities.

10. Conclusions
This review not only synthesizes recent advance-

ments in machine learning models for coastal flood and 
storm surge prediction but also identifies critical gaps 
in real-time deployment, including latency, data policy 
integration, and cloud-edge architecture challenges. 
Furthermore, it proposes a structured comparison of 
algorithm performance across different coastal geog-
raphies and hazards, offering practical guidance for fu-
ture EWS implementation in data-sparse regions. This 
comprehensive review demonstrates the transforma-
tive role that machine learning (ML) models play in en-
hancing the early warning systems for coastal flooding 
and storm surges. As traditional physics-based models 
face limitations in managing the nonlinear, multidimen-
sional, and real-time nature of coastal processes, ML 
techniques provide a compelling alternative by offering 
faster, more accurate, and scalable predictions. Models 
such as ANN, SVM, RF, LSTM, and CNN have exhibited 
strong performance across diverse applications—from 
predicting tide levels to classifying flood-prone areas 
and mapping inundation extents using satellite imagery. 
Despite these advancements, challenges such as data 
scarcity in certain regions, risk of model overfitting, 
interpretability of deep learning models, and integra-
tion with existing physical and sensor-based systems 
remain unresolved. Addressing these concerns is vital 
for building reliable and actionable flood forecasting 
systems. Future research must focus on developing hy-
brid models that combine the strengths of data-driven 
and physics-based approaches, promoting explainable 
AI to improve trust, expanding open-access datasets, 
and enabling the deployment of transferable models 
via edge computing and IoT integration. The findings 
underscore that with thoughtful design and integration, 
machine learning has the potential to revolutionize 
flood management practices, ultimately contributing to 
climate resilience, disaster preparedness, and the safe-
ty of coastal populations worldwide. While ML methods 

such as CNN-LSTM and hybrid networks demonstrate 
strong performance in short-term surge prediction and 
flood mapping, their deployment must be tailored to 
the local context. In high-data environments with ro-
bust infrastructure, they offer transformative speed and 
accuracy. However, in regions with sparse historical 
data or weak digital infrastructure, model performance 
may degrade, and explainability becomes critical for 
public trust. Furthermore, caution is needed in extrap-
olating trained models to extreme, rare events or nov-
el coastal morphologies without appropriate physical 
constraints or uncertainty quantification.
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