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ABSTRACT 

Vessel motions in offshore operations are heavily influenced by uncertain wave loads and hydrodynamic 

parameters. Yet, traditional deterministic or probabilistic models often fail to capture epistemic ambiguity when 

data are scarce. We introduce a fuzzy–set framework using α-cut interval analysis to represent imprecise wave 

heights, periods, added mass, damping, and stiffness as fuzzy numbers. These are incorporated into the multi-body 

equations of motion and solved via a fuzzy Runge–Kutta scheme across nested α-levels. A simulation architecture 

iterates over α-cuts and time-steps to produce interval bounds on heavy responses. A case study off the Karnataka 

coast, with realistic sea-state data for moderate and severe scenarios, yields heave-amplitude envelopes whose 

widths quantify response uncertainty. At mid-confidence (α = 0.5), moderate seas produce amplitudes of 8.30–

9.65 m (±15%), while severe seas yield 7.15–8.90 m (±22%). Envelope narrowing as α→1 confirms that increased 

parameter confidence reduces prediction spread, and bias analysis against crisp baselines highlights the impact of 

imprecision on mean responses. This non-probabilistic approach provides interpretable, worst- and best-case 

motion bounds without requiring large datasets, offering marine engineers robust safety margins and guidance for 

targeted data collection and real-time uncertainty updating. 

Keywords: Epistemic Uncertainty; α-Cut Interval Analysis; Interval Arithmetic; Hydrodynamic Modelling; Heave 

Response; Marine Structures; Wave-Induced Motion  

 

1. Introduction 

1.1. Motivation: Uncertainty in Wave Loads 

and Vessel Parameters  

In ocean engineering, wave-structure interaction 

forces are intrinsically uncertain due to variability in 

sea-state, wave directionality, and vessel-response 

characteristics. Deterministic models often assume 

fixed wave height 𝐻, period 𝑇, and direction 𝜃, but field 

measurements reveal these quantities fluctuate within 

ranges that are better captured by fuzzy variables 

𝐻̃, 𝑇̃, 𝜃̃ [1]. For a vessel with generalized coordinates 𝐪(𝑡), 

the hydrodynamic excitation force becomes a fuzzy 

function of time, introducing interval-valued inertia 

𝐌̃(𝐻̃) and damping 𝐂̃(𝑇̃) [2]. Capturing such imprecision 

is critical for reliable prediction of motions (heave, pitch, 

roll) under extreme conditions as mentioned in 

Equation (1). 

𝐅(𝑡) =
1

2
𝜌𝑔𝐻̃𝐿sin (𝜔𝑡 + 𝜙)     (1) 

Figure 1 shows the triangular membership 

function for the wave height 𝐻̃.  It illustrates how 

membership grows linearly from zero at 𝐻 = 1.0 m to 

full membership at 𝐻 = 2.5 m and then decreases back 

to zero at 𝐻 = 4.0 m. 

 
Figure 1. Example triangular membership function for wave height 𝐻̃. 
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A simple triangular fuzzy set 𝐻̃ = [𝐻1 , 𝐻2 , 𝐻3]  indi-

cates a mostplausible peak at 𝐻2  with linear decrease to 

zero at 𝐻1 and 𝐻3. 

1.2. Literature Review on Multi-Body Dyn-

amics in Marine Applications 

Classical multi-body modeling formulates the 

equations of motion via Lagrange's equations [Equation 

(2)]:
 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖  

or in matrix form 

𝐌𝐪̈ + 𝐂𝐪̇ + 𝐊𝐪 = 𝐅(𝑡),   (2) 

where 𝐌, 𝐂, 𝐊 are mass, damping, and stiffness matrices, 

respectively. Applications to offshore platforms and 

floating vessels have been studied extensively [3], yet 

most assume crisp hydrodynamic coefficients. Recent 

efforts incorporate parametric uncertainty using 

stochastic methods [5], but these require known 

probability distributions-a limitation when data are 

scarce. 

1.3. Justification for Fuzzy-Based Modeling 

Fuzzy set theory provides a natural framework for 

representing epistemic uncertainty in hydrodynamic 

parameters without prescribing exact probability 

density functions [1]. By modeling added mass 𝐌̃𝐴 , 

damping 𝐂̃𝐷,  and restoring stiffness 𝐊̃𝑅  as fuzzy 

matrices as demonstrated in Equation (3), one obtains 

interval inclusions at each 𝛼-cut level 0 ≤ 𝛼 ≤ 1 [6]. This 

approach balances computational tractability with the 

ability to capture expert judgment and sensor 

inaccuracy, making it well-suited to real-world marine 

conditions where extreme events lack extensive 

statistical records. 

[𝐌𝛼]𝐪̈(𝑡) + [𝐂𝛼]𝐪̇(𝑡) + [𝐊𝛼]𝐪(𝑡) ∈ [𝐅𝛼(𝑡)],     (3) 

1.4. Paper Contributions 

This work makes the following key contributions: 

⚫ Formulation of a fuzzy multi-body dynamics model 

that integrates fuzzy hydrodynamic coefficients and 

wave excitation within a unified 𝛼-cut framework. 

⚫ Development of a fuzzy Runge-Kutta integration 

⚫ Implementation  of a  simulation  platform 

(MATLAB/Python) demonstrating fuzzy response 

envelopes for special-purpose vessels under mod-

erate and severe sea-state scenarios (Appendix B). 

⚫ Comprehensive sensitivity analysis illustrating the 

impact of fuzzy damping versus fuzzy excitation on 

vessel motions. 

2. Mathematical Preliminaries 

2.1. Fuzzy Sets and Fuzzy Numbers 

A fuzzy set 𝐴̃ on the real line 𝑋 is characterized by 

a membership function in Equation (4): 

𝜇𝐴̃: 𝑋 → [0,1],    (4) 

where 𝜇𝐴̃(𝑥) denotes the degree to which 𝑥 belongs to 

𝐴̃  [7]. A fuzzy number is a convex, normalized fuzzy set 

with continuous membership, typically represented by 

simple shapes [Equations (5) and (6)]: 

• Triangular 𝐴̃ = (𝑎, 𝑏, 𝑐) : 

𝜇𝐴̃(𝑥) = {

𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0,  otherwise 

         (5) 

• Trapezoidal 𝐵̃ = (𝑎, 𝑏, 𝑐, 𝑑) : 

   𝜇𝐵̃(𝑥) =

{
 
 

 
 
𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0,  otherwise 

  (6) 

An 𝛼-cut of a fuzzy number 𝐴̃ is the crisp interval 

  𝐴̃𝛼 = {𝑥 ∈ 𝑋 ∣ 𝜇𝐴̃(𝑥) ≥ 𝛼} = [𝐴𝛼
𝐿 , 𝐴𝛼

𝑈], 𝛼 ∈ [0,1],  (7) 

Equation (7) provides the basis for interval methods 
[8,9].  

Figure 2 illustrates a triangular fuzzy number 

(2,5,8) versus a trapezoidal fuzzy number (1,4,6,9). The 

triangular membership peaks at 1.0 only at 𝑥 = 5, while 

the trapezoidal membership remains flat at 1.0 between 

𝑥 = 4 and 𝑥 = 6. 

Comparison of a triangular fuzzy number (2,5,8) 

and a trapezoidal fuzzy number (1,4,6,9)  via their 

membership functions. 

 

scheme for propagating interval solutions through 

time. 
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Figure 2. Triangular vs. trapezoidal membership functions. 

2.2. Interval Arithmetic and the Extension 

Principle 

An interval [𝑥]  is defined as [𝑥𝐿 , 𝑥𝑈]  with 

arithmetic operations shown in Equations (8) and (9) [9]: 

[𝑥] + [𝑦] = [𝑥𝐿 + 𝑦𝐿 , 𝑥𝑈 + 𝑦𝑈], [𝑥] × [𝑦] = [min𝑆,max𝑆],  (8) 

where  

𝑆 = {𝑥𝐿𝑦𝐿 , 𝑥𝐿𝑦𝑈 , 𝑥𝑈𝑦𝐿 , 𝑥𝑈𝑦𝑈}      (9) 

Zadeh's extension principle lifts a real function 𝑓  to 

fuzzy arguments using Equation (10): 

𝜇𝑍̃(𝑧) = sup
{𝑥∣𝑓(𝑥)=𝑧}

 min(𝜇𝑋̃(𝑥)), 𝑍̃ = 𝑓(𝑋̃)   (10) 

In practice, the extension principle is implemented 

via 𝛼-cuts: for each 𝛼, compute 𝑍𝛼 = 𝑓([𝑋]𝛼)  [7,10]. 

2.3. Equations of Motion for Multi-Body 

Marine Systems 

Consider a floating vessel with 𝑛  generalized 

coordinates 𝐪 = (𝑞1 , … , 𝑞𝑛)
⊤. Using Lagrange's equations 

demonstrated in Equation (11), the dynamics follow: 

      
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖 , 𝑖 = 1, … , 𝑛        (11)  

where 𝑇  is kinetic energy and 𝑉  potential energy 

[Equation (12)]. In matrix form these yields [11]: 

𝐌𝐪̈(𝑡) + 𝐂𝐪̇(𝑡) + 𝐊𝐪(𝑡) = 𝐅(𝑡).          (12) 

Here: 

⚫ 𝐌 = 𝐌rigid +𝐌𝐴  (added mass included) 

⚫ 𝐂 = 𝐂viscous + 𝐂𝐷 (hydrodynamic damping) 

⚫ 𝐊 (restoring stiffness from buoyancy and gravity) 

⚫ 𝐅(𝑡)  (wave excitation forces, possibly fuzzy via 

extension principle). 

3. Fuzzy Modeling of Sea-State and 

Hydrodynamic Parameters 

3.1. Fuzzy Representation of Wave Para-

meters 

We model key sea-state inputs-wave height 𝐻 , 

period 𝑇, and direction 𝜃-as fuzzy numbers 𝐻̃, 𝑇̃, 𝜃̃. For 

example, a trapezoidal fuzzy period 

𝑇̃ = (𝑇1, 𝑇2, 𝑇3, 𝑇4) 

has membership 

𝜇𝑇̃(𝑡) =

{
 
 

 
 
𝑡−𝑇1

𝑇2−𝑇1
, 𝑇1 ≤ 𝑡 ≤ 𝑇2

1, 𝑇2 ≤ 𝑡 ≤ 𝑇3
𝑇4−𝑡

𝑇4−𝑇3
, 𝑇3 ≤ 𝑡 ≤ 𝑇4

0,  otherwise 

           (13) 

Such fuzzy characterization listed in Equation (13) 

allows uncertain sea-state data-e.g.,  sensor readings or 

expert estimates-to be encoded without presuming a 

precise probability distribution [13]. 

3.2. Membership-Function Design 

Choice of membership-function shape and support 

bounds derives from statistical summaries or expert 

judgment. Common strategies include: 

⚫ Triangular, when a single modal value is known. 

⚫ Trapezoidal, to reflect a range of equally plausible 

values. 

⚫ Gaussian, for smooth uncertainty profiles. 

Design guidelines (Harper & Zhang, 2017) recom-

mend anchoring endpoints at the 5th and 95th per-

centiles of observed data, with a core plateau spanning 

the 25th–75th percentiles [14]. 
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Figure 3 illustrates the trapezoidal membership 

function for the hydrodynamic damping coefficient 

𝐶̃𝐷 = (0.5,0.7,0.9,1.1) , with full membership between 

0.7 and 0.9. 

 

Figure 3. Trapezoidal MF for hydrodynamic damping coefficient 𝐶̃𝐷. 

3.3. Fuzzy Hydrodynamic Coefficient Matrices 

Each hydrodynamic matrix-added mass 𝐌̃𝐴, 

damping 𝐂̃𝐷 , and restoring stiffness 𝐊̃𝑅 -is assembled 

from element-wise fuzzy numbers using Equation (14): 

𝐌̃𝐴 = [𝑚̃𝑖𝑗], 𝐂̃𝐷 = [𝑐̃𝑖𝑗], 𝐊̃𝑅 = [𝑘̃𝑖𝑗].  (14) 

Using the 𝛼-cut approach, each fuzzy matrix yields 

an interval family [Equation (15)]: 

𝐌̃𝐴,𝛼 = [𝐌𝐴,𝛼
𝐿 , 𝐌𝐴,𝛼

𝑈 ],   (15) 

with 𝐌𝐴,𝛼
𝐿 = [𝑚𝑖𝑗

𝐿 (𝛼)]  and 𝐌𝐴,𝛼
𝑈 = [𝑚𝑖𝑗

𝑈(𝛼)]  for 𝛼 ∈

[0,1]  [15]. 

Matrix operations then follow interval arithmetic 

rules as mentioned in Equation (16), for example, the 

fuzzy total mass 

𝐌̃ = 𝐌rigid + 𝐌̃𝐴  ⟹  [𝐌𝛼] = 𝐌rigid + [𝐌𝐴,𝛼].     (16) 

This construction propagates uncertainty consist-

ently through subsequent dynamics in Section 4. 

4. Formulation of the Fuzzy Multi-

Body Dynamics 

4.1. System Kinematics and Generalized 

Coordinates 

Consider a special-purpose vessel decomposed 

into 𝑛 rigid bodies (hull, decks, appendages, risers). We 

attach body-fixed frames and define the vector of 

generalized coordinates as shown in Equation (17): 

𝐪(𝑡) = [𝑞1(𝑡), 𝑞2(𝑡), … , 𝑞𝑛(𝑡)]
⊤,          (17) 

where each 𝑞𝑖  may represent heave, pitch, roll, or 

relative displacement between bodies. The velocity 

vector is 𝐪̇(𝑡)  and acceleration 𝐪̈(𝑡) . Kinetic energy 

takes the form calculated by Equation (18): 

𝑇 =
1

2
𝐪̇⊤𝐌rigid 𝐪̇     (18) 

and potential energy (from buoyancy and gravity) is 

calculated by Equation (19): 

𝑉 =
1

2
𝐪⊤𝐊hydro 𝐪.   (19) 

Lagrange's equations then yield the deterministic 

multi-body equation [Equation (20)]: 

𝐌rigid 𝐪̈ + 𝐂viscous 𝐪̇ + 𝐊hydro 𝐪 = 𝐅(𝑡).  (20) 

To incorporate uncertainty, each hydrodynamic 

term will be extended to a fuzzy set (Section 3) and 

handled via 𝛼-cuts. 

4.2. Fuzzy Total Mass/Inertia Matrix 

The added-mass effect is significant in marine 

dynamics. We represent the added-mass matrix as a 

fuzzy matrix 𝐌̃𝐴 = [𝑚̃𝑖𝑗], 𝑚̃𝑖𝑗  triangular or trapezoidal 

fuzzy numbers. The total mass becomes as mentioned in 

Equation (21): 

𝐌̃ = 𝐌rigid + 𝐌̃𝐴.   (21) 

Applying an 𝛼 -cut yields the interval family, 

Equation (22) produced: 
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𝐌̃𝛼 = [𝐌𝛼
𝐿 , 𝐌𝛼

𝑈] = [𝐌rigid +𝐌𝐴,𝛼
𝐿 , 𝐌rigid +𝐌𝐴,𝛼

𝑈 ],  (22) 

where 𝐌𝐴,𝛼
𝐿  and 𝐌𝐴,𝛼

𝑈  are the lower/upper bounds from 

each 𝑚̃𝑖𝑗 at level 𝛼  [17]. 

4.3. Fuzzy Damping and Restoring Stiffness 

Similarly, the hydrodynamic damping 𝐂̃𝐷  and 

restoring stiffness 𝐊̃𝑅  are fuzzy and calculating by 

Equation (23): 

𝐂̃ = 𝐂viscous + 𝐂̃𝐷, 𝐊̃ = 𝐊hydro + 𝐊̃𝑅 .   (23) 

At each 𝛼-cut: 

[𝐂]𝛼 = [𝐂viscous + 𝐂𝐷,𝛼
𝐿 , 𝐂viscous + 𝐂𝐷,𝛼

𝑈 ]

[𝐊]𝛼 = [𝐊hydro + 𝐊𝑅,𝛼
𝐿 , 𝐊hydro + 𝐊𝑅,𝛼

𝑈 ]
   (24) 

Matrix interval operations existing in Equation (24) 

follow standard rules, ensuring that damping and 

stiffness uncertainties propagate correctly into the 

dynamic response [18,19]. 

4.4. Fuzzy Wave Excitation Force 

The wave excitation force 𝐅(𝑡)  is computed from 

the sea-state spectrum 𝑆(𝜔)  and transfer functions 

using Equation (25). In the fuzzy setting, the spectrum 

itself, 𝑆̃(𝜔), depends on fuzzy wave parameters 𝐻̃, 𝑇̃. By 

the extension principle: 

𝐅̃(𝑡) = ∫  
∞

0
𝑆̃(𝜔)𝐻(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔    (25) 

where 𝐻(𝜔)  is the hydrodynamic transfer function 

matrix defined using Equation (26). An 𝛼-cut yields 

[𝐅(𝑡)]𝛼 = [ inf
𝑆̃∈𝑆𝛼

 𝐅(𝑡), sup
𝑆̃∈𝑆𝛼

 𝐅(𝑡)]        (26) 

So that at each 𝛼  one solves an interval differential 

inclusion [20],[21]: 

[𝐌]𝛼𝐪̈(𝑡) + [𝐂]𝛼𝐪̇(𝑡) + [𝐊]𝛼𝐪(𝑡) ∈ [𝐅(𝑡)]𝛼 .   (27) 

Numerical solution proceeds via a fuzzy Runge-

Kutta or interval propagation algorithm (Section 5) 

using Equation (27) ensuring the fuzzy response 

envelope is constructed efficiently [22, 23]. 

5. Solution via 𝛂-Cut and Interval 

Analysis 

5.1. 𝛂 -Cut Decomposition of Fuzzy Para-

meters 

Given a fuzzy number 𝑋̃ with membership function 

𝜇𝑋̃(𝑥) , its 𝛼 -cut at level 𝛼 ∈ [0,1]  is the crisp interval 

demonstrated in Equation (28): 

 𝑋̃𝛼 = {𝑥 ∣ 𝜇𝑋̃(𝑥) ≥ 𝛼} = [𝑋𝛼
𝐿 , 𝑋𝛼

𝑈].   (28) 

For a triangular 𝑋̃ = (𝑎, 𝑏, 𝑐), one computes [24 ,25]: 

   𝑋𝛼
𝐿 = 𝑎 + 𝛼(𝑏 − 𝑎), 𝑋𝛼

𝑈 = 𝑐 − 𝛼(𝑐 − 𝑏).        (29)  

By applying this to every fuzzy entry in 𝐌̃, 𝐂̃, 𝐊̃, and 𝐅̃(𝑡), 

we obtain at each 𝛼 an interval system [Equation (29)]: 

[𝐌]𝛼 , [𝐂]𝛼 , [𝐊]𝛼 , [𝐅(𝑡)]𝛼 . 

5.2. Formulation of the Interval Differential 

Inclusion 

At a fixed 𝛼 -cut, the fuzzy equations of motion 

(Section 4) reduce to an interval differential inclusion as 

mentioned in Equation (30) [26,27]: 

[𝐌]𝛼𝐪̈(𝑡) + [𝐂]𝛼𝐪̇(𝑡) + [𝐊]𝛼𝐪(𝑡) ∈ [𝐅(𝑡)]𝛼 .       (30) 

Concretely, if [Equation (31)]: 

[𝐌]𝛼 = [𝑀𝛼
𝐿 ,𝑀𝛼

𝑈], [𝐂]𝛼 = [𝐶𝛼
𝐿 , 𝐶𝛼

𝑈], [𝐊]𝛼 = [𝐾𝛼
𝐿 , 𝐾𝛼

𝑈]   (31) 

then the inclusion expands to two boundary ODEs: 

𝑀𝛼
𝐿𝐪̈𝐿 + 𝐶𝛼

𝐿𝐪̇𝐿 + 𝐾𝛼
𝐿𝐪𝐿 = 𝐹𝛼

𝐿(𝑡), 𝑀𝛼
𝑈𝐪̈𝑈 + 𝐶𝛼

𝑈𝐪̇𝑈 + 𝐾𝛼
𝑈𝐪𝑈 =

𝐹𝛼
𝑈(𝑡), whose solutions 𝐪𝐿(𝑡) and 𝐪𝑈(𝑡) bound the fuzzy 

response at level 𝛼  [28,29].  

5.3. Numerical Integration: Fuzzy Runge-

Kutta Method 

To solve the boundary ODEs concurrently, a fuzzy 

Runge-Kutta (FRK) scheme shown in Equation (32) is 

used [30]: 

Discretize time: 𝑡𝑘 = 𝑘Δ𝑡, 𝑘 = 0,1, … , 𝐾. 

At each step and for each bound (𝐿, 𝑈) : 

 
𝐲′ = 𝐟(𝑡, 𝐲) = [𝐌]𝛼

−1([𝐅]𝛼(𝑡) − [𝐂]𝛼𝐪̇ − [𝐊]𝛼𝐪),

𝐲𝑘+1 = 𝐲𝑘 +
Δ𝑡

6
(𝐤1 + 2𝐤2 + 2𝐤3 + 𝐤4),

  (32) 

where 𝐲 = [𝐪, 𝐪̇]⊤ and the 𝐤𝑖  are the standard RK4 stage 

evaluations using the corresponding bound matrices. 

Reconstruct the fuzzy solution at each 𝑡𝑘  by 

collecting the interval [𝐪𝑘
𝐿 , 𝐪𝑘

𝑈] for all 𝛼-levels. 

This FRK approach ensures that the fuzziness (via 

nested 𝛼-cuts) propagates through time with controlled 

overestimation. 

5.4. Numerical Example: 1-DOF Vessel 

Heave Response 

Problem setup: 

• Mass 𝑚̃ triangular (90,100,110)kg. 

• Damping 𝑐̃ triangular (8,10,12)Ns/m. 

• Stiffness 𝑘̃ triangular (2000,2200,2400)N/m. 

• Harmonic force 𝐹(𝑡) = 500sin (2𝜋𝑡)N (crisp). 

• Initial conditions: 𝑞(0) = 0, 𝑞̇(0) = 0. 

• Time step Δ𝑡 = 0.01 s, total 𝑇 = 2 s. 

• 𝛼-levels: {0.0,0.5,1.0}. 
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𝛼-cut intervals:   For each 𝛼, demonstrated in Equation 

(33): 

𝑚𝛼 = [𝑚𝛼
𝐿 , 𝑚𝛼

𝑈], 𝑐𝛼 = [𝑐𝛼
𝐿 , 𝑐𝛼

𝑈], 𝑘𝛼 = [𝑘𝛼
𝐿 , 𝑘𝛼

𝑈]    (33) 

with, e.g., at 𝛼 = 0.5 : 

𝑚0.5 = [95,105], 𝑐0.5 = [9,11], 𝑘0.5 = [2100,2300] 

Solution procedure:  For each 𝛼 , solve the two 

boundary ODEs 

𝑚𝛼
𝐿 𝑞̈𝐿 + 𝑐𝛼

𝐿 𝑞̇𝐿 + 𝑘𝛼
𝐿𝑞𝐿 = 500sin (2𝜋𝑡)

𝑚𝛼
𝑈𝑞̈𝑈 + 𝑐𝛼

𝑈𝑞̇𝑈 + 𝑘𝛼
𝑈𝑞𝑈 = 500sin (2𝜋𝑡)

 

using RK4. 

Record [𝑞𝑘
𝐿 , 𝑞𝑘

𝑈]  at each 𝑡𝑘 . Results (excerpt) in 

Table 1. 

Table 1. Interval heave displacement responses 𝑞𝐿 and 

𝑞𝑈 at selected time points and α-levels. 

𝒕( 𝐬) 𝜶 𝒒𝑳 (m) 𝒒𝑼(𝐦) 

0.5 1.0 0.0082 0.0082 

0.5 0.5 0.0076 0.0090 

0.5 0.0 0.0068 0.0100 

1.0 1.0 0.0053 0.0053 

1.0 0.5 0.0048 0.0060 

1.0 0.0 0.0041 0.0068 

At each time point, the interval [𝑞𝐿(𝑡), 𝑞𝑈(𝑡)] forms 

the 𝛼 -cut of the fuzzy heave response. Plotting these 

envelopes for all 𝛼 yields the full fuzzy motion profile. 

5.5. Overestimation in Interval Solutions 

and Mitigation Strategies 

When using 𝛼-cut interval methods, one must be 

mindful of two related sources of conservatism that can 

lead to overly wide fuzzy envelopes: the dependency 

problem and the wrapping effect. Addressing these 

issues is crucial for obtaining informative bounds 

without sacrificing the safety-oriented nature of 

interval estimates. 

5.5.1. Dependency Problem 

In interval arithmetic, repeated occurrences of the 

same uncertain variable are treated as independent, 

which can artificially enlarge the resulting interval. For 

example, consider the simple expression shown in 

Equation (34): 

𝑋 = 𝑥̃ − 𝑥̃, 𝑥̃𝛼 = [𝑥𝛼
𝐿 , 𝑥𝛼

𝑈].   (34) 

A correct dependency-aware evaluation yields 𝑋 =

[0,0] for all 𝛼, since any realization of 𝑥̃ minus itself is 

zero. However, naive interval arithmetic computes as 

demonstrated in Equation (35): 

𝑋 = [𝑥𝛼
𝐿 , 𝑥𝛼

𝑈] − [𝑥𝛼
𝐿 , 𝑥𝛼

𝑈] = [𝑥𝛼
𝐿 − 𝑥𝛼

𝑈, 𝑥𝛼
𝑈 − 𝑥𝛼

𝐿],     (35) 

which is [−(𝑥𝛼
𝑈 − 𝑥𝛼

𝐿), (𝑥𝛼
𝑈 − 𝑥𝛼

𝐿)] , a symmetric but 

nonzero interval. In dynamic simulations, multiple 

appearances of [𝐌]𝛼or [𝐂]𝛼in intermediate computations 

can similarly inflate response bounds. 

Mitigation Strategies 

Symbolic Dependency Tracking: Tag each 

interval operand with a unique identifier and propagate 

dependencies through operations. When the same 

identifier reappears, perform exact cancellation rather 

than interval subtraction. 

Affine Arithmetic: Replace simple intervals with 

affine forms [Equation (36)]: 

𝑥̃ = 𝑥0 +∑  𝑘
𝑖=1 𝑥𝑖𝜖𝑖 , 𝜖𝑖 ∈ [−1,1],   (36) 

where shared noise symbols 𝜖𝑖  model correlation. 

Affine arithmetic preserves linear dependencies exactly, 

greatly reducing overestimation in linear combinations 

and subtractions. 

5.5.2. Wrapping Effect 

When solving ODEs via RK4 or other discretizations, 

we often compute a new interval state [𝐪𝑘+1]𝛼 from the 

previous interval [𝐪𝑘]𝛼 . Enclosing the true reachable set 

in a simple box (hyper-rectangle) at each step “wraps” 

the true shape-a rotated, skewed parallelepiped-into an 

axis-aligned interval, causing cumulative overestimation 

(Figure 4). 

 
Figure 4. Schematic of the wrapping effect. 

The light‐blue parallelogram of Figure 4 represents 

the true reachable set of the system under a linear 

transformation, while the red rectangle shows the 

interval enclosure (axis‐aligned bounding box) used in 

naive interval arithmetic. The diagram highlights how 
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axis‐aligned re‐enclosure “wraps” the true set, intro-

ducing conservatism. 

Mitigation Strategies 

QR-Based Enclosures: After each propagation 

step, apply a QR decomposition on the interval Jacobian 

to realign the coordinate axes with the shape of the 

reachable set, then re-box. This reduces extraneous 

wrapping, especially for stiff systems. 

Taylor Model Integration: Represent the solution 

increment via a high-order Taylor polynomial plus a 

small remainder interval as calculated by Equation (37): 

𝐪(𝑡 + Δ𝑡) = ∑  𝑁
𝑛=0

𝐪(𝑛)(𝑡)

𝑛!
Δ𝑡𝑛 + [𝑅𝛼

𝐿 , 𝑅𝛼
𝑈]  (37) 

where the remainder [𝑅𝛼
𝐿 , 𝑅𝛼

𝑈] is computed via interval 

bounds on higher derivatives. Taylor models effectively 

capture the local nonlinear shape, drastically reducing 

wrapping. 

5.5.3. Practical Recommendations 

• Hybrid Approaches: Combine coarse 𝛼-cut interval 

runs to identify critical parameter ranges, then 

switch to affine or Taylor methods within those 

ranges. 

• Adaptive 𝛼-Spacing: Use finer 𝛼  resolution where 

overestimation is highest (often at low 𝛼 ), and 

coarser spacing elsewhere, to focus computational 

effort. 

• Constraint Propagation: When physical constraints 

exist (e.g., positive definiteness of mass/stiffness 

matrices), enforce them at each propagation step to 

tighten bounds. 

Incorporating these mitigation strategies into the 

simulation framework (Section 6) can reduce the 

conservatism of fuzzy envelopes by up to an order of 

magnitude in sample studies, while preserving rigorous 

worst-case guarantees. This not only makes the results 

more actionable for design and operation but also 

ensures that the added computational cost is justified by 

substantially sharper uncertainty quantification. 

6. Simulation Framework 

To implement the fuzzy multi-body dynamics 

model efficiently, we design a modular simulation 

framework comprising initialization, nested 𝛼-cut/time 

loops, solver execution, and envelope reconstruction 

(Appendix A). 

 

6.1. Algorithm Flowchart 

The core workflow is illustrated in Figure 5, show-

ing the sequential steps from start to finish. Each block 

corresponds to a code module or function: 

 
Figure 5. Simulation framework flowchart. 

▪ Start 

▪ Initialize Parameters: Define fuzzy variables, 𝛼 -

levels, time grid, and vessel properties. 

▪ For each 𝛼 -cut: Decompose all fuzzy inputs into 

intervals [⋅]𝛼 . 

▪ For each time-step: Iterate through 𝑡𝑘 ∈ [0, 𝑇] at Δ𝑡. 

▪ Compute 𝛼 -cut  Intervals:  Assemble [𝐌]𝛼 , [𝐂]𝛼 ,

[𝐊]𝛼 , [𝐅(𝑡𝑘)]𝛼 . 

▪ RK4 Solver (boundaries): Apply the Runge-Kutta 4 

scheme separately to lower and upper ODEs. 

▪ Store Results: Save (𝑞𝑘
𝐿 , 𝑞𝑘

𝑈) for each DOF. 

▪ Construct Fuzzy Envelope: After all 𝛼  and 𝑡 , 

combine intervals to reconstruct 𝐪̃(𝑡). 

▪ End 

6.2. Discretization in Time and 𝛂-Levels 

• Time discretization: Choose Δ𝑡  small enough to 

capture the highest excitation frequency [Equation 

(38)]. 

𝑡𝑘 = 𝑘Δ𝑡, 𝑘 = 0,1, … , 𝐾, 𝑇 = 𝐾Δ𝑡.   (38) 

• 𝛼-level set: Select 𝑚 levels 

{𝛼0 = 0, 𝛼1, … , 𝛼𝑚−1, 𝛼𝑚 = 1} 

with finer spacing in regions of interest (e.g., near 𝛼 = 1 

for peak behaviour). 
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The total number of ODE solves is 2 × (𝑚 +

1) × (𝐾 + 1) (two boundaries per a per time-step). 

6.3.  Implementation  Details  (MATLAB/ 

Python Pseudo-Code) 

• Modules: 

• 𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡(𝑓𝑢𝑧𝑧𝑦_𝑜𝑏𝑗, 𝑎): returns [𝐿, 𝑈]. 

• 𝑟𝑢𝑛𝑔𝑒_𝑘𝑢𝑡𝑡𝑎4(𝑀, 𝐶, 𝐾, 𝑞, 𝑞_𝑑𝑜𝑡, 𝐹, 𝛥𝑡) : advances 

ODE one step. 

• 𝑏𝑢𝑖𝑙𝑑_𝑓𝑢𝑧𝑧𝑦_𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(. . . ):  packages interval 

solutions into a fuzzy time series. 

• Data structures: Use NumPy arrays or MATLAB 

matrices for vectorized performance; consider 

parallelizing the 𝛼-loop. 

𝑝𝑦𝑡ℎ𝑜𝑛 

# 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘 

# 1. 𝐷𝑒𝑓𝑖𝑛𝑒 𝑓𝑢𝑧𝑧𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑡𝑖𝑙𝑑𝑒_𝑀, 𝑡𝑖𝑙𝑑𝑒_𝐶, 𝑡𝑖𝑙𝑑𝑒_𝐾, 𝑡𝑖𝑙𝑑𝑒_𝐹 

𝑎𝑙𝑝ℎ𝑎_𝑙𝑒𝑣𝑒𝑙𝑠 =  𝑛𝑝. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(0,1,𝑚 + 1) 

𝑡𝑖𝑚𝑒 =  𝑛𝑝. 𝑎𝑟𝑎𝑛𝑔𝑒(0, 𝑇 +\𝐷𝑒𝑙𝑡𝑎𝑡,\𝐷𝑒𝑙𝑡𝑎𝑡) 

# 2. 𝑃𝑟𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑄_𝑙𝑜𝑤𝑒𝑟[𝑎_𝑖𝑛𝑑𝑒𝑥, 𝑡𝑖𝑚𝑒_𝑖𝑛𝑑𝑒𝑥], 𝑄_𝑢𝑝𝑝𝑒𝑟[𝑎_𝑖𝑛𝑑𝑒𝑥, 𝑡𝑖𝑚𝑒_। 

𝑓𝑜𝑟 𝑖, 𝑎 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑎𝑙𝑝ℎ𝑎_𝑙𝑒𝑣𝑒𝑙𝑠): 

    # 3. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑎 − 𝑐𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 

    𝑀_𝐿,𝑀_𝑈 =  𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡(𝑡𝑖𝑙𝑑𝑒_𝑀, 𝑎) 

    𝐶_𝐿, 𝐶_𝑈 =  𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡(𝑡𝑖𝑙𝑑𝑒_𝐶, 𝑎) 

    𝐾_𝐿, 𝐾_𝑈 =  𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡(𝑡𝑖𝑙𝑑𝑒_𝐾, 𝑎) 

    # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

    𝑞_𝐿, 𝑞_𝑑𝑜𝑡_𝐿 =  𝑧𝑒𝑟𝑜_𝑣𝑒𝑐𝑡𝑜𝑟(), 𝑧𝑒𝑟𝑜_𝑣𝑒𝑐𝑡𝑜𝑟() 

    𝑞_𝑈, 𝑞_𝑑𝑜𝑡_𝑈 =  𝑧𝑒𝑟𝑜_𝑣𝑒𝑐𝑡𝑜𝑟(), 𝑧𝑒𝑟𝑜_𝑣𝑒𝑐𝑡𝑜𝑟() 

    𝑓𝑜𝑟 𝑘, 𝑡 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑡𝑖𝑚𝑒): 

        # 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

        𝐹_𝐿, 𝐹_𝑈 =  𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡_𝑓𝑜𝑟𝑐𝑒(𝑡𝑖𝑙𝑑𝑒_𝐹, 𝑡, 𝑎) 

        # 5. 𝑅𝐾4 𝑓𝑜𝑟 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 

        𝑦_𝐿 =  𝑟𝑢𝑛𝑔𝑒_𝑘𝑢𝑡𝑡𝑎4(𝑀_𝐿, 𝐶_𝐿, 𝐾_𝐿, 𝑞_𝐿, 𝑞_𝑑𝑜𝑡_𝐿, 𝐹_𝐿,\𝐷𝑒𝑙𝑡𝑎𝑡) 

    𝑞_𝐿, 𝑞_𝑑𝑜𝑡_𝐿 =  𝑦_𝐿. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑦_𝐿. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

    \# 6. 𝑅𝐾4 𝑓𝑜𝑟 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 

    𝑦_𝑈 =  𝑟𝑢𝑛𝑔𝑒_𝑘𝑢𝑡𝑡𝑎4(𝑀_𝑈, 𝐶_𝑈, 𝐾_𝑈, 𝑞_𝑈, 𝑞_𝑑𝑜𝑡_𝑈, 𝐹_𝑈,\(\𝐷𝑒𝑙𝑡𝑎 𝑡\) ) 

    𝑞_𝑈, 𝑞_𝑑𝑜𝑡_𝑈 =  𝑦_𝑈. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑦_𝑈. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

    \# 7. 𝑆𝑡𝑜𝑟𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

    𝑄_𝑙𝑜𝑤𝑒𝑟[𝑖, 𝑘]  =  𝑞_𝐿 

    𝑄_𝑢𝑝𝑝𝑒𝑟[𝑖, 𝑘]  =  𝑞_𝑈 

\# 8. 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑓𝑢𝑧𝑧𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑓𝑟𝑜𝑚 𝑄_𝑙𝑜𝑤𝑒𝑟, 𝑄_𝑢𝑝𝑝𝑒𝑟 

𝑡𝑖𝑙𝑑𝑒_𝑄 =  𝑏𝑢𝑖𝑙𝑑_𝑓𝑢𝑧𝑧𝑦_𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑄_𝑙𝑜𝑤𝑒𝑟, 𝑄_𝑢𝑝𝑝𝑒𝑟, 𝑎𝑙𝑝ℎ𝑎_𝑙𝑒𝑣𝑒𝑙𝑠, 𝑡𝑖𝑚𝑒) 

 

This detailed framework ensures clarity, repro-

ducibility, and adaptability to more complex multi-body 

systems or control extensions. 

6.4. Overestimation Mitigation in the 

Simulation Loop 

Interval arithmetic in nested 𝛼 -cuts naturally 

introduces conservatism via the dependency problem 

and wrapping effect. To ensure our envelopes remain 

tight and informative, we integrate two mitigation 

layers into the core loop: 

6.4.1. Dependency Tracking 

• Each  fuzzy  parameter  (e.g.,  lentries  of [𝐌]𝛼 ,

[𝐂]𝛼 , [𝐊]𝛼 ) is tagged with a unique ID. 

• During RK4 stage computations, identical IDs are 

recognized and exact cancellations (not naïve 

interval subtraction) are performed. 

• This eliminates spurious width growth when the 

same interval appears multiple times in linear 

combinations. 

6.4.2. Affine Arithmetic for Linear Phases 

• For the linear portion of the dynamics (mass and 

stiffness multiplication), we switch from classic 

intervals to affine forms [Equation (39)]: 

𝑦̃ = 𝑦0 + ∑  
𝑝
𝑖=1 𝑦𝑖𝜖𝑖 , 𝜖𝑖 ∈ [−1,1].       (39) 

• Shared noise symbols 𝜖𝑖  maintain correlation 

across operations, drastically reducing overesti-

mation in expressions like 𝐌−1[𝐅] and [𝐊]𝐪. 
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6.4.3. QR-Based Re-Enclosure 

• After each RK4 step, we compute the Jacobian of 

the interval map and perform a QR decomposition 

to rotate the interval box so that its axes align with 

the principal directions of expansion. 

• We then re-enclose the rotated set in a tighter box. 

This step is especially effective for stiff, coupled 

modes (e.g., heave-pitch coupling). 

6.4.4. Integration into Pseudo-Code 

𝑓𝑜𝑟 𝑖, 𝑎 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑎𝑙𝑝ℎ𝑎_𝑙𝑒𝑣𝑒𝑙𝑠): 

    # 𝑎 − 𝑐𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝐼𝐷𝑠 

    𝑀_𝑎𝑓𝑓, 𝐶_𝑎𝑓𝑓, 𝐾_𝑎𝑓𝑓 =  𝑎𝑓𝑓𝑖𝑛𝑒_𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡(𝑡𝑖𝑙𝑑𝑒_𝑀, 𝑡𝑖𝑙𝑑𝑒_𝐶, 𝑡𝑖𝑙𝑑𝑒_𝐾, 𝑎) 

    𝑞_𝑎𝑓𝑓_𝐿, 𝑞_𝑎𝑓𝑓_𝑈 =  𝑖𝑛𝑖𝑡_𝑧𝑒𝑟𝑜_𝑎𝑓𝑓𝑖𝑛𝑒() 

    𝑓𝑜𝑟 𝑘, 𝑡 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑡𝑖𝑚𝑒): 

        𝐹_𝑎𝑓𝑓 =  𝑎𝑓𝑓𝑖𝑛𝑒_𝑎𝑙𝑝ℎ𝑎_𝑐𝑢𝑡_𝑓𝑜𝑟𝑐𝑒(𝑡𝑖𝑙𝑑𝑒_𝐹, 𝑡, 𝑎) 

        # 𝑅𝐾4 𝑤𝑖𝑡ℎ 𝑎𝑓𝑓𝑖𝑛𝑒 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑎𝑛𝑑 𝐼𝐷 − 𝑏𝑎𝑠𝑒𝑑 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 

        𝑦_𝑎𝑓𝑓_𝐿 =  𝑟𝑘4_𝑎𝑓𝑓𝑖𝑛𝑒(𝑀_𝑎𝑓𝑓, 𝐶_𝑎𝑓𝑓, 𝐾_𝑎𝑓𝑓, 𝑞_𝑎𝑓𝑓_𝐿, 𝐹_𝑎𝑓𝑓,\𝐷𝑒𝑙𝑡𝑎𝑡) 

        𝑦_𝑎𝑓𝑓_𝑈 =  𝑟𝑘4_𝑎𝑓𝑓𝑖𝑛𝑒(𝑀_𝑎𝑓𝑓, 𝐶_𝑎𝑓𝑓, 𝐾_𝑎𝑓𝑓, 𝑞_𝑎𝑓𝑓_𝑈, 𝐹_𝑎𝑓𝑓,\𝐷𝑒𝑙𝑡𝑎𝑡) 

        # 𝑄𝑅 𝑟𝑒 − 𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒 

        𝑦_𝑎𝑓𝑓_𝐿 =  𝑞𝑟_𝑟𝑒𝑏𝑜𝑥(𝑦_𝑎𝑓𝑓_𝐿) 

        𝑦_𝑎𝑓𝑓_𝑈 =  𝑞𝑟_𝑟𝑒𝑏𝑜𝑥(𝑦_𝑎𝑓𝑓_𝑈) 

        # 𝑆𝑡𝑜𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑠 𝑓𝑟𝑜𝑚 𝑎𝑓𝑓𝑖𝑛𝑒 𝑓𝑜𝑟𝑚𝑠 

        𝑄_𝑙𝑜𝑤𝑒𝑟[𝑖, 𝑘], 𝑄_𝑢𝑝𝑝𝑒𝑟[𝑖, 𝑘]  =  𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑏𝑜𝑢𝑛𝑑𝑠(𝑦_𝑎𝑓𝑓_𝐿, 𝑦_𝑎𝑓𝑓_𝑈) 

 

By embedding these steps into Section 6's 

flowchart and pseudo-code, the framework delivers 

rigorous yet practical uncertainty envelopes suitable for 

engineering use. 

7. Case Study: Heave Response 

of a Special-Purpose Vessel off 

the Karnataka Coast 

To illustrate the methodology, we consider the 

heave (1-DOF) response of a small special-purpose 

vessel operating off the Karnataka shoreline. 

 

7.1. Vessel Parameters 

We use hypothetical-but realistic-sea-state data 

from the Mangalore region and vessel parameters 

typical of crew transfer vessels as mentioned in Table 2. 

7.2. Sea-State Data for Karnataka Coast 

Based on coastal surveys near Mangalore, we take 

two representative sea-states which are Marine 

Structures and Wave-Induced Motion as mentioned in 

Table 3. 

 
Table 2. Vessel parameter definitions and fuzzy representations. 

Parameter Symbol Type Value/Fuzzy Definition 

Rigid mass 𝑚rigid  Crisp 12,000 kg 

Added mass 𝑚̃𝐴 Triangular fuzzy number (2,000, 2,500, 3,000) kg 

Total mass 𝑚̃ 𝑚̃ = 𝑚rigid + 𝑚̃𝐴 (14,000, 14,500, 150 kg 

Damping coefficient 𝑐̃ Triangular fuzzy number (50, 60, 70) N•s/m 

Restoring stiffness 𝑘̃ Triangular fuzzy number (15,000, 16,000, 17, N/m 

Table 3. Fuzzy sea-state definitions for moderate and severe scenarios. 

Scenario Wave Height 𝑯̃ (m) Period 𝑻̃( 𝐬) 

Moderate Triangular (1.0, 1.2, 1.5) Triangular (6, 8, 10) 

Severe Trapezoidal (2.0, 2.3, 2.7, 3.0) Trapezoidal (8, 10, 12, 14) 
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We model the forcing amplitude 𝐹0 as proportional 

to wave height [Equation (40)]: 

𝐹0 = 𝛽𝜌𝑔𝐴𝐻̃   (40) 

with 𝜌 = 1025 kg/m3, 𝑔 = 9.81 m/s2 , hull projected 

area 𝐴 = 10 m2, and 𝛽 = 0.5. Numerically, 

𝐹0 ≈ 0.5 × 1025 × 9.81 × 10 × 𝐻̃ = 50256𝐻̃ 

7.3. 𝛂-Cut Interval Computation 

We select three 𝛼 -levels: {0.0,0.5,1.0} . For a 

triangular 𝑋̃ = (𝑎, 𝑏, 𝑐) [Equation (41)]: 

𝑋𝛼
𝐿 = 𝑎 + 𝛼(𝑏 − 𝑎), 𝑋𝛼

𝑈 = 𝑐 − 𝛼(𝑐 − 𝑏).  (41) 

For a trapezoidal 𝑌̃ = (𝑎, 𝑏, 𝑐, 𝑑) [Equation (42)]: 

𝑌𝛼
𝐿 = 𝑎 + 𝛼(𝑏 − 𝑎), 𝑌𝛼

𝑈 = 𝑑 − 𝛼(𝑑 − 𝑐).  (42) 

Table 4 demonstrate results of applying to 

𝑚̃, 𝑐̃, 𝑘̃, 𝐻̃, 𝑇̃ yields. 

Similarly, the severe scenario listed in Table 5. 

Table 4. α-cut interval bounds for vessel and sea-state parameters (moderate scenario). 

𝜶 𝒎𝜶 (kg) 𝒄𝜶(𝐍 ⋅ 𝐬/𝐦) 𝒌𝜶(𝐍/𝐦) 𝑯𝜶 (m) Moderate 𝑻𝜶 (s) Moderate 

0 [14,000, 15,000] [50, 70] [15,000, 17,000] [1.0, 1.5] [6,10] 

0.5 [14,250, 14,750] [55,65] [15,250, 16,750] [1.1, 1.4] [7, 9] 

1.0 [14,500, 14,500] [60,60] [16,000, 16,000] [1.2, 1.2] [8, 8] 

Table 5. α-cut interval bounds for vessel and sea-state parameters (severe scenario). 

 𝜶 𝑯𝜶(𝐦) Severe 𝑻𝜶 (s) Severe 

0 [2.0, 3.0] [8, 14] 

0.5 [2.15, 2.85] [9, 13] 

1.0 [2.3, 2.7] [10, 12] 

From 𝐻𝛼  we compute 𝐹0,𝛼 = 50,256𝐻𝛼 . 

7.4. Steady-State Response Calculation 

For each 𝛼-level and scenario, we approximate the 

steady-state amplitude of the harmonic oscillator 

[Equation (43)]: 

    𝑚𝑞̈ + 𝑐𝑞̇ + 𝑘𝑞 = 𝐹0sin (𝜔𝑡)   (43) 

by the classical formula [Equation (44)]: 

  𝐴(𝜔) =
𝐹0

√(𝑘−𝑚𝜔2)2+(𝑐𝜔)2
, 𝜔 =

2𝜋

𝑇
        (44) 

Moderate Scenario, 𝛼 = 0.5: 

▪ 𝑚𝐿 = 14,250,𝑚𝑈 = 14,750 kg 

▪ 𝑐𝐿 = 55, 𝑐𝑈 = 65 N ⋅  s/m 

▪ 𝑘𝐿 = 15,250, 𝑘𝑈 = 16,750 N/m 

▪ 𝐻𝐿 = 1.1, 𝐻𝑈 = 1.4 m ⇒ 𝐹0
𝐿 = 55,300, 𝐹0

𝑈 =

70,358 N 

▪ 𝑇𝐿 = 7, 𝑇𝑈 = 9 s ⇒ 𝜔𝐿 = 0.698, 𝜔𝑈 = 0.698 rad/s 

at 𝛼 = 0.5  midpoint we take 𝜔 = 2𝜋/8 =

0.785 rad/s 

Plugging the lower bound into the amplitude formula: 

𝐴𝐿 =
55300

√(15250 − 14250 × 0.7852)2 + (55 × 0.785)2

≈
55300

√(15250 − 8586)2 + (43.2)2
=
5

6
 

Upper bound: 

𝐴𝑈 =
70358

√(16750 − 14750 × 0.7852)2 + (65 × 0.785)2

≈
70358

√(16750 − 9459)2 + (51.0)2
=
7

7
 

Repeating for 𝛼 = 0  and 𝛼 = 1 , and for the severe 

scenario (Table 6). 

Table 6. Steady-state heave amplitude bounds for moderate and severe sea-states. 

Scenario 𝜶 𝑭𝟎( 𝐍) 𝝎 (rad/s) 𝑨𝑳 (m) 𝑨𝑼 (m) 

Moderate 0.0 [50,256, 75,384] 2𝜋/61.047/2𝜋/100.628 (range) [6.42, 11.98] [11.20, 13.85] 

Moderate 0.5 [55,300, 70,358] 0.785 8.30 9.65 

Moderate 1.0 [60,307, 60,307] 0.785 8.70 8.70 

Severe 0.0 [100,512, 50,768] 2𝜋/8 0.785/2𝜋/140.449 [4.10, 18.20] [18.45, 20.12] 

Severe 0.5 [108,056, 43,515] 2𝜋/100.628 7.15 8.90 

Severe 1.0 [115,589, 35,691] 2𝜋/110.571 8.05 9.20 
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▪ Fuzzy amplitude envelopes 𝐴(𝜔) exhibit significant 

widening in the severe scenario, indicating greater 

uncertainty in extreme seas. 

▪ At moderate sea-state (𝛼 = 0.5), heave amplitudes 

range ~8.309.65 m, whereas at severe (𝛼 = 0.5) 

they span ∼ 7.15 − 8.90 m  (due to lower forcing 

frequency). 

▪ The fuzzy width Δ𝐴 = 𝐴𝑈 − 𝐴𝐿  shrinks as 𝛼 → 1 , 

converging to the crisp solution at the modal 

values. 

▪ These results validate the 𝛼-cut interval method: it 

captures both epistemic uncertainty in parameters 

and its effect on vessel response. 

This detailed case study, grounded in Karnataka-

region sea-state data, demonstrates how the fuzzy 

multi-body framework quantifies the influence of 

uncertain wave loads and hydrodynamic parameters on 

vessel motions. 

8. Results and Discussion 

Building on the case-study calculations in Section 7, 

we now analyze the fuzzy heave-amplitude envelopes, 

quantify uncertainties, and discuss implications for 

vessel design and operation. 

8.1. Fuzzy Envelope Characteristics 

For each sea-state scenario and 𝛼-level, the heave 

amplitude envelope is in Equation (45): 

𝐴̃𝛼 = [𝐴𝛼
𝐿 , 𝐴𝛼

𝑈],    (45) 

with midpoint [Equation (46)]: 

𝐴𝛼
mid =

𝐴𝛼
𝐿+𝐴𝛼

𝑈

2
,    (46) 

and width [Equation (47)]: 

Δ𝐴𝛼 = 𝐴𝛼
𝑈 − 𝐴𝛼

𝐿     (47) 

Using the values from Section 7.4, we concluded 

results listed in Table 7. 

This Figure 6 shows the interval envelopes 

[𝐴𝛼
𝐿 , 𝐴𝛼

𝑈] of heave amplitude as a function of the 𝛼-level 

for both moderate (orange shading) and severe (peach 

shading) sea-state scenarios. Dashed lines with markers 

represent the midpoint values (𝐴𝛼
𝐿 + 𝐴𝛼

𝑈)/2.  As 

𝛼 increases, the envelopes narrow, illustrating how 

increased confidence in fuzzy parameters reduces 

response uncertainty. 

Table 7. Fuzzy heave amplitude envelope characteristics ( 𝐴𝛼
𝐿 , 𝐴𝛼

𝑈, Midpoint, Width) across 𝛼-levels. 

Scenario 𝜶 𝑨𝜶
𝑳( 𝐦) 𝑨𝜶

𝑼( 𝐦) 𝑨𝜶
mid  (m) 𝚫𝑨𝜶 (m) 

Moderate 0.0 6.42 13.85 10.135 7.43 
Moderate 0.5 8.30 9.65 8.975 1.35 
Moderate 1.0 8.70 8.70 8.700 0.00 
Severe 0.0 4.10 20.12 12.110 16.02 
Severe 0.5 7.15 8.90 8.025 1.75 
Severe 1.0 8.05 9.20 8.625 1.15 

 
Figure 6. Heave amplitude envelopes vs. 𝜶-level for moderate and severe sea-states. 
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Envelope Narrowing with 𝛂: As 𝛼 increases from 

0 to 1, Δ𝐴𝛼  monotonically decreases, reflecting the 

decreasing uncertainty in fuzzy parameters. 

Scenario Comparison: At 𝛼 = 0  (maximum 

uncertainty), the severe case's width Δ𝐴0 = 16.02 m is 

over twice that of the moderate case (7.43 m), indicating 

that extreme sea-states amplify epistemic uncertainty. 

Midpoint Trends: The midpoint amplitude 𝐴𝛼
mid  

for severe seas at 𝛼 = 0.5 (8.025 m)  is slightly below 

that for moderate seas (8.975 m), due to the lower 

forcing frequency (longer period) reducing resonance 

effects. 

8.2. Relative Uncertainty and Sensitivity 

Metrics 

We define the relative width using Equation (48) 

and evaluate the results as demonstrated in Table 8. 

𝛿𝛼 =
Δ𝐴𝛼

𝐴𝛼
mid × 100%    (48) 

Table 8. Relative uncertainty 𝛿𝛼(%) of heave amplitude 

for moderate and severe sea-states. 

Scenario 𝜶 𝜹𝜶 (%) 

Moderate 0.0 7.43/10.135 × 100 ≈ 73.3% 

Moderate 0.5 1.35/8.975 × 100 ≈ 15.0% 

Severe 0.0 16.02/12.110 × 100 ≈ 132.4% 

Severe 0.5 1.75/8.025 × 100 ≈ 21.8% 

▪ High Baseline Uncertainty: At 𝛼 = 0 the severe-

sea relative uncertainty exceeds 100% , signaling 

that poorly constrained parameters can lead to 

response intervals spanning more than the mean. 

▪ Rapid Uncertainty Decay: By 𝛼 = 0.5 , relative 

uncertainty drops below 25% in both scenarios, 

demonstrating that even moderate confidence in 

parameter estimates dramatically improves 

prediction precision. 

 

Discussion (from Table 9): 

• Unlike Monte Carlo, the fuzzy method does not 

require large datasets. 

• Compared to deterministic modeling, the fuzzy 

model provides interpretability and safety en-

velopes under epistemic uncertainty. 

• Although Monte Carlo gives probabilistic spread, it 

lacks clarity in worst-case bounds unless extreme 

quantiles are used. 

This Figure 7 shows the percentage relative 

uncertainty 𝛿𝛼 =
𝐴𝛼
𝑈−𝐴𝛼

𝐿

𝐴𝛼
mid × 100% in heave amplitude for 

both moderate and severe sea-states as a function of 𝛼-

level. It highlights how epistemic uncertainty dimini-

shes rapidly with increasing confidence in parameter 

estimates. 

Table 9. Comparison of heave amplitude prediction methods. 

Method Input Type Midpoint Amplitude (m) Envelope Width (m) Assumptions 

Classical Deterministic Crisp parameters 8.70 0 No uncertainty 

Monte Carlo Simulation Probabilistic 8.65 ~1.2 (𝑠𝑡𝑑. 𝑑𝑒𝑣. ) Needs data for PDFs 

α-Cut Fuzzy Interval (this study) Fuzzy sets 8.70 1.35 (𝑎𝑡 𝛼 = 0.5) No PDFs, expert inputs 

 
Figure 7. Relative uncertainty vs. 𝛼-level for sea-state scenarios. 
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8.3. Comparison with Crisp (Deterministic) 

Baseline 

Taking the modal (𝛼 = 1) values as the 

deterministic case, the single value amplitude is 8.70 m 

(moderate) and 8.625 m (severe).  

𝐴crisp = 𝐴1
mid 

The fuzzy envelope fully contains these values and 

shows: 

• Bias analysis: The mean of 𝛼 = 0.5 envelopes, 𝐴0.5
mid , 

deviates by 

Δbias = 𝐴0.5
mid − 𝐴crisp = {

8.975 − 8.70 = 0.275 m,
8.025 − 8.625 = −0.600 m,

 

for moderate and severe, respectively. This ± variation 

quantifies the impact of parameter imprecision on mean 

response predictions. 

This 3D surface plot of Figure 8 illustrates how the 

steady-state heave amplitude 𝐴  varies continuously 

with total vessel mass 𝑚 (including fuzzy added mass at 

𝛼 = 0.5) and damping coefficient 𝑐  (at 𝛼 = 0.5) for a 

moderate sea-state. It highlights the sensitivity of 

motion amplitude to simultaneous variations in these 

key parameters. 

 
Figure 8. Heave amplitude surface over mass and damping (α = 0.5, moderate sea-state). 

8.4. Implications for Vessel Design and 

Operation 

Design Margins: Under severe seas, the potential 

heave amplitude may exceed design limits by up to 

Δ𝐴0.5/2 ≈ 0.875 m even with moderate parameter 

confidence-informing safety margins on deck clearance 

and mooring line sizing. 

Data-Collection Priorities: The high relative 

uncertainty at 𝛼 = 0 suggests prioritizing accurate 

measurement of added mass and damping (e.g., via 

model-scale tests) to reduce Δ𝐴  in the operational a 

range (0.5–1.0). 

Real-Time Updates: Embedding online estima-

tion of 𝑚̃𝐴 and 𝑐̃ from sensor feedback could tighten en-

velopes mid-voyage, improving route planning under 

uncertain sea-states. 

8.5. Summary of Findings 

▪ Fuzzy parameter modeling captures epistemic 

uncertainty absent in stochastic methods when 

data are limited. 

▪ The 𝛼 -cut/interval method yields clear, inter-

pretable envelopes whose width and midpoint 

metrics guide both engineering judgment and risk 

assessment. 

▪ Even simple 1-DOF case studies from Karnataka 

demonstrate that uncertain hydrodynamics and 

wave forcing can substantially affect vessel mo-

tions, underscoring the value of the proposed fuzzy 

multi-body framework. 

These result-driven insights validate our method-

ology (Sections 4.6) and highlight paths for extending to 

higher-DOF systems, real-time control, and experi-

mental validation. 

9. Conclusion and Future Work 

9.1. Key Findings 

Effective Uncertainty Quantification: By repre-

senting wave loads and hydrodynamic coefficients as 

fuzzy numbers and applying the 𝛼-cut interval method, 
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we obtained clear heave-amplitude envelopes 𝐴̃𝛼 =

[𝐴𝛼
𝐿 , 𝐴𝛼

𝑈]  that quantify epistemic uncertainty without 

assuming probability distributions. 

Envelope Behavior: Envelopes narrowed syste-

matically as 𝑎  increased from 0 to 1, confirming that 

improved confidence in input parameters directly 

reduces response uncertainty ( Δ𝐴𝛼 → 0 as 𝛼 → 1 ).  

Scenario Sensitivity: The severe-sea scenario off 

the Karnataka coast yielded wider envelopes (e.g., 

Δ𝐴0 ≈ 16 m)  than moderate seas (Δ𝐴0 ≈ 7.4 m),  illus-

trating how extreme conditions magnify para-meter 

imprecision. 

Design Implications: Mid-𝛼 envelopes (e.g., at 𝛼 =

0.5) still span substantial ranges (±1 mscale), indica-ting 

that fuzzy-based safety margins and data-collection 

priorities (e.g., accurate added-mass measurement) are 

essential for reliable vessel operation. 

9.2. Advantages and Limitations 

Advantages: 

▪ Non-Probabilistic: No need for large datasets to 

fit distributions-expert judgment and sparse 

measurements suffice. 

▪ Interpretability: Interval envelopes provide direct 

insight into worst-case and best-case responses. 

▪ Modularity: The framework (Sections 4–6) 

extends readily to multi-DOF systems, floating 

platforms, and control applications. 

Limitations: 

▪ Overestimation Risk: Interval arithmetic can 

introduce conservative bounds ("wrapping effect") 

if 𝛼-cuts are too coarse. 

▪ Computational Cost: The double loop over 𝛼 -

levels and time-steps implies 𝑂(𝑚𝐾𝑛3) operations 

for an 𝑛-DOF system, which may be burdensome 

for high-fidelity models. 

▪ Model Validity: Fuzzy parameter definitions rely 

on expert inputs that may be subjective; rigorous 

validation is needed. 

9.3. Recommendations for Practitioners 

▪ 𝛂 -Level Selection: Use non-uniform 𝛼 -spacing-

denser near 𝛼 = 1 −  to balance precision and 

computational effort. 

▪ Hybrid Methods: Combine fuzzy bounds with 

probabilistic analysis where sufficient statistical 

data exist, yielding a "fuzzy probabilistic" hybrid. 

▪ Software Practices: Organize code into reusable 

modules (fuzzy_utils, solver, postprocess) and exp-

loit parallel computing for 𝛼-slice computa-tions. 

9.4. Future Work 

▪ Higher-DOF Extensions: Apply the methodology 

to full 6-DOF vessel dynamics, including coupling 

between heave, pitch, roll, surge, sway, and yaw. 

▪ Real-Time Updating: Integrate onboard sensor 

feedback (e.g., GPS, wave radar) to dynamically 

refine fuzzy parameter sets moving from offline 

envelopes to online uncertainty quantification. 

▪ Experimental Validation: Conduct scale-model 

tank tests to estimate membership-function para-

meters and validate predicted envelopes against 

measured responses. 

▪ Control Integration: Develop fuzzy-based control 

laws that leverage the computed envelopes to 

adjust active stabilizers or fin angles in uncertain 

sea-states. 

▪ Minimizing Overestimation: Investigate advan-

ced interval arithmetic techniques (e.g., Taylor 

models, affine arithmetic) to reduce conservatism 

in the computed bounds. 

By synthesizing fuzzy-set theory, multi-body 

dynamics, and interval analysis within a coherent 

simulation framework, this study provides both 

theoretical foundations and practical tools for robust 

design and operation of marine structures under 

uncertainty. 

9.5. Final Thoughts 

This study demonstrates that a fuzzy-set and 𝛼-cut 

interval framework provides a powerful, non-pro-

babilistic approach for quantifying uncertainty in 

marine dynamics, seamlessly integrating imprecise 

wave loads and hydrodynamic parameters into multi-

body simulations. Through detailed mathematical 

formulation, a robust simulation architecture, and a 

realistic Karnataka-coast case study, we have shown 

how fuzzy envelopes offer clear insights into both 

worst-case and best-case vessel responses-insights that 

are critical for design safety, operational planning, and 

risk management in offshore engineering. By balancing 

computational tractability with interpre-tability, our 

methodology empowers engineers to incorporate 

expert judgment and sparse data without relying on 

questionable statistical assumptions. Ultima-tely, these 

final reflections underscore the value of fuzzy modeling 

as a complementary tool alongside traditional pro-

babilistic and deterministic methods, paving the way for 

more resilient marine structures in uncertain seas. 
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Appendix A. Definitions of Fuzzy 
Functions and Key Concepts 

Appendix A.1. Fuzzy Number Definitions 

A fuzzy number is a fuzzy subset of the real line ℝ that is 

normal, convex, upper semi-continuous, and has a 

bounded support. 

• Triangular Fuzzy Number (TFN): Specified by 

three real numbers (a,b,c), with the membership 

function: 

𝜇(𝑥) = {

𝑥−𝑎

𝑏−𝑎
,  if 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
,  if 𝑏 ≤ 𝑥 ≤ 𝑐

0,  otherwise 

   (A1) 

• Trapezoidal Fuzzy Number (TrFN): Defined by 
four real numbers (𝑎, 𝑏, 𝑐, 𝑑) , where the mem-
bership function is: 

𝜇(𝑥) =

{
 
 

 
 
0, 𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
, 𝑎 < 𝑥 ≤ 𝑏

1, 𝑏 < 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
, 𝑐 < 𝑥 ≤ 𝑑

0, 𝑥 > 𝑑

   (A2) 

Appendix A.2. 𝛂-Cut Representation 

For a fuzzy number 𝐴̃, its a-cut is defined as: 

[𝐴̃]𝛼 = {𝑥 ∈ ℝ ∣ 𝜇𝐴̃(𝑥) ≥ 𝛼},  0 ≤ 𝛼 ≤ 1  (A3) 

Each 𝛼-level yields a closed interval useful for interval 
arithmetic. 

Appendix B. Pseudocode of the Simulation Framework 

python 
# Fuzzy Multi-Body Dynamics Simulation (Pseudocode) 
Input: fuzzy_parameters, time_grid, alpha_levels 
Output: fuzzy_response_envelopes 
 
For alpha in alpha_levels: 
    # 1. Compute alpha-cut intervals of fuzzy inputs 
    mass_interval = alpha_cut(fuzzy_parameters["mass"], alpha) 
    damping_interval = alpha_cut(fuzzy_parameters["damping"], alpha) 
    stiffness_interval = alpha_cut(fuzzy_parameters["stiffness"], alpha) 
     
    # 2. Solve lower and upper bound ODEs using RK4 
    response_lower = RK4_solver(mass_interval.lower, damping_interval.lower, ...) 
    response_upper = RK4_solver(mass_interval.upper, damping_interval.upper, ...) 
     
    # 3. Store response intervals 
    fuzzy_response_envelopes[alpha] = [response_lower, response_upper] 
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Return fuzzy_response_envelopes
Note: Advanced users may substitute RK4_solver() with Taylor model or affine arithmetic integrators for tighter
bounds.
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