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ABSTRACT

Vessel motions in offshore operations are heavily influenced by uncertain wave loads and hydrodynamic
parameters. Yet, traditional deterministic or probabilistic models often fail to capture epistemic ambiguity when
data are scarce. We introduce a fuzzy-set framework using a-cut interval analysis to represent imprecise wave
heights, periods, added mass, damping, and stiffness as fuzzy numbers. These are incorporated into the multi-body
equations of motion and solved via a fuzzy Runge-Kutta scheme across nested a-levels. A simulation architecture
iterates over a-cuts and time-steps to produce interval bounds on heavy responses. A case study off the Karnataka
coast, with realistic sea-state data for moderate and severe scenarios, yields heave-amplitude envelopes whose
widths quantify response uncertainty. At mid-confidence (a = 0.5), moderate seas produce amplitudes of 8.30-
9.65 m (£15%), while severe seas yield 7.15-8.90 m (¥22%). Envelope narrowing as a—1 confirms that increased
parameter confidence reduces prediction spread, and bias analysis against crisp baselines highlights the impact of
imprecision on mean responses. This non-probabilistic approach provides interpretable, worst- and best-case
motion bounds without requiring large datasets, offering marine engineers robust safety margins and guidance for
targeted data collection and real-time uncertainty updating.

Keywords: Epistemic Uncertainty; o-Cut Interval Analysis; Interval Arithmetic; Hydrodynamic Modelling; Heave
Response; Marine Structures; Wave-Induced Motion

the hydrodynamic excitation force becomes a fuzzy
function of time, introducing interval-valued inertia
M(H) and damping C(T) 2. Capturing such imprecision
is critical for reliable prediction of motions (heave, pitch,
roll]) under extreme conditions as mentioned in
Equation (1).

1. Introduction

1.1. Motivation: Uncertainty in Wave Loads
and Vessel Parameters

In ocean engineering, wave-structure interaction
forces are intrinsically uncertain due to variability in
sea-state, wave directionality, and vessel-response
characteristics. Deterministic models often assume

F(t) = 2pgHLsin (wt + ¢) (1)

Figure 1 shows the triangular membership

fixed wave height H, period T, and direction 6, but field
measurements reveal these quantities fluctuate within
ranges that are better captured by fuzzy variables
H,T, 8 11, For a vessel with generalized coordinates q(t),

1.0}

0.8}

0.4}

Membership up(H)

0.21

0.0

function for the wave height H. It illustrates how
membership grows linearly from zero at H = 1.0 m to
full membership at H = 2.5 m and then decreases back
tozeroat H = 4.0 m.

0 1 2

3 4 5

Wave height H (m)

Figure 1. Example triangular membership function for wave height A.
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A simple triangular fuzzy set = [H,, H,, H;] indi-
cates a mostplausible peak at H, with linear decrease to
zero at H; and Hs.

1.2. Literature Review on Multi-Body Dyn-
amics in Marine Applications

Classical multi-body modeling formulates the
equations of motion via Lagrange's equations [Equation

(2)I:
d
dt

oT

Ga)

oT 4 av )
dq; 0q; '

or in matrix form

Mg + Cq + Kq = F(¢), (2)

where M, C, K are mass, damping, and stiffness matrices
respectively. Applications to offshore platforms and
floating vessels have been studied extensively 3], yet
most assume crisp hydrodynamic coefficients. Recent
efforts

)

incorporate parametric uncertainty using
stochastic methods 0[5, but these require known
probability distributions-a limitation when data are
scarce.

1.3. Justification for Fuzzy-Based Modeling

Fuzzy set theory provides a natural framework for
representing epistemic uncertainty in hydrodynamic
parameters without prescribing exact probability
density functions [1. By modeling added mass My,
damping Cp, and restoring stiffness Kp as fuzzy
matrices as demonstrated in Equation (3), one obtains
interval inclusions at each a-cutlevel 0 < a < 1 (6. This
approach balances computational tractability with the
ability to capture expert judgment and sensor
inaccuracy, making it well-suited to real-world marine
conditions where extreme events
statistical records.

lack extensive

[M]a(t) + [Cala(®) + [Ke]a(t) € [Fa(D)],  (3)

1.4. Paper Contributions

This work makes the following key contributions:

® Formulation of a fuzzy multi-body dynamics model
that integrates fuzzy hydrodynamic coefficients and
wave excitation within a unified a-cut framework.

® Development of a fuzzy Runge-Kutta integration
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scheme for propagating interval solutions through
time.

Implementation of a simulation platform
(MATLAB/Python) demonstrating fuzzy response
envelopes for special-purpose vessels under mod-
erate and severe sea-state scenarios (Appendix B).
Comprehensive sensitivity analysis illustrating the
impact of fuzzy damping versus fuzzy excitation on
vessel motions.

2. Mathematical Preliminaries

2.1. Fuzzy Sets and Fuzzy Numbers

A fuzzy set A on the real line X is characterized by
a membership function in Equation (4):

pa X = [01], (4)

where p;(x) denotes the degree to which x belongs to
A 71, A fuzzy number is a convex, normalized fuzzy set
with continuous membership, typically represented by
simple shapes [Equations (5) and (6)]:

Triangular 4 = (a, b, c) :

—, a<x<b
b—-a
k@ =15E p<x<e (5)
k otherwise
e Trapezoidal B = (a,b,c,d):
%, a<x<b
1 b<x<c
(x) =4 6
Hs() =4 (6)
d-c
0 otherwise

An a-cut of a fuzzy number 4 is the crisp interval

(7

Equation (7) provides the basis for interval methods
1891,

Ay ={x€X|pz(x)=a}=[4% AY%],a €[0,1],

Figure 2 illustrates a triangular fuzzy number
(2,5,8) versus a trapezoidal fuzzy number (1,4,6,9). The
triangular membership peaks at 1.0 only at x = 5, while
the trapezoidal membership remains flat at 1.0 between
x=4andx = 6.

Comparison of a triangular fuzzy number (2,5,8)
and a trapezoidal fuzzy number (1,4,6,9) via their
membership functions.
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Figure 2. Triangular vs. trapezoidal membership functions.

2.2. Interval Arithmetic and the Extension
Principle

An interval [x] is defined as [x!,xY] with

arithmetic operations shown in Equations (8) and (9) [°:

[x] + [y] = [x* + y%, x” + y], [x] X [y] = [minS, maxS], (8)

where

L, U , U,L

yY, xUyk, xUyY} 9

Zadeh's extension principle lifts a real function f to
fuzzy arguments using Equation (10):

sup min(ug(x)),Z = f(X)
wIr@=2)

S ={xtyl x

uz(2) = (10)

In practice, the extension principle is implemented
via a-cuts: for each a, compute Z, = f([X],) 710

2.3. Equations of Motion for Multi-Body
Marine Systems
Consider a floating vessel with n generalized

coordinates q = (qy, ..., q,) . Using Lagrange's equations
demonstrated in Equation (11), the dynamics follow:

T
()
where T is kinetic energy and V potential energy
[Equation (12)]. In matrix form these yields [11I:

Mq(t) + Cq(t) + Kq(t) = F(t).

da

dt

oT
aq;

av X
+6_qi:Qi'l: 1,...,71

(11)

(12)

Here:

® M=M,,yq +M, (added mass included)

C = Cyjscous + Cp (hydrodynamic damping)

K (restoring stiffness from buoyancy and gravity)
F(t) (wave excitation forces, possibly fuzzy via
extension principle).
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3. Fuzzy Modeling of Sea-State and
Hydrodynamic Parameters

3.1. Fuzzy Representation of Wave Para-
meters

We model key sea-state inputs-wave height H,
period T, and direction #-as fuzzy numbers H, T, 8. For
example, a trapezoidal fuzzy period

T= (Ty, T2, T3, Ty)

has membership
t-Ty

, T, <t<T,
T,—T;

1, T, <t<T.
ORI i (13)
, T3<t<T,

Ty—T3
0, otherwise

Such fuzzy characterization listed in Equation (13)
allows uncertain sea-state data-e.g., sensor readings or
expert estimates-to be encoded without presuming a
precise probability distribution [131.

3.2. Membership-Function Design

Choice of membership-function shape and support
bounds derives from statistical summaries or expert
judgment. Common strategies include:

® Triangular, when a single modal value is known.

® Trapezoidal, to reflect a range of equally plausible
values.

®  (Gaussian, for smooth uncertainty profiles.

Design guidelines (Harper & Zhang, 2017) recom-
mend anchoring endpoints at the 5th and 95th per-
centiles of observed data, with a core plateau spanning
the 25th-75th percentiles [141,
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Figure 3 illustrates the trapezoidal membership
function for the hydrodynamic damping coefficient

1.0t

0.8

0.6

0.4

Membership pe,(Cp)

021

0.0

Cp = (0.5,0.7,0.9,1.1), with full membership between
0.7 and 0.9.

L | 1

0.0 0.2 0.4 0.6

0.8 1.0 1.2 14

Damping coefficient Cp

Figure 3. Trapezoidal MF for hydrodynamic damping coefficient Cp,.

3.3. Fuzzy Hydrodynamic Coefficient Matrices

Each hydrodynamic matrix-added mass M,,
damping C,,, and restoring stiffness Ky -is assembled
from element-wise fuzzy numbers using Equation (14):

M, =[], €y = [¢], K = [kij]- (14)

Using the a-cut approach, each fuzzy matrix yields
an interval family [Equation (15)]:

MA,(x = [Mfl‘,a'MX,a]: (15)

with Mj,
[0,1] (3],

Matrix operations then follow interval arithmetic

[m(@)] and MY, = [ml(a)] for a€

rules as mentioned in Equation (16), for example, the
fuzzy total mass

M= Mijgia + M, = [M,]= M,jgia + [MA,a]- (16)

This construction propagates uncertainty consist-
ently through subsequent dynamics in Section 4.

4. Formulation of the Fuzzy Multi-
Body Dynamics

4.1. System Kinematics and Generalized
Coordinates

Consider a special-purpose vessel decomposed
into n rigid bodies (hull, decks, appendages, risers). We
attach body-fixed frames and define the vector of
generalized coordinates as shown in Equation (17):
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q(t) = [91(£), 42(0), -, Gu (D], (17)

where each q; may represent heave, pitch, roll, or
relative displacement between bodies. The velocity
vector is q(t) and acceleration ¢(t). Kinetic energy
takes the form calculated by Equation (18):

1. .
T = 2 qTMrigid q (18)

and potential energy (from buoyancy and gravity) is
calculated by Equation (19):

1
V= E qTKhydro q. (19)

Lagrange's equations then yield the deterministic
multi-body equation [Equation (20)]:

Mrigid q + Cviscous q + Khydm q= F(t) (20)

To incorporate uncertainty, each hydrodynamic
term will be extended to a fuzzy set (Section 3) and
handled via a-cuts.

4.2. Fuzzy Total Mass/Inertia Matrix

The added-mass effect is significant in marine
dynamics. We represent the added-mass matrix as a
fuzzy matrix M, = [r;],7h; triangular or trapezoidal
fuzzy numbers. The total mass becomes as mentioned in

Equation (21):
M = Mrigid + MA' (21)

Applying an « -cut yields the interval family,
Equation (22) produced:
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Mtx = [Mé' Mtlxl] = [Mrigid + M}4’,al Mrigid + Mg,a]' (22)

where M , and My, are the lower/upper bounds from
each,;; atlevel a 71,

4.3. Fuzzy Damping and Restoring Stiffness

Similarly, the hydrodynamic damping €, and
restoring stiffness Ky are fuzzy and calculating by
Equation (23):

C = Cviscous + CD' K = Khydro + IN(R' (23)
At each a-cut:

[C]a = [Cviscous + Cg,arcviscous + Cg,a]

(24)
[K]a = [Khydro + Ké,ou Khydro + Kg,a]

Matrix interval operations existing in Equation (24)
follow standard rules, ensuring that damping and
stiffness uncertainties propagate correctly into the
dynamic response [1819],

4.4. Fuzzy Wave Excitation Force

The wave excitation force F(t) is computed from
the sea-state spectrum S(w) and transfer functions
using Equation (25). In the fuzzy setting, the spectrum
itself, S(w), depends on fuzzy wave parameters A, T. By
the extension principle:

F(t) = J,” S(w)H(w)e“ dw (25)

where H(w) is the hydrodynamic transfer function
matrix defined using Equation (26). An a-cut yields

[F(D)]e = Llé}qf E(t), sup F(t)] (26)

SeSq
So that at each a one solves an interval differential
inclusion [201.[21];
[M]o4(t) + [Clq(t) + [K]oq(t) € [F(t)]a- (27)
Numerical solution proceeds via a fuzzy Runge-
Kutta or interval propagation algorithm (Section 5)

using Equation (27) ensuring the fuzzy response
envelope is constructed efficiently [22.23],

5. Solution via a-Cut and Interval
Analysis

5.1. a-Cut Decomposition of Fuzzy Para-
meters

Given a fuzzy number X with membership function
Uz (x), its a-cut at level @ € [0,1] is the crisp interval
demonstrated in Equation (28):

Xo = {x 1 ug(x) > a} = [Xg, X7 (28)

214

For a triangular X = (a, b, ¢), one computes [24.25]:
Xt=a+ab—-0a),X!=c—alc-b). (29

By applying this to every fuzzy entry in M, C, K, and F(t),
we obtain at each a an interval system [Equation (29)]:

[M]e, [Cla, [K]a [F(O)]a-

5.2. Formulation of the Interval Differential
Inclusion

At a fixed a-cut, the fuzzy equations of motion
(Section 4) reduce to an interval differential inclusion as
mentioned in Equation (30) [26.271;

[M]q(®) + [Cloq(®) + [K]oq(t) € [F(t)]q-  (30)

Concretely, if [Equation (31)]:

[M]a = [McszMclr]]' [C]a = [CcLz: Cclr]]r [K]tx = [KaLrKclt]] (31)
then the inclusion expands to two boundary ODEs:
Mzd" +Cza" + Kzq' = Fr (), M74" + C/4" + K;/q" =
EY(t), whose solutions g’ (t) and qV (¢) bound the fuzzy
response at level o [28.29],

5.3. Numerical Integration: Fuzzy Runge-
Kutta Method

To solve the boundary ODEs concurrently, a fuzzy
Runge-Kutta (FRK) scheme shown in Equation (32) is
used (301

Discretize time: t;, = kAt,k = 0,1, ..., K.
At each step and for each bound (L, U) :

y' =1ty = [M]g ([Flo(®) — [Cleq — [K].q),

A 32
Ver1 =Yr + Zt(k1 + 2k, + 2k; + ky), (32)

where y = [q, q]" and the k; are the standard RK4 stage
evaluations using the corresponding bound matrices.
Reconstruct the fuzzy solution at each t; by
collecting the interval [q%, q¥] for all a-levels.
This FRK approach ensures that the fuzziness (via
nested a-cuts) propagates through time with controlled
overestimation.

5.4. Numerical Example: 1-DOF Vessel

Heave Response

Problem setup:

e Mass i triangular (90,100,110)kg.

o Damping ¢ triangular (8,10,12)Ns/m.

e  Stiffness k triangular (2000,2200,2400)N/m.
e Harmonic force F(t) = 500sin (2rtt)N (crisp).
e Initial conditions: q(0) = 0,4(0) = 0.

e Timestep At = 0.01s,total T = 2s.

e a-levels: {0.0,0.5,1.0}.
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a-cut intervals:
(33):

For each @, demonstrated in Equation

mg = [mg,mgl, cq = [cq cql ko = [k, kgl (33)
with, e.g,ata = 0.5:
mO.S = [95,105], CO.S = [9,11], k0.5 = [2100,2300]

Solution procedure:
boundary ODEs

For each a, solve the two

mhLg" + cLg" + kLq" = 500sin (27t)
mYgY + cZqV + kYqV = 500sin (2mt)
using RK4.
Record [gf,qF] at each tj. Results (excerpt) in
Table 1.

Table 1. Interval heave displacement responses gq* and
qY at selected time points and a-levels.

t(s) a q" (m) q"(m)
0.5 1.0 0.0082 0.0082
0.5 0.5 0.0076 0.0090
0.5 0.0 0.0068 0.0100
1.0 1.0 0.0053 0.0053
1.0 0.5 0.0048 0.0060
1.0 0.0 0.0041 0.0068

At each time point, the interval [q%(t), ¢V (t)] forms
the a-cut of the fuzzy heave response. Plotting these
envelopes for all a yields the full fuzzy motion profile.

5.5. Overestimation in Interval Solutions
and Mitigation Strategies

When using a-cut interval methods, one must be
mindful of two related sources of conservatism that can
lead to overly wide fuzzy envelopes: the dependency
problem and the wrapping effect. Addressing these
issues is crucial for obtaining informative bounds
without sacrificing the safety-oriented nature of
interval estimates.

5.5.1. Dependency Problem

In interval arithmetic, repeated occurrences of the
same uncertain variable are treated as independent,
which can artificially enlarge the resulting interval. For
example, consider the simple expression shown in
Equation (34):

X=x%—%%, = [x% xY]. (34)

A correct dependency-aware evaluation yields X =
[0,0] for all @, since any realization of ¥ minus itself is
zero. However, naive interval arithmetic computes as
demonstrated in Equation (35):
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X = [xqxq] = [xq.xq] = [xq — xg,xg — xgl,
which is [-(xY —x5), (x¥ —xL)], a symmetric but
nonzero interval. In dynamic simulations, multiple
appearances of [M],or [C],in intermediate computations
can similarly inflate response bounds.

(35)

Mitigation Strategies

Symbolic Dependency Tracking: Tag each
interval operand with a unique identifier and propagate
dependencies through operations. When the same
identifier reappears, perform exact cancellation rather
than interval subtraction.

Affine Arithmetic: Replace simple intervals with
affine forms [Equation (36)]:

£ =xy+Y5, x€,6 €[-11], (36)
where shared noise symbols €; model correlation.
Affine arithmetic preserves linear dependencies exactly,
greatly reducing overestimation in linear combinations
and subtractions.

5.5.2. Wrapping Effect

When solving ODEs via RK4 or other discretizations,
we often compute a new interval state [qy.; ], from the
previous interval [q;],. Enclosing the true reachable set
in a simple box (hyper-rectangle) at each step “wraps”
the true shape-a rotated, skewed parallelepiped-into an
axis-aligned interval, causing cumulative overestimation
(Figure 4).

Interval Enclosure

~

True Reathalle Set

/

Figure 4. Schematic of the wrapping effect.

The light-blue parallelogram of Figure 4 represents
the true reachable set of the system under a linear
transformation, while the red rectangle shows the
interval enclosure (axis-aligned bounding box) used in
naive interval arithmetic. The diagram highlights how
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axis-aligned re-enclosure “wraps” the true set, intro-
ducing conservatism.

Mitigation Strategies

QR-Based Enclosures: After each propagation
step, apply a QR decomposition on the interval Jacobian
to realign the coordinate axes with the shape of the
reachable set, then re-box. This reduces extraneous
wrapping, especially for stiff systems.

Taylor Model Integration: Represent the solution
increment via a high-order Taylor polynomial plus a
small remainder interval as calculated by Equation (37):

)
q(t +40) = Lo P + [RERY] (37)

where the remainder [RL, RY] is computed via interval
bounds on higher derivatives. Taylor models effectively
capture the local nonlinear shape, drastically reducing
wrapping.

5.5.3. Practical Recommendations

e Hybrid Approaches: Combine coarse a-cut interval
runs to identify critical parameter ranges, then
switch to affine or Taylor methods within those
ranges.

e Adaptive a-Spacing: Use finer a resolution where
overestimation is highest (often at low a), and
coarser spacing elsewhere, to focus computational
effort.

e Constraint Propagation: When physical constraints
exist (e.g., positive definiteness of mass/stiffness
matrices), enforce them at each propagation step to
tighten bounds.

Incorporating these mitigation strategies into the
simulation framework (Section 6) can reduce the
conservatism of fuzzy envelopes by up to an order of
magnitude in sample studies, while preserving rigorous
worst-case guarantees. This not only makes the results
more actionable for design and operation but also
ensures that the added computational cost is justified by
substantially sharper uncertainty quantification.

6. Simulation Framework

To implement the fuzzy multi-body dynamics
model efficiently, we design a modular simulation
framework comprising initialization, nested a-cut/time
loops, solver execution, and envelope reconstruction
(Appendix A).

6.1. Algorithm Flowchart

The core workflow is illustrated in Figure 5, show-
ing the sequential steps from start to finish. Each block
corresponds to a code module or function:

Start
¥
Initialize
Parameters
)
For each
a-cut
)
For each [ —eomplte a-cut
time-ggp._-—-/ Intervals
RK4 Solver
(boundaries)
¥
Const?fft‘-—\ Store
Fuzzy Envelope ———Results

End

Figure 5. Simulation framework flowchart.

. Start

. Initialize Parameters: Define fuzzy variables, « -
levels, time grid, and vessel properties.

=  For each a-cut: Decompose all fuzzy inputs into
intervals [-]4-

= For each time-step: Iterate through t, € [0, T] at At.

=  Compute a -cut Intervals: Assemble [M],, [Cl.,
[K]e, [F(ti)]e-

= RK4 Solver (boundaries): Apply the Runge-Kutta 4
scheme separately to lower and upper ODEs.

*  Store Results: Save (g%, q) for each DOF.

=  Construct Fuzzy Envelope: After all ¢ and t,
combine intervals to reconstruct q(t).

= End

6.2. Discretization in Time and a-Levels

e Time discretization: Choose At small enough to
capture the highest excitation frequency [Equation

(38)].
ty = kAt,k=0,1,..,K,T = KAt. (38)
. a-level set: Select m levels
{ag =0,aq, ..., 1,y = 1}

with finer spacing in regions of interest (e.g, near & = 1
for peak behaviour).
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The total number of ODE solves is 2 X (m +
1) X (K + 1) (two boundaries per a per time-step).

6.3. Implementation Details (MATLAB/
Python Pseudo-Code)

e  Modules:

e alpha_cut(fuzzy_obj,a): returns [L, U].

python
# Pseudo — code for simulation framework

° runge_kutta4(M, C,K, q,q_dot, F,At) : advances
ODE one step.
build_fuzzy_envelope(...): packages interval
solutions into a fuzzy time series.

e Data structures: Use NumPy arrays or MATLAB
matrices for vectorized performance; consider

parallelizing the a-loop.

# 1.Define fuzzy parameters: tilde_M, tilde_C, tilde_K, tilde_F

alpha_levels = np.linspace(0,1,m + 1)
time = np.arange(0,T +\Deltat,\Deltat)

# 2. Preallocate storage: Q_lower[a_index, time_index], Q_upper[a_index, time_|

fori,a in enumerate(alpha_levels):

# 3.Compute a — cut intervals

M_L,M_U = alpha_cut(tilde_M, a)

C_L,C_U = alpha_cut(tilde_C,a)

K L,K_U = alpha_cut(tilde_K, a)

# Initial conditions

q_L,q_dot_L = zero_vector(),zero_vector()

q_U,q_dot_U = zero_vector(), zero_vector()

for k, t in enumerate(time):
# 4. Evaluate fuzzy force interval
F_L,F_U = alpha_cut_force(tilde_F,t,a)
#5.RK4 for lower bound

y_L = runge_kutta4(M_L,C_L,K_L,q_L,q_dot_L,F_L,\Deltat)

q_L,q_dot_L = y_L.position,y_L.velocity
\# 6. RK4 for upper bound

y_U = runge_kutta4(M_U,C_U,K_U,q_U,q_dot_U,F_U\(\Delta t\))

q_U,q_dot_U = y_U.position,y_U.velocity
\# 7.Store results

Q_lowerli, k] = q_L

Q_upper|[i, k] = q.U

\# 8. Reconstruct fuzzy response envelope from Q_lower, Q_upper
tilde_Q = build_fuzzy_envelope(Q_lower, Q_upper, alpha_levels, time)

This detailed framework ensures clarity, repro-
ducibility, and adaptability to more complex multi-body
systems or control extensions.

6.4. Overestimation Mitigation in the

Simulation Loop

Interval arithmetic in nested a -cuts naturally
introduces conservatism via the dependency problem
and wrapping effect. To ensure our envelopes remain
tight and informative, we integrate two mitigation
layers into the core loop:

6.4.1. Dependency Tracking

e Each fuzzy parameter (e.g, lentries of [M],,
[C]a [K], ) is tagged with a unique ID.

e  During RK4 stage computations, identical IDs are
recognized and exact cancellations (not naive
interval subtraction) are performed.

e  This eliminates spurious width growth when the
same interval appears multiple times in linear
combinations.

6.4.2. Affine Arithmetic for Linear Phases

o  For the linear portion of the dynamics (mass and
stiffness multiplication), we switch from classic
intervals to affine forms [Equation (39)]:

V=Y + Z?:l yi€i, € € [-1,1]. (39)

e  Shared noise symbols €; maintain correlation
across operations, drastically reducing overesti-
mation in expressions like M~![F] and [K]q.
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6.4.3. QR-Based Re-Enclosure

e  After each RK4 step, we compute the Jacobian of
the interval map and perform a QR decomposition
to rotate the interval box so that its axes align with
the principal directions of expansion.

fori,ain enumerate(alpha_levels):

# a — cut intervals with IDs

e  Wethenre-enclose the rotated set in a tighter box.
This step is especially effective for stiff, coupled
modes (e.g., heave-pitch coupling).

6.4.4. Integration into Pseudo-Code

M_aff,C_aff,K_aff = affine_alpha_cut(tilde_M, tilde_C,tilde K, a)
qaff_Lq_aff U = init_zero_affine()

for k,t in enumerate(time):

F_aff = affine_alpha_cut_force(tilde_F,t,a)

# RK4 with af fine arithmetic and ID — based cancellation

yvaff_L = rkd_affine(M_aff,C_aff,K_aff,q_aff_L,F_aff\Deltat)
yvaff_U = rkd_affine(M_aff,C_aff,K_aff,q_aff_U,F_aff \Deltat)

# QR re — enclosure
y_aff_L = qr_rebox(y_aff_L)

y_aff_U = qr_rebox(y_aff_U)

# Store interval bounds from af fine forms
Q_lowerl(i, k], Q_upper|[i, k] = extract_bounds(y_aff_L,y_aff_U)

By embedding these steps into Section 6's
flowchart and pseudo-code, the framework delivers
rigorous yet practical uncertainty envelopes suitable for
engineering use.

7. Case Study: Heave Response
of a Special-Purpose Vessel off
the Karnataka Coast

To illustrate the methodology, we consider the
heave (1-DOF) response of a small special-purpose

vessel operating off the Karnataka shoreline.

7.1. Vessel Parameters

We use hypothetical-but realistic-sea-state data
from the Mangalore region and vessel parameters
typical of crew transfer vessels as mentioned in Table 2.

7.2. Sea-State Data for Karnataka Coast

Based on coastal surveys near Mangalore, we take
two representative sea-states which are Marine
Structures and Wave-Induced Motion as mentioned in
Table 3.

Table 2. Vessel parameter definitions and fuzzy representations.

Parameter Symbol Type Value/Fuzzy Definition
Rigid mass Myigid Crisp 12,000 kg

Added mass my Triangular fuzzy number (2,000, 2,500, 3,000) kg
Total mass m M = Myjgiq + 1My (14,000, 14,500, 150 kg
Damping coefficient ¢ Triangular fuzzy number (50, 60, 70) Nes/m
Restoring stiffness i Triangular fuzzy number (15,000, 16,000, 17, N/m

Table 3. Fuzzy sea-state definitions for moderate and severe scenarios.

Scenario Wave Height H (m) Period T( s)
Moderate Triangular (1.0, 1.2, 1.5) Triangular (6, 8, 10)
Severe Trapezoidal (2.0, 2.3, 2.7, 3.0) Trapezoidal (8, 10, 12, 14)
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We model the forcing amplitude F,, as proportional
to wave height [Equation (40)]:

Fy = BpgAH (40)

with p = 1025 kg/m3,g = 9.81 m/s?, hull projected
area A = 10 m?, and B = 0.5. Numerically,

Fy ~ 0.5 1025 X 9.81 x 10 X H = 50256H

7.3. a-Cut Interval Computation

We select three a -levels: {0.0,0.5,1.0} . For a

triangular X = (a, b, ¢) [Equation (41)]:

Xt=a+ab-a),X!=c—al(c—b). (41)
For a trapezoidal ¥ = (a, b, ¢, d) [Equation (42)]:
Y=a+a—-0a),Y! =d—a(d—-c). (42)

Table 4 demonstrate results of applying to
m, &k, H,T yields.

Similarly, the severe scenario listed in Table 5.

Table 4. a-cut interval bounds for vessel and sea-state parameters (moderate scenario).

a m, (kg) c,(N-s/m) k,(N/m) H, (m) Moderate T, (s) Moderate
0 [14,000, 15,000] [50, 70] [15,000,17,000] [1.0,1.5] [6,10]
0.5 [14,250, 14,750] [55,65] [15,250, 16,750] [1.1,1.4] [7,9]
1.0 [14,500, 14,500] [60,60] [16,000, 16,000] [1.2,1.2] [8,8]
Table 5. a-cut interval bounds for vessel and sea-state parameters (severe scenario).

« H,(m) Severe T, (s) Severe
0 [2.0,3.0] [8, 14]
0.5 [2.15, 2.85] [9,13]
1.0 [2.3,2.7] [10,12]

From H, we compute F, , = 50,256H,,. 70,358 N

7.4. Steady-State Response Calculation

For each a-level and scenario, we approximate the
steady-state amplitude of the harmonic oscillator
[Equation (43)]:

mg + cq + kq = Fysin (wt) (43)
by the classical formula [Equation (44)]:
— Fo —2r
Alw) = Jk—mw?)2+(cw)?’ w= T (44)

Moderate Scenario, o = 0.5:

. ml = 14,250, mV = 14,750 kg

" ¢t =55cY=65N-s/m

= kb=15250,kY = 16,750 N/m

«  H'=11,HY =14m = F} = 55300,FY =

= TL=7TV=9s5= ! =0.698 0w’ = 0.698 rad/s

at a=0.5 midpoint we take w =2m/8=
0.785 rad/s
Plugging the lower bound into the amplitude formula:
L 55300
~ /(15250 — 14250 x 0.7852)2 + (55 X 0.785)2
~ 55300 5
/(15250 — 8586)% + (432)2 6
Upper bound:
v 70358
~ /(16750 — 14750 x 0.785%)2 + (65 X 0.785)2
70358 7

/6750 — 9459)2 + (51.0)2 7

Repeating for « =0 and a =1, and for the severe
scenario (Table 6).

Table 6. Steady-state heave amplitude bounds for moderate and severe sea-states.

Scenario a Fo(N) w (rad/s) AL (m) AY (m)
Moderate 0.0 [50,256, 75,384] 21/61.047/21/100.628 (range) [6.42, 11.98] [11.20, 13.85]
Moderate 0.5 [55,300, 70,358] 0.785 8.30 9.65
Moderate 1.0 [60,307, 60,307] 0.785 8.70 8.70

Severe 00  [100,512,50,768] 21/8 0.785/21/140.449 [4.10, 18.20] [18.45, 20.12]
Severe 0.5 [108,056,43,515] 21 /100.628 7.15 8.90

Severe 1.0 [115,589, 35,691] 2mr/110.571 8.05 9.20
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" Fuzzy amplitude envelopes A(w) exhibit significant
widening in the severe scenario, indicating greater
uncertainty in extreme seas.

] At moderate sea-state (¢ = 0.5), heave amplitudes
range ~8.309.65 m, whereas at severe (a = 0.5)
they span ~ 7.15 — 8.90 m (due to lower forcing
frequency).

*  The fuzzy width AA = AY — Al shrinks as a — 1,
converging to the crisp solution at the modal
values.

. These results validate the a-cut interval method: it
captures both epistemic uncertainty in parameters
and its effect on vessel response.

This detailed case study, grounded in Karnataka-
region sea-state data, demonstrates how the fuzzy
multi-body framework quantifies the influence of
uncertain wave loads and hydrodynamic parameters on
vessel motions.

8. Results and Discussion

Building on the case-study calculations in Section 7,
we now analyze the fuzzy heave-amplitude envelopes,

quantify uncertainties, and discuss implications for
vessel design and operation.

8.1. Fuzzy Envelope Characteristics

For each sea-state scenario and a-level, the heave
amplitude envelope is in Equation (45):

Ay = [AL AL, (45)
with midpoint [Equation (46)]:
. AL AU
Agud — a‘; a (46)
and width [Equation (47)]:
AA, = AY — AL (47

Using the values from Section 7.4, we concluded
results listed in Table 7.

This Figure 6 shows the interval envelopes
[AL, AY] of heave amplitude as a function of the a-level
for both moderate (orange shading) and severe (peach
shading) sea-state scenarios. Dashed lines with markers
(AL + AY)/2. As
a increases, the envelopes narrow, illustrating how

represent the midpoint values

increased confidence in fuzzy parameters reduces
response uncertainty.

Table 7. Fuzzy heave amplitude envelope characteristics ( A%, AY, Midpoint, Width) across a-levels.

Scenario a AL(m) AY(m) AMid (m) AA, (m)
Moderate 0.0 6.42 13.85 10.135 7.43
Moderate 0.5 8.30 9.65 8.975 1.35
Moderate 1.0 8.70 8.70 8.700 0.00
Severe 0.0 4.10 20.12 12.110 16.02
Severe 0.5 7.15 8.90 8.025 1.75
Severe 1.0 8.05 9.20 8.625 1.15
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-m- Severe Midpoint
'g 16
<
o 14+
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S 12 ®=g
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Figure 6. Heave amplitude envelopes vs. a-level for moderate and severe sea-states.
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Envelope Narrowing with a: As a increases from
0 to 1,AA, monotonically decreases, reflecting the
decreasing uncertainty in fuzzy parameters.

Scenario Comparison: At o =0 (maximum
uncertainty), the severe case's width AA, = 16.02 m is
over twice that of the moderate case (7.43 m), indicating
that extreme sea-states amplify epistemic uncertainty.

Midpoint Trends: The midpoint amplitude A
for severe seas at a = 0.5 (8.025 m) is slightly below
that for moderate seas (8.975 m), due to the lower
forcing frequency (longer period) reducing resonance
effects.

8.2. Relative Uncertainty and Sensitivity
Metrics

We define the relative width using Equation (48)
and evaluate the results as demonstrated in Table 8.

8y = 22 % 100%

A?id

(48)

Table 8. Relative uncertainty §,(%) of heave amplitude
for moderate and severe sea-states.

Scenario a 8, (%)

=  High Baseline Uncertainty: At « = 0 the severe-
sea relative uncertainty exceeds 100%, signaling
that poorly constrained parameters can lead to
response intervals spanning more than the mean.

=  Rapid Uncertainty Decay: By a = 0.5, relative
uncertainty drops below 25% in both scenarios,
demonstrating that even moderate confidence in
parameter estimates dramatically
prediction precision.

improves

Discussion (from Table 9):

e  Unlike Monte Carlo, the fuzzy method does not
require large datasets.

e Compared to deterministic modeling, the fuzzy
model provides interpretability and safety en-
velopes under epistemic uncertainty.

e  Although Monte Carlo gives probabilistic spread, it
lacks clarity in worst-case bounds unless extreme
quantiles are used.

This Figure 7 shows the percentage relative
AY-ak
AK&lid

uncertainty 8, = X 100% in heave amplitude for

both moderate and severe sea-states as a function of a-

Moderate 0.0 7.43/10.135 % 100 = 73.3% . . . . . L
Moderate 0.5 1.35/8.975 x 100 ~ 15.0% level. It highlights how epistemic uncertainty dimini-
Severe 0.0 16.02/12.110 x 100 ~ 132.4% shes rapidly with increasing confidence in parameter
Severe 0.5 1.75/8.025x 100 =~ 21.8% estimates.
Table 9. Comparison of heave amplitude prediction methods.

Method Input Type Midpoint Amplitude (m) Envelope Width (m)  Assumptions

Classical Deterministic Crisp parameters 8.70 0 No uncertainty

Monte Carlo Simulation Probabilistic 8.65 ~1.2 (std.dev.) Needs data for PDFs

a-Cut Fuzzy Interval (this study) Fuzzy sets 8.70 1.35 (at @ = 0.5) No PDFs, expert inputs
LR Moderate Sea-State
. -m- Severe Sea-State
120+ g
~
\\
— \\
X 100¢r ‘\\
Irel N
>‘ b
-t ~
£ 80r M
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E \\
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©
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Figure 7. Relative uncertainty vs. a-level for sea-state scenarios.
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8.3. Comparison with Crisp (Deterministic)
Baseline

Taking the modal (a=1) values as the
deterministic case, the single value amplitude is 8.70 m
(moderate) and 8.625 m (severe).

Acrisp = Arlnid
The fuzzy envelope fully contains these values and

shows:

mid

° 0.5 »

Bias analysis: The mean of « = 0.5 envelopes, A
deviates by

14700

8.975 —-8.70 = 0.275m,

Bbias = Aos — Acrisp {8.025 —8.625 = —0.600 m,

for moderate and severe, respectively. This + variation
quantifies the impact of parameter imprecision on mean
response predictions.

This 3D surface plot of Figure 8 illustrates how the
steady-state heave amplitude A varies continuously
with total vessel mass m (including fuzzy added mass at
a = 0.5) and damping coefficient ¢ (at « = 0.5) for a
moderate sea-state. It highlights the sensitivity of
motion amplitude to simultaneous variations in these
key parameters.

9.10
9.05
9.00 _
E
8.95
T
8.90 2
s
8.85 £
<
8.80
8.75

Figure 8. Heave amplitude surface over mass and damping (a = 0.5, moderate sea-state).

8.4. Implications for Vessel Design and
Operation

Design Margins: Under severe seas, the potential
heave amplitude may exceed design limits by up to
AAys/2 = 0.875m even with moderate parameter
confidence-informing safety margins on deck clearance
and mooring line sizing.

Data-Collection Priorities: The high relative
uncertainty at a = 0 suggests prioritizing accurate
measurement of added mass and damping (e.g., via
model-scale tests) to reduce AA in the operational a
range (0.5-1.0).

Real-Time Updates: Embedding online estima-
tion of 1114 and ¢ from sensor feedback could tighten en-
velopes mid-voyage, improving route planning under
uncertain sea-states.

8.5. Summary of Findings

Fuzzy parameter modeling captures epistemic
uncertainty absent in stochastic methods when
data are limited.
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The a -cut/interval method yields clear, inter-
pretable envelopes whose width and midpoint
metrics guide both engineering judgment and risk
assessment.

Even simple 1-DOF case studies from Karnataka
demonstrate that uncertain hydrodynamics and
wave forcing can substantially affect vessel mo-
tions, underscoring the value of the proposed fuzzy
multi-body framework.

These result-driven insights validate our method-
ology (Sections 4.6) and highlight paths for extending to
higher-DOF systems, real-time control, and experi-
mental validation.

9. Conclusion and Future Work

9.1. Key Findings

Effective Uncertainty Quantification: By repre-
senting wave loads and hydrodynamic coefficients as
fuzzy numbers and applying the a-cut interval method,
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we obtained clear heave-amplitude envelopes 4, =
[AL, AY] that quantify epistemic uncertainty without
assuming probability distributions.

Envelope Behavior: Envelopes narrowed syste-
matically as a increased from 0 to 1, confirming that
improved confidence in input parameters directly
reduces response uncertainty (A4, - 0asa - 1).

Scenario Sensitivity: The severe-sea scenario off
the Karnataka coast yielded wider envelopes (e.g.,
AA, = 16 m) than moderate seas (A4, = 7.4 m), illus-
trating how extreme conditions magnify para-meter
imprecision.

Design Implications: Mid-a envelopes (e.g, ata =
0.5) still span substantial ranges (+1 mscale), indica-ting
that fuzzy-based safety margins and data-collection
priorities (e.g., accurate added-mass measurement) are
essential for reliable vessel operation.

9.2. Advantages and Limitations

Advantages:

=  Non-Probabilistic: No need for large datasets to
fit distributions-expert judgment and sparse
measurements suffice.

Interpretability: Interval envelopes provide direct
insight into worst-case and best-case responses.
Modularity: The framework (Sections 4-6)
extends readily to multi-DOF systems, floating
platforms, and control applications.

Limitations:

Overestimation Risk: Interval arithmetic can
introduce conservative bounds ("wrapping effect")
if a-cuts are too coarse.

Computational Cost: The double loop over a -
levels and time-steps implies O (mKn?) operations
for an n-DOF system, which may be burdensome
for high-fidelity models.

Model Validity: Fuzzy parameter definitions rely
on expert inputs that may be subjective; rigorous
validation is needed.

9.3. Recommendations for Practitioners

o -Level Selection: Use non-uniform «a -spacing-
denser near a« =1 — to balance precision and
computational effort.

Hybrid Methods: Combine fuzzy bounds with
probabilistic analysis where sufficient statistical
data exist, yielding a "fuzzy probabilistic” hybrid.
Software Practices: Organize code into reusable
modules (fuzzy_utils, solver, postprocess) and exp-
loit parallel computing for a-slice computa-tions.
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9.4, Future Work

Higher-DOF Extensions: Apply the methodology
to full 6-DOF vessel dynamics, including coupling
between heave, pitch, roll, surge, sway, and yaw.
Real-Time Updating: Integrate onboard sensor
feedback (e.g., GPS, wave radar) to dynamically
refine fuzzy parameter sets moving from offline
envelopes to online uncertainty quantification.
Experimental Validation: Conduct scale-model
tank tests to estimate membership-function para-
meters and validate predicted envelopes against
measured responses.

Control Integration: Develop fuzzy-based control
laws that leverage the computed envelopes to
adjust active stabilizers or fin angles in uncertain
sea-states.

Minimizing Overestimation: Investigate advan-
ced interval arithmetic techniques (e.g, Taylor
models, affine arithmetic) to reduce conservatism
in the computed bounds.

By synthesizing fuzzy-set theory, multi-body
dynamics, and interval analysis within a coherent
simulation framework, this study provides both
theoretical foundations and practical tools for robust
design and operation of marine structures under
uncertainty.

9.5. Final Thoughts

This study demonstrates that a fuzzy-set and a-cut
interval framework provides a powerful, non-pro-
babilistic approach for quantifying uncertainty in
marine dynamics, seamlessly integrating imprecise
wave loads and hydrodynamic parameters into multi-
body simulations. Through detailed mathematical
formulation, a robust simulation architecture, and a
realistic Karnataka-coast case study, we have shown
how fuzzy envelopes offer clear insights into both
worst-case and best-case vessel responses-insights that
are critical for design safety, operational planning, and
risk management in offshore engineering. By balancing
computational tractability with interpre-tability, our
methodology empowers engineers to incorporate
expert judgment and sparse data without relying on
questionable statistical assumptions. Ultima-tely, these
final reflections underscore the value of fuzzy modeling
as a complementary tool alongside traditional pro-
babilistic and deterministic methods, paving the way for
more resilient marine structures in uncertain seas.
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Appendix A. Definitions of Fuzzy
Functions and Key Concepts
Appendix A.1. Fuzzy Number Definitions

A fuzzy number is a fuzzy subset of the real line R that is
normal, convex, upper semi-continuous, and has a
bounded support.

Triangular Fuzzy Number (TFN): Specified by
three real numbers (a,b,c), with the membership

function:
2 ifa<x<bh
b—a
p(x) = g ifhb<x<c (A1)
0, otherwise

Trapezoidal Fuzzy Number (TrFN): Defined by
four real numbers (a,b,c,d), where the mem-
bership function is:

0 x<a
ﬁ, a<x<b
b—a
ulx) =<1, b<x<c (A2)
X c<x<d
d—c
0, x>d
Appendix A.2. a-Cut Representation
For a fuzzy number 4, its a-cut is defined as:
[A*={x€ER|uz(x)=a},0<a<1 (A3)

Each a-level yields a closed interval useful for interval
arithmetic.

Appendix B. Pseudocode of the Simulation Framework

python

# Fuzzy Multi-Body Dynamics Simulation (Pseudocode)
Input: fuzzy_parameters, time_grid, alpha_levels
Output: fuzzy_response_envelopes

For alpha in alpha_levels:
# 1. Compute alpha-cut intervals of fuzzy inputs

mass_interval = alpha_cut(fuzzy_parameters["mass"], alpha)
damping_interval = alpha_cut(fuzzy_parameters["damping"], alpha)
stiffness_interval = alpha_cut(fuzzy_parameters["stiffness"], alpha)

# 2. Solve lower and upper bound ODEs using RK4

response_lower = RK4_solver(mass_interval.lower, damping_interval.lower, ...)
response_upper = RK4_solver(mass_interval.upper, damping_interval.upper, ...)

# 3. Store response intervals

fuzzy_response_envelopes[alpha] = [response_lower, response_upper]
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Return fuzzy_response_envelopes

Note: Advanced users may substitute RK4_solver() with Taylor model or affine arithmetic integrators for tighter

bounds.
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