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ABSTRACT

Ocean Renewable Energy (ORE) systems—comprising wind, wave, tidal, and ocean thermal energy—are 
increasingly seen as viable alternatives to fossil fuels. However, their integration into the power grid is hindered 
by environmental sensitivity, dynamic ocean conditions, and high maintenance demands. Artificial Intelligence 
(AI) offers promising solutions to these challenges by enabling intelligent, adaptive, and resilient energy systems. 
This review explores AI applications in ORE, focusing on three critical domains: optimization, forecasting, and 
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control. Optimization techniques, including Genetic Algorithms (GA) and Swarm Intelligence (SI), are employed 
to enhance device efficiency, improve energy capture, optimize farm layouts, reduce environmental impacts, 
and lower installation costs. Forecasting uses Machine Learning (ML) and Deep Learning (DL) models to predict 
wave height, tidal flow, and energy output, aiding in grid integration and energy scheduling. In control systems, 
AI approaches like Reinforcement Learning (RL) and Fuzzy Logic ensure real-time responsiveness and predictive 
maintenance, improving system reliability in dynamic marine environments. Emerging technologies such as Edge 
AI enable decentralized computation for real-time decision-making, while Digital Twin frameworks simulate and 
predict system performance before deployment. Explainable AI (XAI) is also discussed to ensure transparent 
and trustworthy decision-making. Ethical and regulatory concerns are acknowledged to ensure responsible AI 
integration in ocean settings. Overall this review offers a comprehensive synthesis of how AI enhances the perfor-
mance, efficiency, and scalability of ORE systems. It serves as a valuable resource for researchers, policymakers, 
and industry professionals seeking to advance clean, smart, and sustainable ocean energy solutions.

Keywords: Artificial Intelligence; Forecasting; Machine Learning; Ocean Renewable Energy; Optimization; Smart 
Control

 

1. Introduction
Ocean renewable energy (ORE) is an emerging 

clean energy source that has been receiving worldwide 
attention. The oceans present a possibly limitless po-
tential for energy production by exploiting different 
technologies such as Wave Energy Converters (WECs), 
Tidal Stream Generators (TSGs), and Ocean Thermal 
Energy Conversion (OTEC) systems. These systems 
harness natural and predictable oceanic phenomena, 
providing a predictable and renewable alternative. In 
spite of its potential, there are considerable barriers 
to the addition of ocean energy at a large scale. These 
are variability and intermittency in power generation, 
challenging marine conditions that impact on durabil-
ity and maintenance, and complex systems dynamics 
which impede real-time operation and control. Com-
mercial adoption is also impeded by high capital and 
operational cost. In such context, Artificial Intelligence 
(AI) is offering itself as a disruptive solution to these 
problems. AI can greatly enhance the efficiency, reli-
ability, and resilience of ocean energy systems through 
smart forecasting, adaptive control, fault diagnosis, 
and automated decision-making. The incorporation 
of AI is not only beneficial in terms of operational ef-
ficiency, but also for scaling capacity and ensuring the 
long term commercial feasibility of ORE technologies. 
The rapid increase in global energy demand along with 
rising environmental awareness over the environmen-
tal problems, have led to a growing interest in renewable 

energy, and especially in the one arising from the sea [1]. 
AI has become the core of the intermittent renew-
ables, playing essential roles in prediction, matching, 
and dispatching in hybrid renewable energy systems [2]. 
In general, AI applications with ORE can be classified 
into three main groups: optimization, forecasting and 
control. These systems are interlocking and often in-
terdependent and therefore must be addressed with 
holistic policies to be effective. The design of ORE de-
vices, energy extraction and its economic sustainabil-
ity can be optimized using AI algorithms [3]. Correct 
prediction of wave height, tidal current, and other oce-
anic parameters is a prerequisite for efficient energy 
deployment and grid connection. AI enables better 
monitoring, management and prediction of energy 
demands, which is critically important with respect 
to impending climate change [4]. State of art control 
systems are using AI to vary the system parameters 
dynamically and to accommodate to different environ-
mental conditions while maintaining stable and effi-
cient operation. As AI grows, its applications in energy, 
including ORE, will likely broaden, sparking further 
disruption and accelerating the march towards cleaner, 
more sustainable energy sources [5]. The energy indus-
try has been experiencing AI innovations [6].

2. Overview of Ocean Renewable 
Energy Sources

The ocean contains a wide variety of renew-
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able energy forms, each with its own intrinsic be-
haviors and methods of energy extraction [7]. Marine 
renewable energy refers to the vast, largely untapped 
power of the sea, which has long been recognized as a 
promising source of sustainable energy. Tidal power 
harnesses the periodic rise and fall of the tide due to 
the gravitational pull of the moon and the sun. It is 
obtained through devices such as tidal barrages and 
tidal stream generators that transform the kinetic and 
potential energy of tides into electricity. Wave power, 
on the contrary, harnesses the energy in the motion of 
surface waves. Technologies like oscillating water col-
umns and point absorbers are utilized to convert this 
motion into power. Novel ocean energy technologies 
not only provide CO2 free power but also contribute to 
security of energy supply and economic growth and 
job creation in coastal and remote communities [8]. OCT 
uses the difference in temperature between warm 
surface water and cold deep seawater to run a heat 
engine to generate electricity. Apart from these major 
sources, another promising but less matured area is 
saline gradient energy which takes advantage of the 
difference in salinity of freshwater and saltwater [9,10].

Another advanced method is Ocean Thermal 
Energy Conversion (OTEC), also known as thermal 
conversion, which uses the water thermal differences 

between warm surface and cold deep seawaters to 
drive turbines in closed, open and hybrid cycle sys-
tems. Finally, offshore wind converts wind energy into 
electricity as wind blows across the sea, where wind 
speeds and directions are more predictable. These 
turbines are of a floater, or fixed-bottom type depend-
ing on depth and installation conditions. Cumulatively 
these varied energy sources represent tremendous 
opportunity for sustainable electricity production and 
are instrumental in the world transition to renewable 
energy. Floating platforms can be placed and exploit-
ed to capture either exclusively potential or kinetic 
energy [11]. There are several strong arguments in fa-
vor of ocean energy technologies, such as economic 
development, increased security of supply and great 
potential for CO2 emissions savings (Table 1) [12]. Tidal 
power is particularly appealing because of its predict-
ability and reliability [8]. There is an ample amount of 
wave resource, particularly in coastlines with severe 
wave conditions [13]. Although in the early stages of de-
velopment, ocean thermal is a constant baseload pow-
er. Wind energy generated offshore is more powerful 
and consistent than on land. These various sources of 
ocean energy, together with further developments in 
storage and grid connection, have the potential to im-
prove the reliability, and stability of power systems.

Table 1. Comparative Overview of Ocean Renewable Energy Technologies.

ORE Technology Energy Conversion 
Principle

Key Technologies Advantages Challenges

Tidal Energy Utilizes kinetic and 
potential energy of tides 

due to gravitational 
forces

Tidal Barrages, Tidal 
Stream Generators

Highly predictable and 
reliable

High capital cost, envi-
ronmental permitting

Wave Energy Captures motion energy 
from surface waves

Oscillating Water Col-
umns, Point Absorbers

Abundant in high wave 
coastal areas

Variability, harsh marine 
environment

Ocean Thermal Energy 
Conversion (OTEC)

Uses temperature differ-
ence between warm 

surface and cold deep 
water

Closed Cycle, Open 
Cycle, Hybrid Cycle 

Systems

Provides continuous 
baseload power

Still in early develop-
ment, expensive setup

Offshore Wind Energy Converts kinetic energy 
of wind over sea into 

electricity

Floating and Fixed-Bot-
tom Wind Turbines

Higher and more con-
sistent wind speeds 

offshore

Installation and mainte-
nance at sea is complex

Salinity Gradient Energy Harnesses energy from 
salinity difference 

between freshwater and 
seawater

Pressure Retarded 
Osmosis (PRO), Reverse 

Electro dialysis (RED)

Promising for integra-
tion with desalination

Low technology maturi-
ty, efficiency issues
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Despite these benefits, ocean energy devices are 
confronted with a number of obstacles to achieving 
widespread use. These barriers consist of large initial 
capital expense, severe marine environment leading 
to additional cost for maintenance and operation and 
too involved regulatory and environmental permit ap-
proval [14]. As wave and tidal resources are variable in 
nature, energy storage systems are needed to enable 
a continuous power generation. Environmental con-
siderations, including effects on marine ecology and 
navigation, also require attention. The visual aspect of 
ocean energy plants can be an issue for some coastal 
communities. Solutions to overcome such challenges 
necessitate continue research and development effort 
aimed at cost reduction, enhancement of reliability and 
environmental friendliness [15].

This review aims to bridge the knowledge gap 
by systematically exploring the role of Artificial Intel-
ligence in enhancing the efficiency, forecasting accu-
racy, and adaptive control of ocean renewable energy 
systems, thereby contributing to the advancement of 
sustainable energy technologies and supporting global 
clean energy goals.

Despite the rapid advancements in artificial in-
telligence and ocean renewable energy systems inde-
pendently, there exists a critical gap in consolidated 
reviews that specifically focus on the intersection of 
these two domains. This review is significant as it sys-
tematically synthesizes how AI techniques—such as 
machine learning, deep learning, and hybrid models—
are transforming the optimization, forecasting, and 
control of ocean energy technologies. By highlighting 
recent breakthroughs, implementation strategies, and 
future research directions, the paper serves as a timely 
and essential resource for researchers, engineers, and 
policymakers aiming to advance sustainable energy 
solutions. The novelty of this review lies in its holistic 
coverage of AI’s role across all key facets of ocean re-
newable energy, which has not been comprehensively 
captured in previous literature.

3. Literature Review

3.1. Optimization of Ocean Renewable En-

ergy Systems

Optimization is a key issue in increasing the per-
formance of ocean energy converters and reducing 
their costs. Figure 1 illustrates a Technology Readiness 
Level (TRL)-based stage gate process for ocean energy 
systems, integrating performance, optimization, and 
economic modelling. Each stage gate includes technical 
reviews and cost analysis to guide development from 
concept to demonstration [16]. Optimization is essential 
to improve the optimization and economic capabili-
ties of ORE plants. The optimization is multistage, from 
the design phase of energy harvesters to the way they 
were operated during observation. AI methods are 
being increasingly employed to solve such problems, 
presenting a variety of new ways of optimizing the per-
formance of ORE systems [17]. Emphasizing deep learn-
ing, the role of AI techniques for improving the perfor-
mance and cost of ocean renewable energy systems is 
highlighted from the perspective of mathematical pro-
gramming and evolutionary algorithms for optimizing 
the layout and operation/design parameters.

Design and deployment optimization of wave en-
ergy converters and tidal stream generator are often 
optimized using genetic algorithms, particle swarm 
optimization, and simulated annealing [18]. To help 
addressing these challenges, APS algorithms can effi-
ciently search the large solution space to find optimal 
solutions that enable maximum energy capture and 
minimum costs [19]. Advanced optimization models are 
needed if energy production is to be maximized and 
environmental impact minimized, especially in com-
plex ocean topographies. For instance, multi-objective 
optimization methods can be employed for the trade-
off between energy production, structural robustness, 
and environmental impact [20]. Optimization based on 
AI guarantees that wave and tidal energy converters 
are designed and operated efficiently, cost effectively, 
and in an environmentally friendly manner [21].

AI is employed not only for device-level optimiza-
tion but also to optimize the spatial arrangement and 
control of ocean energy farms. AI based algorithms can 
also be used to enhance the operation of hybrid re-
newables [22]. By locating arrays of devices so as to 
locally optimize performance and by optimally tuning 
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array device operating parameters it is feasible to max-

imize array energy capture and minimize interference 

contribution. AI is used to design and control the ORE 

farms and integrate with hybrid renewable energy 

systems to both maximizing the energy production 

and reducing the negative effects of the interferences. 

Model predictive control strategies exploiting machine 

learning-based models can be used to maximize WEC 

efficiency through forecasting incoming wave patterns 

and adjusting the WEC response.

Figure 1. Development of WEC Technology [16].

The introduction of AI techniques in ORE systems 
allows acting on real-time adjustment and improve-
ment of the energy performance from sensors and 
environmental monitoring system data [23]. Adaptive 
control strategies to accommodate varying oceanic 
conditions may be used to enhance the reliability and 
efficiency of ocean energy technology. To solve com-
plex search spaces, metaheuristic algorithms such as 
PSO, DDA, ABO, GWO, HHO, FPA, FA, WOA, and SCA are 
used to find optimal solutions [24]. Metaheuristic algo-
rithms provide benefits in treating nonlinear and non-
convex optimization problems typically encountered 
in renewable energy, but are sensitive to parameteriza-
tion and the nature of the problem [25].

3.2. Forecasting of Ocean Renewable Ener-
gy Resources

Reliable predictions of ocean renewable energy 
potential are necessary for integrating these resourc-
es into the power grid and for grid stability. Better 
prediction enables grid operators to match the supply 

with the demand, minimize curtailment and ‘ buffer-
ing,’ and maximize the efficient provision and delivery 
of energy [26]. Wave height, tidal current, and seawater 
temperature are frequently predicted by time series 
analysis, neural networks, and support vector ma-
chines.

AI is highly relevant for accurate ORE resource 
forecasting, and for grid operators to balance energy 
supply and demand, to reduce energy curtailment, and 
for optimizing promotion energy distribution. Hybrid 
models that integrate more than one AI technologies 
together can be used to improve the accuracy of fore-
casts by exploiting the advantages of individual algo-
rithms. The application of numerical weather predic-
tion models and machine learning algorithms together 
has also been proved to be effective in forecasting wave 
and tidal current [3].

Deep learning algorithms, such as CNNs, RNNs, 
and LSTMs, have demonstrated strong capabilities in 
forecasting ocean wave patterns, predicting tidal flows, 
and optimizing control systems—thereby significantly 
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enhancing the operational efficiency, reliability, and 
scalability of ocean energy technologies [4]. Deep learn-
ing is used to model cross-correlations over time in 
the ocean energy data and provides accurate predic-
tions for short and long in advance [27]. In addition, re-
al-time online in-situ prediction of ocean current from 
big data has been examined by deploying deep learning 
techniques, e.g., Long Short-Term Memory Recurrent 
Neural Networks, and transformers for the path plan-
ning and control of Autonomous Underwater Vehicles 
[28]. Transfer learning methods can use data from other 
areas or domains to enhance forecasting performance 
in data-limited settings [29].

Prediction models are important in forecasting of 
power production and market behaviors among which, 
deep learning is a powerhouse in forecasting problems 
especially in time series data [30]. By leveraging AI algo-
rithms for forecasting model, brainwave heights, tid-
al currents and temperature of ocean can be predicted 
by time series analysis, neural networks and support 
vector machines to improve the stableness for the grid 
with availing the optimization and management of 
resources. Given smart grids, where resource alloca-
tion and decision-making are based on prediction, the 
assessment of uncertainty is necessary in order for au-
tonomous AI to be safe and trustworthy [31].

3.3. Control of Ocean Renewable Energy 
Systems

The control strategies play an important role 
in order to ensure the maximum energy absorption 
and the stable operation of ocean renewable energy 
converters. Sophisticated control strategies are thus 
needed to maximize energy capture and guarantee the 
stability of the ORE devices. Model predictive control, 
reinforcement learning, and fuzzy logic control are 
employed to maximize the output of wave energy con-
verters and tidal stream generators.

Real-time tuning of performance and reliability 
can be supported by the system, for example, through 
sensor data analysis and real-time environmental mon-
itoring. AI-based control systems respond to changing 
sea states and help to improve the efficiency of ocean 
energy devices. AI based control strategies have been 

designed to regulate the pitch and yaw system of tidal 
turbines, and to ensure all energy is extracted with 
lowest loading on the system. AI-driven control sys-
tems such as proactive and adaptive, allows respond-
ing in real-time to changing ocean conditions, leading 
to smart, robust and reliable ocean energy systems. 
Optimal control policies can be learnt by means of RL 
algorithms when they interact with the ocean environ-
ment and adapt themselves to changes occurring in 
the open sea. The pitch and yaw of tidal turbines are 
regulated using AI algorithms to optimize power gen-
eration and structural loading.

AI can enhance predictive maintenance by contin-
uously monitoring the operational data from sensors 
installed on ocean energy devices—such as vibration 
levels, temperature, pressure, and power output—
to assess equipment condition, detect anomalies, and 
predict potential failures before they occur.

Model predictive control relies on predictions for 
future system behavior, based on provided models, and 
optimally adjusts control inputs over a finite time pe-
riod. Fuzzy logic control can embed expert knowledge 
and deal with uncertainty in the control system [32]. 
Traditional computational methods can hardly handle 
big data from smart grid thus AI methods are neces-
sary for energy management, system state prediction 
and cyberattack defense. Figure 2 categorizes super-
vised learning into four main areas: deep learning, neu-
ral networks, classification, and regression, each with 
specific algorithms like CNN, SVM, and linear regression. 
It highlights the diverse models used for prediction and 
pattern recognition in AI applications [33]. AI tools such 
as neural networks, robotics, expert systems, fuzzy 
logics, and natural language processing make quick 
and precise decisions [33, 34]. AI can address these low-
cost, clean and secure energy supply needs to lower 
consumer electric bills, greenhouse gas emissions, and 
to support grid operators and utilities in maintaining a 
reliable power system [6].

AI as a disruptive technology is expected to dis-
rupt the energy system by enabling improvements 
in controllability, big data processing efficiency, safe-
guarding against cyber-attacks, and energy efficiency 
optimization (Table 2) [35, 36].
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Figure 2.  Supervised Learning Techniques in the Smart Grid [33].

4. Comparative Synthesis of AI 
Techniques in ORE Systems

A critical synthesis of Artificial Intelligence (AI) 
techniques highlights their transformative impact 
across ocean renewable energy (ORE) systems, partic-
ularly in resource assessment, forecasting, control, and 
optimization. Instead of isolated treatment, this sec-
tion integrates insights from machine learning, deep 
learning, and hybrid approaches to provide a holistic 

understanding of AI’s role in ORE.

4.1. Critical Review of Machine Learning 
Algorithms in ORE Systems

Machine learning (ML) has emerged as a founda-
tional tool in ORE systems, offering data-driven solu-
tions to complex operational challenges. Supervised 
learning techniques such as Support Vector Machines 
(SVM) and decision trees are frequently used for clas-

AI Application 
Area

Focus Techniques Used Benefits Challenges

Optimization Design, deployment, and 
operation of ORE systems

Genetic Algorithms, PSO, 
Simulated Annealing, 

Metaheuristics

Enhanced energy capture, 
reduced cost, improved 

layout

Nonlinear models, param-
eter sensitivity, environ-

mental trade-offs
Forecasting Wave height, tidal flow, 

ocean currents, tempera-
ture

Time Series Analysis, 
Neural Networks, LSTM, 

Transformers

Improved grid stability, 
demand-supply matching, 

better planning

Data quality, uncertainty 
estimation, need for hy-

brid models
Control Real-time system control, 

energy capture tuning
Reinforcement Learning, 

Fuzzy Logic, Model Predic-
tive Control

Efficient energy extraction, 
dynamic adaptation to sea 

conditions

Sensor dependence, high 
computation for real-time 

control
Hybrid Integra-

tion
Combining AI techniques 
and renewable systems

Transfer Learning, Digital 
Twins, Edge AI

Improved forecasting, 
decision-making, and 

decentralization

Data transfer latency, 
system complexity, cost of 

implementation
Security and 
Management

Energy system protection, 
state prediction

AI for Cyber Defense, NLP, 
Expert Systems

Quick decisions, protec-
tion from attacks, reliable 

energy delivery

Vulnerability to new 
threats, complexity in 
managing AI systems

Table 2. Applications of AI in Ocean Renewable Energy Systems: Optimization, Forecasting, and Control.
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sification and regression in energy resource assess-
ment and control strategies [37,38]. Their ability to learn 
from labeled datasets allows for accurate predictions 
of wave height, tidal flow, and energy output. Unsu-
pervised learning approaches, such as clustering and 
dimensionality reduction, are particularly valuable for 
anomaly detection and exploratory data analysis when 
labeled data is scarce.

Beyond ocean energy, ML has demonstrated effec-
tiveness in broader renewable energy domains. For in-
stance, in photovoltaic systems, ML algorithms are ap-
plied to enhance cooling efficiency and power output 
[39], support installation planning, and monitor system 
health through fault diagnostics and prognostics [40,41]. 
The extension of these capabilities to ORE systems en-
ables predictive maintenance, real-time optimization, 
and fault tolerance. Importantly, integrating ML within 
smart grids consolidates multi-disciplinary insights, 
thereby improving policy decision-making through 
comprehensive data analysis [32]. However, the perfor-
mance of ML is often constrained by the quality of in-
put data and the interpretability of results in real-time 
marine environments.

4.2. Critical Review of Deep Learning Ar-
chitectures in ORE Systems

Deep learning (DL), a subdomain of machine 
learning, offers superior capabilities in managing 

high-dimensional and non-linear data commonly 
found in oceanographic and energy datasets. Its appli-
cation in ORE spans from environmental monitoring 
to predictive control. Convolutional Neural Networks 
(CNNs) are employed for visual recognition tasks, such 
as detecting faults in marine components or classifying 
marine species, which is critical for both equipment 
performance and environmental impact monitoring.

Recurrent Neural Networks (RNNs), including 
Long Short-Term Memory (LSTM) architectures, are 
particularly suited for time-series analysis in ORE, 
enabling accurate forecasting of tidal currents, wave 
heights, and temperature variations [42]. These mod-
els also support anomaly detection and operational 
decision-making by learning temporal dependencies 
in system data [43]. Advanced DL models such as Auto 
encoders (AE) facilitate energy disaggregation and 
consumption pattern recognition, contributing to more 
granular energy demand forecasting [44,45].

Deep reinforcement learning extends these capa-
bilities to control systems, offering adaptive strategies 
for micro grid energy management and fault-tolerant 
control (Figure 3) [46]. Despite their predictive power, 
DL models are computationally intensive and often 
opaque, which challenges their deployment in safe-
ty-critical or regulatory-bound marine applications. 
Nonetheless, their integration with edge computing 
and explainable AI frameworks is expanding their re-
al-world applicability.

Figure 3. The Control Mechanisms Used in the Micro Grid Management System [46].
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4.3. Critical Review of Other AI Approach-
es and Hybrid Techniques

Complementing machine and deep learning, other 
AI approaches such as fuzzy logic and evolutionary al-
gorithms offer domain-specific advantages. Fuzzy logic 
systems are particularly effective in modeling uncer-
tain and imprecise environments like the ocean, where 
precise modeling is difficult. They incorporate expert 
knowledge into control loops, enabling resilient and 
interpretable decision-making.

Genetic Algorithms (GA) and other metaheuristic 
optimization techniques are widely used for layout de-
sign, parameter tuning, and performance optimization 
of wave and tidal energy devices. These algorithms excel 
at navigating large, non-convex solution spaces to iden-
tify near-optimal configurations for ORE systems [47].

Recent trends emphasize the development of 
hybrid AI models, which integrate predictive capabili-

ties (e.g., ML) with optimization techniques (e.g., GA), 
leading to performance improvements across multiple 
operational criteria. These systems are increasingly 
adopted in smart grid interfaces for demand-side man-
agement, where they help balance generation and con-
sumption while enhancing grid stability [48].

Looking forward, next-generation AI systems aim 
to address broader energy and environmental chal-
lenges through intelligent management solutions that 
adapt across spatial and temporal scales. The diversi-
fication of AI tools in ORE signals a move toward more 
autonomous, adaptive, and sustainable energy infra-
structures (Figure 4).

AI can improve renewable-energy solutions by 
monitoring the condition of equipment, increasing grid 
efficiency and security, and predicting maintenance 
needs. AI in smart grids the impact of AI on energy 
systems is changing rapidly (Figure 5, Table 3) [49].

Figure 4. Algorithm of Developing a Hybrid Technique [48].

Figure 5. Future Impact Areas of AI in Smart Grid [49].
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5. Optimization Strategies En-
abled by AI

5.1. Resource Allocation and Energy Man-
agement

 It is necessary for us to develop intelligent re-
source allocation and energy management strategies 
to achieve the optimal efficiency and reliability of 
ocean renewable energy systems. AI is enabling the 
incorporation of non-traditional energy sources, using 
the analysis of data from weather charges and power 
demand, in order to obtain more energy from these 
sources [50]. By precisely predicting energy demands, AI 
maximizes energy distribution and optimizes alloca-
tion of this finite resource with real-time data, which 
can lower operational costs and, ultimately, consumer 
costs. AI also holds potential in controlling renewable 
energy and improving energy consumption, which 
could lower the cost of energy and advance ener-
gy-saving efforts. Moreover, AI can make electrification 
and grid smarter, which efficiently use electricity grid 
and promote more integration of renewable [6].

AI algorithms are being used to control energy use 
during the highest peak hours, pre-purchase energy 
in the most efficient manner, and make the grid work 
better. In addition, AI methods are used to predict 
energy usage in smart grids, leading to more effective 
energy distribution [49]. AI helps to optimize energy dis-
tribution by analyzing real time data and forecasting 

future requirements and delivering it in a productive 
way to people [6].

5.2. Predictive Maintenance and Fault De-
tection

Using AI for predictive maintenance of ORE sys-
tems improves their reliability, lifetime expectancy and 
maintenance schedule by identifying possible faults 
early and timing to schedule maintenance work ac-
cordingly. AI-driven systems can forecast failures and 
optimize maintenance in a variety of contexts, generat-
ing substantial cost saving and enhanced reliability [51]. 
AI helps in monitoring the condition and diagnosing 
a fault by pattern analysis of sensor data and operat-
ing condition parameters. Constantly monitoring the 
health of essential hardware and predicting impending 
breakdowns allows for “superseding” of maintenance 
that results in less downtime and lower maintenance 
expenses. This has the advantage that it not only min-
imizes the possibility of unanticipated failures, but 
also prolongs the service life of the equipment. The ref-
erence to reduction of costs means that by predictive 
maintenance, AI contributes to lower cost operation 
and more reliable ORE systems.

Based on historical data and continuous sensor 
readings, AI algorithms interpret abnormal conditions 
that are a potential sign of impending breakdowns. 
The adoption of AI in maintenance strategies may help 
to minimize unplanned downtimes and to extend the 

Table 3. AI Techniques Applied in Ocean Renewable Energy (ORE) Systems.

AI Technique Sub-Category Application in ORE Benefits Example Techniques
Machine Learn-

ing
Supervised & Unsuper-

vised Learning
Resource assessment, 

forecasting, anomaly de-
tection, smart grid optimi-

zation

Improved reliability, 
efficient control, enhanced 

energy output

SVM, Decision Trees, 
Clustering, Dimensionality 

Reduction

Deep Learning Neural Network Models Pattern extraction, time 
series forecasting, fault 

detection, energy predic-
tion

Handles complex data, 
increases prediction accu-
racy, supports automation

CNN, RNN, AE, Deep Rein-
forcement Learning

Fuzzy Logic Good for imprecise sys-
tems, rule-based modeling

Limited learning ability Control systems in uncer-
tain environments

Fuzzy Inference Systems

Genetic Algo-
rithms

Useful for global optimiza-
tion

Computationally expen-
sive

System design and layout 
optimization

Genetic Algorithm (GA)

Hybrid Tech-
niques

Combines strengths of 
multiple methods

Complex to implement 
and tune

Integrated forecasting and 
control

ML + DL, Fuzzy + GA
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life of capital assets which might result in cost benefits 
and improved operational reliability [52].

5.3. Grid Integration and Stability

Incorporating ORE technologies into existing en-
ergy grids presents challenges of intermittency and 
variability. Artificial intelligence is not an exception for 
maintaining grid stability and optimizing the penetra-
tion of ocean RE sources. The Grid benefits from AI 
which optimizes energy distribution, and also via learn-
ing-enhanced grid resilience and security. Since the AI 
provides accurate prediction for ORE power output, it 
makes a better grid management way to minimize the 
impact on system by instability. In addition, AI encour-
ages the integration of power system operations by 

scheduling the dispatch of energy resources and han-
dling the uncertainty of renewable resources [53].

The optimal practice of grid infrastructure, de-
ployment, and generation of renewable energy sources 
has important impacts on solving the challenges to the 
growth and stability of the sector [54]. Deep learning 
could improve performance and reliability of renew-
able energy systems by facilitating predictive mainte-
nance, optimal energy distribution and grid security.

This would take advantage of AI technology to de-
velop novel tools for the optimal control of distributed 
generation and for the management of the integration 
of renewable energy sources with the grid, thus aiding 
in the current transition to a sustainable energy future 
(Table 4).

Optimization 
Area

Focus AI Techniques Used Benefits Challenges

Resource Alloca-
tion and Energy 

Management

Efficient distribution 
of energy resources and 

grid optimization

Machine Learning, 
Real-time Data Analysis, 
Forecasting Algorithms

Reduced lower oper-
ational costs, enhanced 

energy efficiency

Complex grid dynamics, 
data integration, need for 

high-quality real-time data
Predictive Main-

tenance and Fault 
Detection

Fault prediction, 
equipment health moni-
toring, and maintenance 

scheduling

Pattern Recognition, 
Sensor Data Analysis, 

Historical Data Model-
ing

Extended equipment 
life, reduced unplanned 
downtime, cost-effective 

maintenance

Sensor calibration, false 
positives/negatives in 

failure prediction

Grid Integration 
and Stability

Smooth integration 
of ORE into traditional 

power grids

Deep Learning, Load 
Forecasting, Optimiza-

tion Algorithms

Improved grid stability, 
reliable energy dispatch, 

increased renewable pene-
tration

Variability of renewable 
sources, computational 

requirements, regulatory 
limitations

Table 4. AI-Enabled Optimization Strategies in Ocean Renewable Energy Systems.

6. Forecasting Techniques
Forecasting techniques are essential in addressing 

the variability and intermittency of Ocean Renewable 
Energy (ORE) systems. AI-powered methods such as 
time series analysis, weather pattern recognition, and 
hybrid models enhance prediction accuracy for effi-
cient energy management and grid integration.

6.1. Time Series Analysis and Prediction

The time series analysis and forecast are important 
for dealing with the variability and intermittency of 
OREPs. Time series prediction is a method of projecting 
future values from historical data. Several approaches 
including statistical modelling and machine learning 

can use time series data to forecast future values. Tem-
poral ocean energy data is analyzed in the time domain 
which helps to study the features of ocean energy data, 
thus to achieve better prediction of the power produced. 
In smart grid, the prediction of the power demand for 
future can be based on AI techniques, and it leads to an 
efficient control of the energy distribution. AI is benefit-
ing here through better forecasts of renewable energy, 
including for optimal operation of the grid and energy 
management [55].

A I  b a s e d  m o d e l s  i n te g ra te d  w i t h  p hys i c s 
based models improve the reliability and accuracy of 
renewable energy predictions. The Dynamic Integrated 
Forecast System described in Figure 6 of the manuscript 
illustrates how global/regional weather models (phys-
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ics-based) are coupled with now casting and AI-driven 

statistical tools for probabilistic forecasting. This hybrid 

system supports more accurate decision-making and 

ensures higher system reliability [56]. Good forecasts en-
able more efficient grid management, more optimized 

energy dispatch, and higher reliability of the system.

Figure 6. Diagram of Components of KREPS AI-Based Forecasting Components are Coloured Orange and Gold [56].

6.2. Weather Pattern Recognition and Cli-
mate Modelling

Weather pattern identification and climate simu-
lation are key elements for forecasting the availability 
and performance of ocean renewable energy resourc-
es. Weather and climate models are getting a boost 
from neural networks, resulting in better predictions 
of agriculture and crop yields [57]. Artificial intelligence 
is good at recognizing intricate weather patterns and 
forecasting how they will affect ocean energy devices [4]. 
By crunching through past weather reports, and com-
bining the hive mind of all those other processes with 
meteorological models, AI can forecast wave heights, 
tidal current speeds and ocean temperatures – all the 
things that are needed to optimise energy production. 
For weather forecasting, in ocean resources [58], more 
accurate prediction of ocean energy from the ocean be-
comes possible with AI.

AI improves the capability for weather forecast-
ing leading to more accurate forecasts concerning the 
generation of energy from oceans. AI models, which 
are trained on data coming in from many different 
places, can see these larger trends, and can then make 
predictions for places which share similar climate, 
even if they lack a lot of historical data [59]. AI-powered 
climate models have much better predictive capacity, 
providing more accurate and more reliable prediction 

results to perform climate impact assessment, thereby 
helping policymakers and decision-makers develop ad-
aptation strategy [60]. AI improves accuracy of weather 
prediction which allows for more accurate forecasting 
of available oceanic energy sources [61].

6.3. Hybrid Forecasting Models

Hybridizing several forecasting methods can pro-
duce stronger and more reliable forecasts for oceanic 
renewable technologies. Hybrid models that use both 
statistical and machine learning methods are pro-
viding better forecasting accuracy than single-meth-
od prediction studies [62]. Hybrid prediction models 
synthesize different algorithms and improve the over-
all prediction accuracy more effectively [63]. Combining 
multiple data sources and algorithms increases the 
accuracy of a hybrid model. In developing dengue ep-
idemic forecasting models, hybrid models have been 
reported to exhibit superior solar power forecasting 
skills. Figure 7 outlines a machine learning workflow 
for time series prediction, starting from raw data pre-
processing, clustering with Fuzzy C-means, and apply-
ing models like SVR, KNN, and XG Boost. It includes 
hyper parameter tuning for optimization and evaluates 
performance using RMSE, MAE, and R²-score [64]. 

For an instance, combining physical and data 
models can enhance renewable forecasting preci-
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Figure 7. Machine Learning Workflow for Time Series Prediction in Renewable Energy Forecasting [64].

sion [65]. Occupancy models of ORE systems have 
improved forecast accuracy by incorporating diverse 
data sources and techniques to improve ORE sys-
tems predictions. Deep learning models are able to 

learn more complex features from PV power series 
and achieve better forecasting performance than tra-
ditional methods [66]. Reliable energy forecasting is 
achievable using deep learning.

7. Control Strategies

7.1. Real-time Monitoring and Control

Active management and control of ocean energy 
systems in real time will be critical to achieving the 
level of performance and reliability required for effi-
cient ocean renewable energy production. Real-time 
monitoring optimizes ORE systems by constantly 
adapting the settings in response to the actual re-
al-time situation. Its presence enables ORE systems to 
be more efficient and reliable by the aid of real-time 
monitoring and control systems. AI algorithms make 
real-time updates for the best energy capture and 
conversion. Artificial intelligence systems analyze 
sensor data in real time and fine-tune control variables 
to ensure energy production is maximized. Efficient 
control and maintenance is one of the main issues of 
reliability and effectiveness in long-term operation of 
renewable energy systems. Real time adaptation to 
maximize energy harvesting and conversion in ORE 
systems may be achieved due to AI. AI and ML algo-
rithms play an essential role in increasing the level of 
control and automation in renewable energy systems 
ultimately increasing efficiency and stability.

7.2. Adaptive Control Algorithms

In addition, techniques known as adaptive control 
algorithms can compensate for changes in system pa-
rameters in real time to improve performance in differ-
ing ocean conditions. Some ORE systems apply adap-
tive control techniques, which proportionally actuate 
systems’ parameters in response to instantaneous 
conditions. The adaptive control algorithms help im-
prove the robust performance and the stability of the 
ORE systems by updating parameters dynamically. 
AI-enabled adaptive control solutions can leverage 
data to learn and to fine tune energy production by 
controlling the hardware parameters. Adaptive control 
can improve stability and performance of ORE systems 
through the adjustment of parameters in the system. 
The parameters being continuously adjustable by the 
adaptive control algorithm, catches the real-time state 
of ORE systems, and guarantees its best performance. 
Through the usage of methods such as explainable 
AI and hybrid models, limitations in today’s machine 
learning applications can be brought down and even 
enable new operational scenarios to make these sys-
tems more competitive in the world of energy [67].

7.3. Predictive Maintenance and Fault De-
tection

Preventive maintenance and fault detection are 
important for the overall long term reliability and avail-
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ability of ocean renewable energy systems [68]. Predic-
tive maintenance can be a technique used to reduce 
downtime and maintenance costs and can pre-warn 
for potential failures with time to spare before they 
occur [69,70]. The AI predictive maintenance reduc-
es and prevents machinery failures, thus achieving 
higher efficiency and cost savings [71]. The systems of 
the automation for predictive maintenance and error 
identification minimize the delays and the costs to 
maintain operations. Cognitive AI algorithms process 
sensor data to search for anomalies and anticipate 
pending failures – allowing maintenance to be per-
formed proactively. Predictive maintenance is greatly 
improved with AI, with early identification of possi-
ble faults reducing downtime and cost [72]. Predictive 
maintenance based on AI can remarkably enhance the 
reliability and minimize the operational costs of re-
newable energy systems [73].

8. Integration of AI and Phys-
ics-Based Models for Enhanced 
Reliability and Accuracy

AI-based models, when integrated with phys-
ics-based models, can significantly enhance both the 
reliability and accuracy of predictions and control 
strategies in ocean renewable energy (ORE) systems. 
This hybrid modelling approach combines data-driven 
insights from AI with the physical interpretability and 
robustness of physics-based systems, leading to sever-
al key advantages: 

Physics-based models simulate environmental 
behavior (e.g., ocean waves, tides) based on fundamen-
tal laws. AI enhances these simulations by learning 
from historical trends and correcting model biases 
using real-time data. “AI-based models integrated 
with physics-based models improve the reliability 
and accuracy of renewable energy predictions” [56]. 
Physics-based models provide deterministic founda-
tions, while AI offers adaptive capabilities for chang-
ing marine conditions. This synergy reduces false 
predictions and improves operational reliability. AI 
models can use sensor data to adjust control strate-
gies in real time, while physics-based models ensure 
that these adaptations remain physically plausible. 

In situations where high-resolution data is limited, 
physics-based models fill the gap, while AI refines out-
puts using learned patterns and statistical correction 
techniques (e.g., transfer learning). Physics-informed 
AI can quantify prediction confidence using known 
physical constraints enhancing safety and deci-
sion-making, especially in marine environments where 
extreme conditions are common.

The integration of AI with physics-based models 
can be realized through several advanced techniques 
that bridge data-driven intelligence with physical sys-
tem understanding. One such approach is the use of 
Physics-Informed Neural Networks (PINNs), which em-
bed fundamental physical laws—like fluid dynamics or 
thermodynamics—directly into the training of neural 
networks. By doing so, these models ensure that pre-
dictions are not only data-compliant but also physically 
realistic, even in regions where data is sparse. Another 
powerful method is the Hybrid AI-Physics Workflow, 
where AI and physics-based models operate either 
sequentially or in parallel [64,67]. In sequential setups, AI 
can refine or correct the predictions of physics-based 
models, while in parallel (ensemble) configurations; 
both outputs are combined to yield more accurate and 
robust forecasts. A third technique gaining traction 
is the use of Digital Twins—virtual replicas of physi-
cal systems that integrate real-time sensor data with 
simulations. In this setup, physics models simulate the 
system’s fundamental behavior, while AI dynamically 
updates the twin to predict faults, optimize operations, 
and adapt to changing conditions [74]. Together, these 
integration techniques enable more intelligent, respon-
sive, and resilient ocean renewable energy systems. 
These integrations enable ORE systems to be smarter, 
safer, and more adaptive, ultimately improving energy 
capture efficiency and operational robustness in the 
complex marine environment.

9. Challenges and Future Direc-
tions

9.1. Data Availability and Quality

Data availability and quality are fundamental 
challenges in the effective application of AI to ocean 
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Figure 8. AI application in the Energy Systems’ Main Challenges and Their Related Factors [75].

renewable energy (ORE) systems. The performance 
and reliability of AI models depend heavily on access 
to large volumes of high-quality data, which are often 
scarce or inconsistently recorded in marine environ-
ments. Several types of data are particularly crucial: 
meteorological data such as wind speed, solar radia-
tion, and atmospheric pressure help predict surface 
conditions; oceanographic data like wave height, tidal 
current, salinity, and sea surface temperature are es-
sential for modelling ocean energy dynamics; and hind 
cast and forecast data provide historical trends and 
predictive insights necessary for energy scheduling 
and grid integration. In addition, real-time sensor data 
from devices such as wave buoys, underwater tur-
bines, and seabed sensors are used to monitor system 
health and enable adaptive control. Grid-related data, 
including electricity demand, supply patterns, and load 
variability, further support AI-driven optimization 
and forecasting. However, issues such as inconsistent 
sensor calibration, data fragmentation across legacy 

platforms, and the lack of standardized acquisition 
protocols introduce noise and bias, reducing model ac-
curacy. Therefore, data pre-processing, gap filling, and 
integration from diverse sources become critical tasks. 
Addressing these concerns through the development 
of unified data frameworks and real-time acquisition 
systems is essential to improve the accuracy, adaptabil-
ity, and overall success of AI-based ORE applications. 
Figure 8 illustrates a time series prediction framework 
involving data pre-processing, clustering, prediction 
using multiple ML models (e.g., SVR, KNN, RF), and 
evaluation based on metrics like RMSE and R²-score. 
Hyper parameter tuning optimizes model performance 
for accurate renewable energy forecasting [75]. 

Solving these puzzles is important in the max-
imal effective use of AI in renewable energy. Data 
quality and accessibility are major constraints for AI 
utilization in ORE systems. Pre-processing of data is of 
paramount importance to obtain high performance in 
machine learning models [71].

9.2. Computational Resources and Scal-
ability

The computational demands of training and de-

ploying AI models can be substantial, particularly for 

large-scale ocean renewable energy systems. Comput-

ing is required for the manipulation of extensive data-

set and intricate algorithms computerized AI-ORE 

systems. Scalable to deploy AI models across multiple 

ORE systems and locations, the scalability of the AI 

algorithms is important when deploying the solutions 

to different ORE system and geographical locations. 

Computational power and scalability of AI methods 
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are crucial to tackle the complexity and scale of ORE 
systems. The lack of computational resource also 
blocks the application of AI in ORE facilities.

9.3. Ethical and Regulatory Considerations

The ethics and regulation are critical to ensure a 
responsible and sustainable implementation of AI to 
ocean renewable energy systems. Transparent regu-
latory environments will be required to take AI in the 
right direction, ethically and responsibly.

Building trust and acceptance in AI applica-
tions requires a fair, transparent and accountable 
approach. Ethics involve data privacy, algorithmic bias 
and impact on employment. Dealing with these ethical 
and regulatory issues is critical in order to guarantee 
the responsible development of AI in ocean renew-
able energy systems. Bringing various actors, such as 
citizens, policy makers, and experts, into the design 
and governance of AI systems is essential for ensuring 
their deployment in line with the values and goals 
society seeks to promote [26]. Furthermore, standards 
should cover when and how the AI is developed and 
applied, for these are at least as critical to success as 
the methods and data [76]. The new regulations ought to 
cover the data privacy and availability to safeguard the 
data owners as well as the usability of the data [32]. The 
rise of AI and its application in energy may cause some 
challenges for current legal system, thus policy and 
regulation may limit the development of AI industry [5]. 
AI’s rapid growth calls for awareness and adherence to 
ethical principles and legal obligations such as privacy 
of data, transparency, and fairness of the algorithm [77].

Developing appropriate regulatory mechanisms 
would be an initial and fundamental effort to regu-
lating the deployment of AI and ensuring ethical and 
responsible use [78]. Strong regulative standards and 
the fostering of AI literacy and inclusiveness are quite 
necessary [79]. AI systems are required to be under-
standable, and means are to be established to justify 
decisions to stakeholders [80]. That would allow for 
accountability and trust in AI systems to be estab-
lished. Responsible and ethical AI considers creating 
AI systems that are trustworthy and ethical in design 
and process, and in motivation and people involved, 

see, e.g., [81]. To manage the alignment and unintended 
side effects, entities will need to establish governance 
to provide oversight and control, and to intervene in AI 
decision-making in crucial operational situations, to 
keep it aligned with human values and intent [82]. The 
general purpose behind the integration of AI systems 
is to improve learning techniques based on statistics 
to uncover patterns from large data sets and make 
predictions based on the observed patterns, which are 
used in a wide range of applications, with increasing 
pressure to design and govern AI systems to conform 
to ethical values [83]. The AI field and its practitioners 
need to understand some deep shit about ethics in 
this domain. Given this, there is a need to investigate 
and comprehend the ethical and regulatory issues of 
AI that need to be addressed in order to promote re-
sponsibly designed and feasibly implemented AI tech-
nologies [84,85]. Governments world-wide are currently 
considering AI regulation because of public pressure, 
which makes it important to think about what regula-
tion alternatives could be [86].

The EU’s determination vis-à-vis AI liability in 
finance reveals the challenge of regulatory compliance 
and accountability evaluation, as result of the com-
plexity and opaqueness of AI behavior, as well as its 
unpredictability [87]. 

10. Future Trends and Research 
Directions in Artificial Intelligence 
for Ocean Renewable Energy Sys-
tems

Future research directions should focus on de-
veloping more robust and reliable AI models that can 
handle the uncertainties and complexities of ocean 
environments. This involves incorporating advanced 
machine learning techniques, such as deep learning 
and reinforcement learning, to improve the accuracy 
and efficiency of AI-driven ORE systems. Developing 
hybrid AI models that combine physics-based models 
with data-driven approaches can also enhance the per-
formance and reliability of ORE systems. Future trends 
and research directions in AI for ORE systems include 
Explainable AI, Edge AI, AI-driven cybersecurity, and 
digital twins. Research should focus on developing 
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more robust and reliable AI models that can handle the 
uncertainties and complexities of ocean environments 
[88]. Explainable AI is a new field seeking to make AI 
models more open and interpretable. Explainable AI 
could be leveraged to increase the trust and acceptabil-
ity of AI-driven ORE systems by offering to understand 
the decision process of AI models [89]. This would 
require our field to develop AI models that are able 
to communicate the rationale and decision-making of 
their outputs to the operators, to policymakers as well 
as to the public. The adoption of XAI methods could 
enhance the interpretability, reliability, and credibility 
of AI based ORE systems, which contributes to their 
acceptance and sustainability.

Edge AI refers to the practice of implementing 
AI models in edge devices, such as sensors and con-
trollers, making real time data processing and deci-
sion-making possible [90]. The latency, data privacy and 
ORE system robustness could be improved through 
processing data locally by Edge AI. This methodology 
is especially helpful in far-away or off-shore applica-
tions where communication bandwidth is scarce. Edge 
AI could also facilitate more autonomous and smarter 
operation of ORE systems, minimizing the need for 
human interventions. ORE based systems require 
that such cybersecurity measures be AI-driven. This 
entails building AI models that could identify and stop 
a cyberattack and guard against sensitive data and 
infrastructure. As ORE systems become more inter-
connected, security becomes very important. AI-en-
abled cybersecurity would improve the sustainability 
and security of ORE plants, protecting them against 
unexpected threats that could compromise safe and 
reliable operation. Digital twins are virtual represen-
tations of physical assets like wave energy converters 
and tidal turbines. ORE systems may be emulated by 
digital twins, allowing for the optimization of their 
behavior and the prediction of possible failures. Com-
bining AI with digital twins will enable ORE systems of 
the future to be intelligent systems that will learn from 
and adapt to changes in the operating environment to 
optimize performance during real time operations.” 
Digital twins can also make predictive maintenance 
possible, and ORE system downtime can be minimized 

and efficiency optimized.
Finally, AI offers new transformative approaches 

in the field of the OR energy systems, covering optimi-
zation, forecasting and control. The inclusion of AI 
in the development of ORE systems holds the promise 
for them to be markedly more efficient, reliable, and 
sustainable and by extension to facilitate a cleaner and 
more sustainable energy future. As we look forward, 
more emphasis needs to be placed on progressing 
research into areas such as Explainable AI, Edge AI 
and AI-driven cybersecurity and digital twins, to con-
tinue unlocking the potential of AI in ORE systems [91]. 
By navigating through the pitfalls and exploiting the 
opportunities that AI offers, we can lay the path for a 
robust and sustainable ocean powered energy future. 
AI is essential for addressing the intermittency of re-
newable energy sources and energy allocation [2,4]. The 
mutual penetration of AI and ORE provides an attrac-
tive route for the sustainable and secure future energy 
transformation, with intelligent technologies having 
the potential to provide novel responses to upcoming 
energy requirement while mitigating the environmen-
tal footprint [1]. AI in renewable energy integration is 
a critical step towards achieving efficient and greener 
energy systems [1, 3, 5, and 6]. Deeper investigation and ap-
plication of AI-driven methods will no doubt enhance 
the contribution of renewable energy to the global 
energy supply and contribute to the protection of the 
environment.

There is currently a digital revolution taking place 
in the energy industry, and AI is positioned in the fo-
cus [6]. Energy companies are already using AI for bet-
ter supply of energy and minerals, for efficient power 
generation and transmission, and for consumption [5]. 
AI can be solution for the energy industry to improve 
operational performance and efficiency in a competi-
tive market as it is evolving [6]. AI also can greatly pro-
mote the optimization of renewable energy systems 
or equipment in terms of improving their efficiency, 
reliability, and sustainability [1]. The capability of AI to 
model consumer behavior and preferences underpins 
more optimal policy development and stabilizes the 
equilibrium and efficiency of the energy system [5]. The 
application of AI is driving a massive transformation 
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of the energy industry that is making it more efficient, 
clean and robust [26]. This transition should be consid-
ered from a holistic viewpoint, not only focusing on 
the technical aspects but on the social and economic 
aspects influencing the adoption of AI [54]. Such smart 
agents based on Smart Grid technologies and AI algo-
rithms on the Energy related sectors needs to analyses 
the social and economic factors other than the techni-
cal dimension that drives the interest [54].

This synergy between AI and renewable energy 
is certainly encouraging, as AI could help to compen-
sate the inherent variability and unpredictability of 
renewable resources, like sun, wind and ocean energy 
[92]. Generative AI can aid in the design of solar-based 
systems that are more efficient, reliable, and porta-
ble [93]. Through the utilization of AI, we can improve 
the performance of renewable energy systems and 
lower costs, promoting a transition to a clean energy 
future [61]. AI has increasingly been used as a tool in 
the transition to renewable energy and in the better 
management of the grid [94]. AI also has been used to 
optimize the distribution of energies, and balance the 
demand and supply, increase the grid resilience [95]. AI 
algorithms can leverage historical and present con-
sumption with life patterns to forecast and optimize 
the production of renewable energy Ulcickas and Yip 
or analyses past and current data such as the weather, 
the radiance, the wind speed and the production of 
energy [26]. Accordingly, grid operators can take deci-
sions on energy storage, distribution, and balancing 
load to guarantee a stable and reliable power supply 
[6]. AI is necessary for connecting fluctuating renew-
able energy supplies with electricity grids through the 
development of smart grids capable of matching some 
electricity demand to times when the sun shines and 
the wind blows [96].

AI has become a disruptive approach for promot-
ing sustainability in multiple domains as well [97]. AI 
has significantly helped in meeting the sustainable de-
velopment objectives, particularly in the critical issue 
of the renewables integration issue [98]. AI improves 
the implementation of resource utilization efficiency, 
emission reduction, and energy management [99]. AI 
will improve energy efficiency, will be able to allocate 

resources better and foster environmentally friendly 
decision making. Artificial intelligence supports circu-
larity by improving resource usage and minimizing 
waste, as well as by creating new, sustainable products 
and services. New electro catalyst materials to enable 
efficient and scalable storage and use of renewable en-
ergy are being searched using AI [100]. AI can facilitate 
smarter and more efficient [42], and more sustainable 
operations across industries, which may lead into a 
more environmentally friendly and resilient future.

AI in smart energy systems is changing the way 
we manage, transmit, and consume energy. AI im-
proves the stability and efficiency of the grid by means 
of real-time prediction, demand response and the 
incorporation of distributed generations [4]. AI is also 
integrated into smart energy system to analyzing 
large amount of data and making smarter decisions 
at the right time in this sector [101]. In [102], authors dis-
cussed that AI enhances building performance and 
sustainability goals in smart buildings. AI methods 
can rapidly process data to adjust to changing ener-
gy requirements, predict maintenance, and improve 
grid stability [33]. AI is also applied to enhance the 
reliability of the power grid through predicting and 
preventing the equipment failure [33]. AI is reshaping 
the energy world, driving toward a more sustainable, 
efficient safer energy future. Critically, AI would also 
enable the requirements for cheap, clean (low CO2) 
and secure energy by the accurate interpretation of 
information from the outside world used to fulfil tasks 
again through flexible adaptation [6]. Hybrid nan fluids 
show improved thermal properties for enhanced heat 
transfer, while AI models like LSTM-AE and RBM op-
timize energy use in buildings and agriculture [103–105]. 
Deep learning aids in rock damage detection, and mi-
cro-channel heat sink efficiency is improved through 
geometric optimization [106–109]. Trapezoidal ducts 
equipped with delta wing vortex generators show im-
proved flow and heat transfer performance, offering 
passive enhancement techniques for industrial systems 
[110,111]. Failure and finite element analysis of paddle 
mixer shafts aid in identifying design improvements, 
while PCM-based cooling enhances mobile device 
thermal regulation; additionally, reviews on perforated 
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twisted tapes and AI-driven mining practices highlight 
advancements in heat transfer and environmental sus-
tainability [112–116].

In the field of ocean renewable energy systems, 

AI provides a range of applications in optimization, 
forecasting, and control, and contributes to improving 
performance, in terms of energy production (cost) and 
economics (Table 5).

Table 5. Challenges and Future Directions in AI Applications for Ocean Renewable Energy Systems.

Challenge/Direction Description AI Role Impact
Data Availability and Quali-

ty
Quality data is required 

for training AI models in ORE 
systems; availability issues 
impact model performance.

AI models depend on clean, 
comprehensive, and prepro-

cessed datasets.

Accurate predictions and 
system control depend on 

high-quality data input.

Computational Resources 
and Scalability

AI deployment in ORE 
systems needs high computa-
tional power; scalability is a 

concern for global use.

AI algorithms must handle 
large datasets and complex 

computations efficiently.

Limits real-time AI appli-
cation across multiple ORE 
systems without adequate 

resources.
Ethical and Regulatory Con-

siderations
Fair and transparent AI ap-

plications require ethical and 
legal compliance, including 
privacy and accountability.

Involves governance, data 
transparency, and inclusive 

design.

Builds trust and ensures safe 
and responsible AI integration 

in ORE systems.

Future Trends: Explainable 
AI (XAI)

Focuses on making AI deci-
sion-making transparent and 

interpretable to users.

Increases trust by explain-
ing model behavior to stake-

holders.

Boosts acceptability and 
clarity of AI-driven decisions in 

ORE.
Future Trends: Edge AI Executes AI on edge devices 

(sensors/controllers) for re-
al-time ORE data processing.

Enables fast and localized 
AI operations even in remote 

marine environments.

Improves latency, privacy, 
and autonomy of offshore ener-

gy systems.
Future Trends: AI-based 

Cybersecurity
AI guards against cyber 

threats targeting intercon-
nected ORE infrastructures.

Monitors anomalies, de-
tects breaches, and ensures 

secure operation.

Protects sensitive energy 
systems from malicious attacks.

Future Trends: Digital 
Twins

Virtual models replicate 
physical ORE assets for moni-

toring and optimization.

Combines AI with real-time 
simulation for predictive 

maintenance and performance 
tuning.

Minimizes downtime and 
enhances operational efficiency.

11. Conclusions
The AI ocean impact revolution Artificial Intelli-

gence is disrupting ocean renewables to become more 
efficient for optimizing systems, predict reliability, 
adapt control? As the precision of AI models increases, 
and access to marine data becomes widespread, the 
cross-fertilization of these two domains becomes es-
sential to scale ocean energy technologies and achieve 
international sustainability targets. “Artificial intelli-
gence is one of the most transformative technologies of 
our time and it has the power to significantly reshape 
the energy industry. AI is aiding a cleaner energy trans-
formation by optimizing energy systems and creating 
better agriculture practices. As a leading technology 
of the 4 Industrial Revolution, AI brings intelligence 

for the energy sector in design, operation and mainte-
nance of energy systems. AI is also crucial for efficient 
power distribution, balancing loads and supply, and 
hardening the power grid. AI is even being deployed 
to address climate changes. AI provides more with 
less and promotes sustainability in the energy indus-
try. More research and resources should be devoted 
to AI-centered tools to help justly realize the potential 
of ocean renewables for a clean and secure energy 
future. AI drives predictive maintenance, smart grids, 
and efficient power consumption. AI has been used 
with bioenergy systems over the last decades to tackle 
issues. AI has the potential to produce data that is dif-
ficult to measure directly, enhance existing models on 
the biomass conversion and end- uses of biofuels, and 
tackle the limitations of conventional computational 
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methods on bioenergy supply chain design and optimi-
zation. This leads to a higher 12 efficiency and lower 
fuel consumption respecting a save of energy and a 
reduction of greenhouse gases. The development of AI 
technologies and the proliferation of big data open up 
wider possibilities for innovations in ocean renewable 
energy system design. Statistical and biologically mo-
tivated AI models have also been utilized in other work 
to address shared and future RENEW research goals. 
Solar PV power systems operational data acquisition 
accelerate the progress of AI for system learning ap-
plication in design, control, and maintenance in order 
to enhance efficiency and shorten response duration. 
In the last decades, AI has been used in bioenergy 
systems to deal with problems. AI can improve power 
generation by increasingly accurate prediction, de-
mand response and control.
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