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ABSTRACT
In this research, we examine how the Al Hoceima Marine Protected Area (MPA), located in the southwest

Mediterranean Sea, can be effectively monitored using the SeaExplorer glider—an advanced autonomous under‑
water vehicle (AUV) designed for long‑duration oceanographic missions. The study focuses on the glider’s ability
to simultaneously observe a variety of environmental parameters, including temperature, conductivity, oxygen, and
chlorophyll, during its deployment across multiple transects. The primary objective of the mission is to improve
understanding of the vertical thermal structure and seasonal dynamics of the water column in this ecologically
signiϐicant region. To achieve this, we apply Gaussian Process (GP) regression techniques to the glider‑derived
temperature data. This statistical method enables the smoothing and interpolation of irregularly spaced in situ
measurements, thereby improving the visibility and interpretation of stratiϐication patterns throughout the wa‑
ter column. Although the glider followed a predetermined course, the data‑driven analysis suggests that adaptive
sampling strategies—such as adjustments based on real‑time outliers—could be valuable in future missions. Our
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results, which show distinct thermal layering and seasonal variability, are crucial for informing ecosystem func‑
tion assessments and climate resilience planning. This study also discusses how integrating machine learning into
glider‑based monitoring could enhance MPA observation systems and promote adaptive, evidence‑based manage‑
ment.
Keywords: Marine Protected Area; SeaExplorer Glider; Gaussian Processes; Remote Sensing

1. Introduction
Marine protected areas, or MPAs for short, are rec‑

ognized as vital tools for the conservation of marine
biodiversity. especially in light of the increasing pres‑
sures from climate change and anthropogenic activi‑
ties [1]. The MPA of Al Hoceima, located in the waters
of the Mediterranean Sea, is crucial for the protection
of marine species and habitats; however, its resilience
to environmental changes is jeopardized [2]. Factors in‑
duced by climate change, including elevated sea temper‑
atures, ocean acidiϐication, and heightened microplastic
pollution, are disrupting the fragile equilibrium of these
ecosystems. Therefore, ongoing environmentalmonitor‑
ing of MPAs is essential to evaluate the effects of these
threats, assess ecosystem health, and inform effective
management strategies [3].

Autonomous underwater vehicles (AUVs), speciϐi‑
cally gliders, are increasingly recognized for their abil‑
ity to perform integrated and dynamic environmental
monitoring, collecting high‑resolution data across spa‑
tial and temporal scales [4]. The SeaExplorer glider
is a buoyancy‑driven autonomous underwater vehicle
(AUV), commonly categorized under AUVs due to its au‑
tonomous mission capabilities, albeit without real‑ time
navigation. Our work presents the results of Alseamar
AUV deployment in the Al Hoceima MPA to monitor es‑
sential environmental parameters, including tempera‑
ture, conductivity, oxygen, chlorophyll, andmicroplastic,
and discusses the role of such technology in assessing
the resilience of MPAs to climate change [5].

Integrated environmental monitoring systems uti‑
lizing autonomous underwater vehicles (AUVs) signiϐi‑
cantly enhance the understanding of marine ecosystems
by providing high‑resolution, real‑time data on various
ecological parameters [6]. These systems provide a com‑
prehensive way to assess marine biodiversity, environ‑

mental conditions, and the impacts of human activity,
leading to more effective management strategies. By
integrating advanced sensors and data analytics, these
AUVs offer unparalleled insights into underwater ecosys‑
tems, allowing researchers tomonitor changes over time
and respond swiftly to emerging threats. This is es‑
pecially important for tackling challenges like climate
change, pollution, and habitat destruction. Ultimately,
these technologies play a key role in conserving ma‑
rine resources and encouraging sustainable practices in
oceanmanagement. As these instruments advance, they
possess the capacity to revolutionize marine study and
conservation, offering innovative solutions to reduce hu‑
man impact on vulnerable ocean ecosystems [7].

1.1. Enhanced Data Collection

High‑Resolution Monitoring: AUVs can collect data
on physical, biogeochemical, and biological parameters
simultaneously, offering a detailed view of ecosystemdy‑
namics [8]. This comprehensive data collection enables
scientists to identify trends and correlations that were
previously difϐicult to discern, thereby enhancing our un‑
derstanding of the complex interactions within marine
environments [9].

Prolonged Monitoring: Sustained observation over
extended durations facilitates the detection of trends
and alterations in marine populations and ecosystems,
essential for comprehending climate effects [10].

1.2. Cost‑Effectiveness and Efϐiciency

Decreased Operational Expenses: AUVs are typi‑
cally more economical than conventional vessel‑based
approaches, facilitating wider geographic reach and in‑
creased frequency of data acquisition [11].

Automation and Velocity: Automated data process‑
ing protocols augment the rapidity of data analysis, facil‑
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itating prompt reactions to ecological alterations.

2. State‑of‑the‑Art
The application of autonomous platforms for mon‑

itoring the marine environment has made great strides
in recent years. Among these, underwater gliders like
the SeaExplorer have proven to be valuable instruments
for gathering detailed oceanographic information over
extended periods of time and across different geographi‑
cal regions. Gliders offer amore efϐicient and economical
alternative to ship‑based surveys for monitoring phys‑
ical, chemical, and biological data both on‑site and at
depth [12, 13].

Gliders have been shown in multiple studies to be
effective at identifying salinity fronts, thermoclines, and
upwelling occurrences, all of which are important for
elucidating ecosystem structure and guiding conserva‑
tion efforts [14, 15]. Data on circulation patterns, climatic
trends, and ecological responses have been greatly en‑
hanced by glider missions in the Mediterranean Sea,
which have aided basin‑wide initiatives such as the
MOOSE network and the ODYSSEA project [16, 17].

At the same time, data science methods are being
usedmore andmore tomakebig oceanographic datasets
easier to understand. For instance, a non‑parametric
and highly adaptable method for producing smooth pro‑
ϐiles with quantiϐiable uncertainty from sparse in‑situ
observations is Gaussian Process (GP) regression. In
oceanography, GP applications have demonstrated po‑
tential for re‑creating dissolved oxygen, salinity, and
temperature proϐiles in situations with high dynamic
variability [18, 19].

Although there has been some progress, there has
been adearth of research that speciϐically includes glider
data and Gaussian Process (GP) modeling into MPA con‑
texts, particularly in the southern Mediterranean. Logis‑
tics for glider deployment and interpolation algorithm
improvement have received the bulk of the prior liter‑
ature [12–20], instead of investigating how ecological in‑
terpretation and in situ data collection work together.
Given the constraints of current hardware and commu‑
nication, adaptive sampling—in which the glider’s mis‑
sion path or sampling frequency dynamically responds

to environmental signals—remains mainly hypotheti‑
cal [13–21].

In order to ϐill this knowledge gap, this work used
GP‑based modeling to examine thermal stratiϐication in
the Al Hoceima MPA using a SeaExplorer glider that was
outϐitted with multi‑ parameter sensors. Although adap‑
tive sampling was not used in real time, the analytical
beneϐits that such approaches potentially provide were
simulated in the mission design and post‑processing.
Therefore, decision‑makers involved in climate‑resilient
MPAmanagement canbeneϐit from thiswork’s improved
methodological understanding and its practical recom‑
mendations.

3. Materials and Methods

3.1. Study Area

Situated on the Mediterranean coast of Morocco,
the Al Hoceima Marine Protected Area (MPA) encom‑
passes a region of the Alboran Sea renowned for its
unique ecological and oceanographic characteristics
(Figure 1). Critical to the preservation of marine biodi‑
versity are the several marine ecosystems that the MPA
safeguards. These include pelagic zones, seagrass mead‑
ows, and rocky reefs [2–12].

Figure 1. Trajectory Map of the SeaExplorer Glider During
the First Mission in the Alboran Sea and near the Marine Pro‑
tected Area of Al Hoceima (November–December), Generated
by QGIS.

Additionally, worldwide studies have shown that
MPAs are important in lessening the effects of climate
change, which is why we chose the Al Hoceima MPA. De‑
velopment along the shore, ϐishing, and other possible
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pollution sources all pose threats to the ecosystem in
this area; therefore, constant monitoring and assess‑
ment are essential [2–20].

3.2. Autonomous Underwater Vehicle
(AUV) Deployment

The ALSEAMAR SeaExplorer glider was deployed
in theAlHoceimaMPA for a three‑monthperiod as a part
of the ODYSSEA project [2, 13–20], covering two distinct pe‑
riods: November to December and February to March
of the following year. The SeaExplorer glider, built and
sold in France by ALSEAMAR, went through 873 cycles
every 682.67 kilometers, sampling at a rate of 4 sec‑
onds, from the surface to about 500meters depth on the
ϐirst trip. Equipped with sensors to evaluate various en‑
vironmental conditions, the glider was programmed to
navigate selected transects and collect data at multiple
depths [14–18].

As previously mentioned in the Introduction, the
SeaExplorer glider satisϐies the functional requirements
of an AUV because of its sensor‑guided data collection
capabilities and autonomous mission planning, even
though it uses buoyancy‑driven propulsion instead of ac‑
tive thrusters.

ALSEAMAR utilizes proprietary adaptive sampling
methodologies for its SeaExplorer glider, enabling real‑
time modiϐications of the glider’s trajectory in response
to environmental conditions [15]. These techniques en‑
hance data collection by concentrating on regions of sig‑
niϐicant variability, hence enhancing the data’s quality.
Still, speciϐics of how ALSEAMAR’s exclusive procedures
are put into action are unclear.

undisclosed to the public. This research proposes
Gaussian Processes (GPs) as a viable correction method
for adaptive sampling, offering a probabilistic frame‑
work for decision‑making and data assimilation that
may improve the efϐiciency and accuracy of data collec‑
tion [16].

3.3. Data‑Driven Sampling with AUV

The AUV can overcome the drawbacks of conven‑
tional survey methods by being able to use the data it

collects (hence the name ”data‑driven”) to adjust its ob‑
jective. The capacity to conduct more sophisticated sur‑
veys, shortenmission duration, and decrease the volume
of redundant data collected incentivizes the adoption of
more advanced control strategies.

Enabling the AUV to employ obtained data—thus
the term ”data‑driven”—and adjust its mission accord‑
ingly allows it to address the constraints of tradi‑
tional survey approaches, with various methodologies
explored across ϐields such as robotics, statistics, geol‑
ogy, and atmospheric science, all aimed at enhancing
information acquisition. Furthermore, in conjunction
with Gaussian processes (GPs) [17], other methods such
as Kalman ϐiltering [18], Markov decision processes [19],
and reinforcement learning have been used for adaptive
sampling and decision‑making in similar contexts [20]. A
Gaussian process is a collection of random variables, any
ϐinite number of which have (consistent) joint Gaussian
distributions. Kalman ϐiltering plays a pivotal role in en‑
hancing the performance of robotics and autonomous
systems through effective state estimation and sensor
fusion. Its applications span various domains, includ‑
ing mobile robot localization, simultaneous localization
and mapping (SLAM), and underwater vehicle control.
These methods provide different frameworks for data
assimilation and mission planning, depending on the
speciϐic requirements of the study [21]. While the cur‑
rent deployment did not employ real‑time adaptive sam‑
pling, the glider collected high‑resolution environmen‑
tal data along predeϐined transects [12–21]. Gaussian Pro‑
cess modeling was then applied post‑mission to assess
spatial patterns and thermal variability, allowing for
retrospective optimization of sampling coverage. This
contributes to a data‑ driven environmental monitoring
framework, supporting future implementation of adap‑
tive control and decision‑making in similar MPAs.

The SeaExplorer glider employs adaptive sampling
techniques that enhance data assimilation and decision‑
making in oceanographic research. By integrating real‑
time data with operational forecasts, the glider can op‑
timize its sampling paths, leading to improved environ‑
mental monitoring and predictive capabilities (Figure
2) [22].
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Figure2. EnhancingData CollectionwithAdaptative Sampling
the World Model Incorporated by the Glider Acted as a Knowl‑
edge Base, Containing All Relevant Environmental Informa‑
tion, Including Initial States, Model Descriptions, and Mission‑
Speciϐic Expertise.

This knowledge base supported functions such as
path planning, collision avoidance, and cooperative plan‑
ning.

The process commenced using a predetermined
data collection strategy based on a predictive model. Al‑
though initiating without a predetermined plan is feasi‑
ble, supplying an initial array of waypoints assists in di‑
recting the AUV during the initial stages of the mission.
As the glider collected data, it continuously updated its
understanding of the environment using adaptive sam‑
pling techniques. This allowed for effective reconcilia‑
tion of newly collected data with prior information, en‑
suring that the AUV could adapt its strategy for informa‑
tion recovery in real time [23].

Data assimilation was performed in parallel with
data collection, using statistical update procedures
based onBayesian approaches [24]. This iterative process
ensured that the AUV remained responsive to changes in
environmental conditions, optimizing its sampling strat‑
egy to enhance the relevance and accuracy of the col‑
lected data [25].

3.4. Data‑Driven Sampling Using GPs

Before presenting the example, we need to delin‑
eate the foundational theory regarding GPs and spa‑
tial interpolation via Kriging [24–26]. Gaussian processes
(GPs) are used in Python to model data‑driven sampling
and make predictions about unobserved data points by
ϐitting a probabilistic model based on observed data.
Python libraries like Scikit‑Learn provide tools for im‑
plementing GPs through the GaussianProcessRegressor
class, allowing users to perform regression tasks with
an underlying kernel to specify how points in the input
space relate to one another [27].

This approach facilitates the identiϐication of intri‑
cate patterns in environmental data, providing both an
average prediction and a quantiϐication of uncertainty
via conϐidence intervals. Kriging, a method associated
with Gaussian Processes, is frequently employed for spa‑
tial interpolation, especially in the context of geospatial
data [26].

3.5. Gaussian Processes and Interpolating
with Kriging in Oceanography

Gaussian processes are an essential device in sta‑
tistical modeling, widely applicable and frequently em‑
ployed to represent natural events, for the ranges of nu‑
merous natural occurrences remain no less than roughly
typical scattered [28]. Collaboration using GPs offers con‑
ceptual clarity, as a ϐinite portion of GP‑ generated mate‑
rial within a speciϐic ϐield adheres to a multidimensional
Gaussian pattern. As a result, it is easy to carry over the
concepts of a Gaussian process into a multivariate Gaus‑
sian distribution. Multivariate GPs extend the concept of
GPs to vector‑valued functions, where each output can
be correlated with others, necessitating a multivariate
Gaussian distribution [29].

A Gaussian Process is a speciϐic category of ran‑
domly generated process or random function, where the
examined set of unknown functions contains speciϐic
metrics of ”uniformity” derived from the deϐined correla‑
tion between the function’s values. Gaussian Processes
are consequently intricately associated with the exami‑
nation of covariance functions, commonly referred to as
functions of the kernel [27–30]. A kernel function tool used
in computer science to increase the capacity for separat‑
ing patterns in the attribute space.

One prevalent problem in environments with lim‑
ited sampling is estimating values at unobserved loca‑
tions to achieve the comprehensive perspective required
for planning. Kriging is an interpolation technique fre‑
quently utilized in a spatial perspective [28], originating
from geostatistics and named in recognition of Danie
G. Krige, who initially utilized it for estimating gold re‑
serves [31]. Kriging, in conjunction with simple least‑
squares methods, offers the optimal continuous unbi‑
ased estimation for quantities at unobserved sites [31].

Estimating the functional worth at a precise place
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using a weighted median of the surrounding values, the
interpolated values are derived from predictions pro‑
vided by the combination of covariance processes [32, 33].
The most effective prediction at an unknown point is a
linear sum of the values that were observed, using vary‑
ing degrees of trust assigned to every adjacent location
within the regression model [34, 35].

Using the Gaussian Process model ϐirst, a speciϐic
covariance value is deϐined by a predetermined set of
hyperparameters, articulating a notion regarding the co‑
variance of functional values and connecting locations in
the GP and drawing out their spatial relationships. That
is not all; a positive deϐinite covariance function is re‑
quired. Following this, a sequence of observations is
carried out, denoted as value of location pairs, which
might generate new data at any point inside a certain
typical distribution (GP) by integrating into the previous
GP prior to generating an updated GP posterior. Diverse
kriging approaches exist, dependent on the stationary
properties that determine the comparison ability andbe‑
havior (a covariance characterization) associated with
the random ϐield. The notion of isotropy is important
to recognize in this context. Isotropy as described in de‑
tail below, must be satisϐied for the random ϐield to be
stationary or weakly stationary. A covariance function
which is isotropic, is invariant to translations in the in‑
put space; only being a function of ||s – s’||, where s – s’
is a distance metric.

Multiple dimensions of uncertainty regarding the
latent process are created by the sea’s spatio‑ tempo‑
ral dynamics. Choosing a GP description is a calcu‑

lated move; in a spatial setting, you can use the vari‑
ogram to assess spatial dependency. Due to the inabil‑
ity to directly integrate time‑varying uncertainty with a
Gaussian Process without compromising its fundamen‑
tal properties, it is necessary to assume stationarity
or weak stationarity over a ϐinite horizon, implement‑
ing corrective measures to assess the time‑varying pat‑
terns [36].

3.6. GPs calculation

A Gaussian process is entirely deϐined by its stan‑
dard deviation equationm(s) associatedwith the covari‑
ance value [37]:

k(s, s’ ) ≡ conv (f( s), f(s’  )) (1)

at location s= (east, north) that constitutes a modiϐica‑
tion of the Gaussian pattern deϐined by the variance vec‑
tor μ and amatrix of covariance Σ. In accordancewith the
nomenclature provided by [38], equation f that follows a
Gaussian Process could possibly be represented as:

f = GP (m, k) (2)

When you have decided on f as your explanatory
function, the following step is to use training data,
namely a numericalmodel, to beginmodeling aGaussian
Process, Figure 3 illustrates the computed surface tem‑
perature in the coastal area. Equation m(s) is derived
through several linear analyses of regression applied to
the temperature dataset presented inFigure3, resulting
in the following outcome:

β − vector  (coefficients)   = [0.01085714]  intercept = 11.95238095238095 (3)

Figure 3. Temperature Pattern in a Glider Cycle During Descent: Observed Data and GP Smoothing. (A) The Observed Tem‑
perature Pattern During the Glider’s Descent Cycle. (B) The Gaussian Process (GP) Smoothing Applied to the Observed Data,
Highlighting the Prediction and the 95% Conϐidence Interval.
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The intercept represents the expected value of the
temperature when the depth is 0. In this case, the pre‑
dicted temperature at a depth of 0 is approximately
11.95°C.

Examine the process deϐined in equation (1) then:

m (s) =  βintercept = 0.0109e+ 11.9524 (4)

k (s,  s’) = σ2 exp (–γ||s–s’ | |) (5)

where s is the location tuple s= (east north), β is the re‑
gressed mean vector, σ and γ are covariance design pa‑
rameters. and ||s–s’|| may be recognized as a Euclidean
distance between point s and s ’ [37].

A variogram analysis is performed to obtain the
precise correlation range. A variogram is a graphical
representation that elucidates the relationship between
spatial distance among points and the variance of those
points, typically demonstrating that variance increases
with distance unless a threshold is achieved. Beyond
this point, the variables cease to exhibit a correlation ac‑
cording to their numerical values; hence, the variability
might hardly increase. The outer layer temperature indi‑
cates an associateddistance of approximately 7 kmgiven
this speciϐic temperature simulation.

3.7. Updating theGeneral Practitionerwith
Observations

To enhance the interpretability of environmental

data collected by the SeaExplorer glider, Gaussian Pro‑
cess (GP) regressionwas applied to estimate continuous
temperature ϐields across depth and time. This prob‑
abilistic approach allows the integration of sensor ob‑
servations with prior distributions to infer smoothed
environmental patterns while quantifying uncertainty.

Let f be the temperature measurements collected
at known positions s, and f∗ the predicted values at new
positions s∗. Assuming a prior joint Gaussian distribu‑
tion:[

f

f∗

]
∼ N

( [
µ

µ∗

]
,

[
Σ Σ∗

ΣT
∗∗ Σ∗∗

] )
(6)

Let si  (for i=1,…,n) denote the observed locations,
and let sk∗(for k=1,…,p) represent the unobserved or pre‑
diction locations. Themean function evaluated at the ob‑
served locations is denoted by μ=m(si) and similarly, the
mean at the unobserved locations is given by μ∗=m (sk∗).

The covariance matrix of the observed data points
is denoted by Γ = Cov (f( s), f(s )), while Γ∗ =

Cov (f( s∗), f(s ))  represents the cross‑covariance be‑
tween theobserved andunobservedpoints. Thenumber
of observations is n, and the number of prediction points
is p [38].

The posterior distribution of the function values
at the unobserved locations f*, conditioned on the ob‑
served data f, follows a multivariate normal distribution.

f ∗ If ∼ N (µ ∗+ΣΣ− 1(f − µ), Σ ∗ ∗ − ΣΣ− 1Σ∗) (7)

where Γ ∗ ∗ = Cov (f( s∗), f(s ∗ ))  is the covariance
among unobserved locations. This formulation provides
a linear combination model for predicting values at new
locations based on the observed data.

A radial basis function (RBF) kernel was chosen for
the GP model’s Python implementation using the scikit‑
learn package because of its ability to represent smooth
spatial ϐluctuations in ocean temperature. Pandas and
NumPy were used to clean and organize the glider’s raw
data, which was exported as CSV, before modeling. Us‑
ing metadata such as timestamps and position coordi‑
nates, ϐiltering and interpolation were used to control

noise, missing values, and outliers.
Sharp gradients andnoise abnormalities, which are

frequently caused by vertical navigation shifts and tran‑
sient ambient turbulence, were seen in the raw proϐiles’
initial display. By creating a continuous temperature
ϐield and improving the transparency of thermal strati‑
ϐication, the GP smoothing resolved these variations.

Using a combination of estimated dive trajectories
based on mission waypoints and depth sensors and sur‑
facing GPS ϐixes, the glider’s position was tracked. The
GP framework’s use of 4D coordinates (latitude, longi‑
tude, depth, and time) to associate temperature values
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was based on this spatial data.
The resulting posterior temperature ϐield, as illus‑

trated in Figure 2, records the horizontal advancement
of thermal gradients throughout the mission cycle as
well as their vertical structure. This method provides in‑
sights into the physical processes in theMPAby allowing
for the retrospective adaptive study of signiϐicant envi‑
ronmental patterns.

4. Visualization of Results

The results of the Gaussian Process smoothing
were then visualized using Matplotlib. (Matplotlib was
used extensively for creating clear visualizations of the
temperature proϐiles. The library’s ϐlexibility allowed
us to produce both raw and smoothed visual repre‑
sentations of the data. which facilitated comparisons
and highlighted the effects of Gaussian Process smooth‑
ing.) The visualization involved generating two main
types of graphs: the raw temperature proϐile (before GP
smoothing) and the smoothed temperature proϐile (af‑
ter GP smoothing). The raw proϐile graph illustrated
the initial state of the data with visible noise and gaps,
while the smoothed proϐile presented a cleaner, more
interpretable temperature distribution across time and
depth. The application of Gaussian Processes helped
highlight key features, such as the thermocline, by reduc‑
ing noise and creating a clear gradient from warm sur‑
face waters to cooler deep waters.

Provide a concise and precise description of the ex‑
perimental results, their interpretation, and the experi‑
mental conclusions that can be drawn.

The application of Gaussian Processes in this con‑
text signiϐicantly improved the quality of the temper‑
ature proϐile data, facilitating the identiϐication of es‑
sential oceanographic features, such as thermal strati‑
ϐication, and elucidating their effects on the ecosystem
within theMPA. The smootheddata revealed insights not
readily apparent in the raw dataset, enhancing compre‑
hension of thewater column’s physical structure and aid‑
ing subsequent analyses concerning ecological and con‑
servation results.

Among all the parameters collected by the glider,
such as chlorophyll concentration, microplastics, oxygen,

and conductivity, temperature was chosen as a key focus
for this analysis. Temperature is a fundamental physical
property that directly inϐluences a wide range of marine
processes, including density‑ driven circulation, stratiϐi‑
cation, and the distribution of nutrients. Additionally, it
is an important factor in deciding whether or not mar‑
itime ecosystems are biologically productive andwhether
or not certain marine species have suitable habitats. Un‑
derstanding temperature variations and thermal gradi‑
ents helps in identifying phenomena like thermoclines,
which are essential for understanding nutrient mixing
and primary productivity. Unlike chlorophyll, which is a
proxy for biological productivity, or microplastic concen‑
trations that indicate pollution levels, temperature pro‑
vides a baseline physical context for interpreting other
parameters. Moreover, temperature proϐiles are gener‑
ally more stable and have a clear seasonal signal, mak‑
ing them ideal for illustrating the application of advanced
smoothing techniques like Gaussian Processes.

This entire workϐlow—from data collection by the
glider, CSV transformation, data cleaning and analysis
in Python, and the application of Gaussian Processes
for interpolation—demonstrates the value of combining
autonomous technology and advanced statistical tech‑
niques to improve marine environmental monitoring
and decision‑making.

Figure 4 presents the temperature proϐile in a 2D
format. Figure 4(A) and (B) represent the temperature
before applying Gaussian Processes, while Figure 4(C)
shows the smoothed temperature proϐile after applying
Gaussian Processes. In Figure 4(A) and (B), the data
points are irregular, and there is visible noise and gaps
throughout the depth and time dimensions. The lack of
continuity in temperature values highlights issues such
as data sparsity and sensor noise, which could hinder
further ecological interpretation.

Conversely, Figure 4(C) exhibits a more sophisti‑
cated temperature distribution. The utilization of Gaus‑
sian Processes mitigates sudden ϐluctuations, bridging
the gaps and facilitating a seamless depiction of temper‑
ature variations across time and depth. Thermoclines
are typically observed in graphs that depict only temper‑
ature and depth variations, as shown in Figure 3. How‑
ever, in this case, where time variation is also included,
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the thermocline is represented by speciϐic points. Fig‑
ure 4(C)’s temperature proϐile distinctly illustrates the
stratiϐication within the water column, although it does
not explicitly highlight the abrupt temperature changes
with depth that deϐine thermoclines. This enhanced vi‑
sualization, which incorporates time as a variable, is cru‑
cial for comprehending thermal dynamics and their tem‑
poral impacts on marine ecosystems. The temperature
proϐile illustrated in the graph is based on a data‑driven

methodology utilizing Gaussian Processes (GPs) to ex‑
amine temperature variations at different depths over
severalweeks. Over the course of a day, this graph shows
the temperature changes from the surface all the way
down to 140 meters. The utilization of Gaussian Pro‑
cesses in this analysis enhances the interpretation of
collected data by smoothing temperature proϐiles and
providing reliable estimates, even when direct measure‑
ments are limited or unavailable.

Figure4. ThreeDistinctWater ColumnTemperatureProϐilesDisplayed as a Functionof Time. TheseProϐilesRepresentDifferent
Stages of Temperature Data Processing, Speciϐically Before and After the Application of Gaussian Processes (GPs). (A) Raw or
Initial Temperature Data, (B) Partially Processed Temperature Data, (C) Gaussian Process Smoothed Data.

Figure 5 provides insights into the temperature
proϐiles from an alternative perspective. Figure 5(A)
displays a dispersed, sparse dataset prior to Gaussian
Process smoothing, with each data point indicating the
temperature gradient at various depths and times. This
graph illustrates the irregularity and scarcity of the
raw data, complicating the identiϐication of coherent
patterns in the thermal structure of the water column.
Figure 5(B) illustrates the scatter plot subsequent to

preliminary processing but prior to complete Gaussian
smoothing. It demonstrates a partial enhancement in
which certain patterns aremore discernible, yet the data
remains deϐicient in complete coherence. The 3D scat‑
ter plots visually illustrate the chaotic characteristics of
the raw dataset. Figure 5(C), conversely, illustrates the
smoothed data subsequent to the application of Gaus‑
sian Processes in a surface plot conϐiguration. The re‑
ϐined surface offers enhanced comprehension of temper‑
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ature gradients and transitions across time and depth,
highlighting essential oceanographic characteristics like
thermoclines. The surface plot enables a clearer obser‑

vation of the periodic variations and overall thermal dis‑
tribution within the MPA, which were obscured in the
dispersed data.

Figure 5. 3D Scatter and Surface Temperature Proϐiles of the Water Column Plotted Over Time and Space.(A) Raw or Initial
Temperature Data, (B) Partially Processed Temperature Data, (C) Gaussian Process Smoothed Data.

The present paper employs both 2D and 3D rep‑
resentations of temperature for distinct analytical ob‑
jectives. The 2D proϐiles facilitate the examination of
speciϐic temperature ϐluctuations over time and depth,
thereby simplifying the identiϐication of trends and strat‑
iϐications. The 3D scatter and surface plots offer a more
thorough spatial representation of the data, facilitating
enhanced visualization of intricate relationships among
variables.

We employedGaussian Processes on these datasets
to address the difϐiculties presented by noisy and in‑
complete data. The smoothed representations provide
profound insights into the thermal structure of the Al
Hoceima MPA, illustrating the impact of temperature
variations on marine conditions. This method under‑
scores the signiϐicance of Gaussian Processes in improv‑

ing oceanographic data quality, facilitatingmore depend‑
able interpretation, and guiding decision‑making for
conservation initiatives in marine protected areas.

The application of Gaussian Processes in this con‑
text signiϐicantly improved the quality of the tempera‑
ture proϐile data, facilitating the identiϐication of critical
oceanographic features [9], such as thermal stratiϐication,
and elucidating their effects on the ecosystemwithin the
MPA. The smoothed data revealed insights that were not
readily apparent in the raw dataset, enhancing compre‑
hension of thewater column’s physical structure and aid‑
ing subsequent analyses concerning ecological and con‑
servation results [7].

The results obtained through the application of
Gaussian Processes offer several valuable insights into
the thermal dynamics of the Al Hoceima MPA. First, the
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identiϐication of thermoclines provides critical informa‑
tion on the layering of the water column, which directly
impacts nutrient availability and the distribution of ma‑
rine life. By clearly deϐining these thermal boundaries,
we can better understand the potential habitats of differ‑
ent species, especially those that prefer speciϐic temper‑
ature ranges [39].

Moreover, the enhanced visualization after Gaus‑
sian smoothing provides a clearer picture of the tempo‑
ral variability in temperature, which is essential for un‑
derstanding seasonal changes and their ecological im‑
plications [28]. The capacity to forecast temperature at
unmeasured depths and times enables researchers and
policymakers to attain a more thorough comprehension
of the MPA, even in regions where direct measurements
were impractical. This enhanced coverage can substan‑
tially improve decision‑making regarding marine con‑
servation and resource management [2].

The insights derived from Gaussian Process
smoothing can be pivotal in climate change research.

Comprehending temperature ϐluctuations in the
MPA enables the monitoring and forecasting of global
warming’s impact on marine ecosystems [40]. The ex‑
istence of stable thermoclines or the detection of peri‑
ods of enhanced mixing may act as indicators of alter‑
ing oceanographic conditions, offering early alerts for
changes in ecosystem health [41].

This entire workϐlow—from data collection by the
glider, CSV transformation, data cleaning and analysis
in Python, and the application of Gaussian Processes
for interpolation—demonstrates the value of combining
autonomous technology and advanced statistical tech‑
niques to improve marine environmental monitoring
and decision‑making [42].

5. Discussion

The deployment of the ALSEAMAR SeaExplorer
glider during the Odyssea project campaign in Al Ho‑
ceima’s MPA effectively showcased the capabilities of
autonomous underwater vehicles (AUVs) for adaptive,
data‑driven environmental monitoring [23]. This mis‑
sion occurred from November to December and sub‑
sequently from February to March [2, 13], emphasizing

the signiϐicance of ongoing environmental monitoring
to comprehend seasonal variations in essential oceano‑
graphic parameters, such as temperature [43].

The implementation of data‑driven methodologies,
particularly Gaussian Processes for adaptive sampling, a
technique evaluated and enhanced during the Odyssea
project, enabled the glider tomodify its mission strategy
in real time. This data‑centric methodology exhibited
considerable beneϐits compared to conventional survey
techniques [44]. By concentrating on regions of signiϐi‑
cant variability, the glider optimized data relevance and
reduced redundancy, resulting in an efϐicient and accu‑
rate evaluation of the environmental condition. The ca‑
pacity to perpetually revise the sampling plan according
to incoming data facilitated a deeper comprehension of
spatial and temporal variations within the Al Hoceima
MPA [45].

The study identiϐied notable variations in temper‑
ature, linked to physical processes such as coastal up‑
welling and other dynamics in the Alboran Sea [46]. The
glider’s capacity to consistently sample various depths
provided understanding of the vertical organization of
the marine ecosystem [13]. These observations are cru‑
cial for comprehending the resilience of the MPA amid
changing climate conditions, as they facilitate the iden‑
tiϐication of heat distribution patterns and potential re‑
gions affected by ocean warming [47].

A primary beneϐit of utilizing Gaussian Processes
is their capacity to deliver predictions along with cor‑
responding uncertainties [34]. The GP model provided a
precise depiction of environmental conditions and iden‑
tiϐied areas where further data collection would be ad‑
vantageous [26]. The ability to integrate new observa‑
tions into the model in real time rendered GPs an in‑
valuable instrument for improving the accuracy and rel‑
evance of the data gathered during the mission [48].

While GPs are effective, the study also noted some
of their inherent challenges. High computational de‑
mand for covariance matrix inversion was a key limi‑
tation [32], suggesting that further research should ex‑
plore optimized algorithms or alternative adaptive sam‑
pling. Nonetheless, this study illustrates how probabilis‑
tic models can facilitate real‑time decision‑making for
autonomous platforms, enhancing their capacity to col‑
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lect ecologically signiϐicant data [6].
Another topic of discussion is the proprietary adap‑

tive methodologies employed by ALSEAMAR, which re‑
main undisclosed in their entirety. Integrating GPs as
a supplementary or corrective technique could further
augment the adaptive capabilities of the glider, facilitat‑
ing a more precise sampling methodology [39–49]. Alter‑
native methodologies for adaptive sampling, including
Kalman ϐiltering, Markov decision processes, and rein‑
forcement learning, have been tested and reϐined and
may be utilized to enhance the efϐicacy of Gaussian pro‑
cesses, contingent upon speciϐic mission requirements
and environmental conditions [27–38].

6. Conclusion
The deployment of the ALSEAMAR SeaExplorer

glider at the Al Hoceima Marine Protected Area as part
of the Odyssea project highlights the immense promise
of AUVs for ecological surveillance, especially when
combined with data‑driven adaptive sampling method‑
ologies that were tested and reϐined throughout the
Odyssea project [2–17]. The deployment demonstrated
that integrating AUV technology with Gaussian Process
modeling for adaptive mission planning [50], akin to the
methodologies employed in the Odyssea project, can
produce high‑resolution, spatially continuous datasets
essential for comprehending marine ecosystem dynam‑
ics [51, 52].

The mission effectively recorded both spatial and
temporal shifts in temperature and conductivity, yield‑
ing signiϐicant insights into the environmental condition
of the Al Hoceima MPA. The integration of GPS allowed
the glider to enhance its sampling strategy in real time,
facilitating efϐicient data collection and minimizing re‑
dundancy [53]. This method aids in establishing a thor‑
ough baseline of marine environmental health, crucial
for assessing the threats to marine life caused by human
activities and the changing climate [47–53].

This study’s ϐindings illustrate the necessity for
additional research on optimizing adaptive sampling,
a methodology evaluated and enhanced during the
Odyssea project for AUVs, in light of the computational

challenges presented by GPs [54, 55]. Future researchmay
investigate the integration of probabilistic models with
alternative adaptive control strategies to enhance the
robustness and efϐiciency of AUV‑based environmental
monitoring.

Themethodology described heremay be expanded
to include chlorophyll‑a, conductivity, oxygen, and mi‑
croplastics in a single framework, building on our pre‑
vious work in the Al Hoceima MPA employing glider
platforms to monitor these parameters [2–20]. Predic‑
tive modeling and multi‑parameter ecosystem evalua‑
tions would be made possible by this integration, offer‑
ing more comprehensive insights into the resilience of
the MPA and guiding adaptive conservation strategy [13].

By demonstrating the revolutionary potential of au‑
tonomous systems to monitor, understand, and adminis‑
terMarine ProtectedAreasmore effectively in the face of
changing climate concerns, this study highlights the crit‑
ical role that technological innovation plays in marine
conservation.
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Székely, G. (eds.). Statistical Shape and Deforma‑
tion Analysis: Methods, Implementation, and Ap‑
plications. Academic Press: Cambridge, MA, USA.
pp. 33‑65.

[50] Yi, C., Zhang, K., Peng, N., 2019. A multi‑sensor fu‑
sion and object tracking algorithm for self‑driving
vehicles. Proceedings of the Institution of Mechan‑
ical Engineers, Part D: Journal of Automobile Engi‑
neering. 233(9), 2293‑2300.

[51] Fiorelli, E., Bhatta, P., Leonard, N.E., et al., 2003.
Adaptive sampling using feedback control of an au‑

15

https://doi.org/10.3389/fmars.2022.1067174
https://doi.org/10.3389/fmars.2022.1067174
https://doi.org/10.1016/j.compgeo.2023.105936
https://doi.org/10.1016/j.compgeo.2023.105936
https://doi.org/10.1007/s40815-017-0398-7
https://doi.org/10.1007/s40815-017-0398-7
https://doi.org/10.1109/ICOS60708.2023.10425637
https://doi.org/10.1109/ICOS60708.2023.10425637
https://doi.org/10.1016/j.spasta.2023.100773
https://doi.org/10.1016/j.spasta.2023.100773
https://doi.org/10.48550/arXiv.2007.11972
https://doi.org/10.1016/j.envsoft.2021.105170
https://doi.org/10.1016/j.envsoft.2021.105170
https://doi.org/10.48550/arXiv.2408.02331
https://doi.org/10.48550/arXiv.2408.02331
https://doi.org/10.1007/0-306-47647-9_6
https://doi.org/10.52783/jns.v14.2107
https://doi.org/10.1038/nclimate2769
https://doi.org/10.1038/nclimate2769
https://doi.org/10.1073/pnas.1519080113
https://doi.org/10.1073/pnas.1519080113
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1016/S0924-7963(02)00128-8
https://doi.org/10.1016/S0924-7963(02)00128-8
https://doi.org/10.50908/grb.3.0_231
https://doi.org/10.1109/TIM.2022.3167784
https://doi.org/10.1109/TIM.2022.3167784
https://doi.org/10.1201/b20703
https://doi.org/10.13140/2.1.4039.2487
https://doi.org/10.13140/2.1.4039.2487
https://doi.org/10.48550/arXiv.2010.09830
https://doi.org/10.48550/arXiv.2010.09830


Sustainable Marine Structures | Volume 07 | Issue 03 | September 2025

tonomous underwater glider ϐleet. Proceedings of
the 13th International Symposium on Unmanned
Untethered Submersible Technology (UUST); 1 Jan‑
uary 2003; Durham, NH, USA. pp. 1‑16.

[52] Clemens, J., Wellhausen, C., Koller, T.L., et al., 2020.
Kalman ϐilter with moving reference for jump‑
free, multi‑sensor odometrywith application in au‑
tonomous driving. Proceedings of the 2020 IEEE
23rd International Conference on Information Fu‑
sion (FUSION); 6‑9 July 2020; Rustenburg, South
Africa. pp. 1‑9. DOI: https://doi.org/10.23919/F

USION45008.2020.9190464
[53] Liu, L., Sukhatme, G.S., 2016. Making decisions

with spatially and temporally uncertain data. arXiv
preprint arXiv:1605.01018v1. DOI: https://doi.or
g/10.48550/arXiv.1605.01018
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