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ABSTRACT 

Marine environments present significant challenges for image processing due to factors such as low light 

intensity, suspended particles, and varying degrees of water turbidity. These conditions severely degrade the 

clarity and quality of captured marine images, making accurate image recognition difficult. The problem is 

further compounded by the limited availability of high-quality, labeled training samples, which restricts the 

effectiveness of conventional recognition algorithms. Existing techniques in both academic and industrial 

settings—such as Principal Component Analysis (PCA), Neural Networks, and Wavelet Transforms—typically 

involve converting color images to grayscale prior to feature extraction. While this simplifies processing, it also 

results in the loss of essential color information, which is often critical for distinguishing features in marine 

imagery. To address these issues, this paper proposes a novel approach that preserves and utilizes the full color 

information of marine images during processing and recognition. The method combines color image 

representation with Hu's invariant moments to extract stable and rotation-invariant features. These features 

are then input into a Back Propagation Neural Network (BPNN), which is trained to recognize and classify 

various marine targets. The integration of color-based feature extraction with BPNN significantly improves 

recognition performance, particularly under complex environmental conditions. Experimental results show 

that the proposed system achieves a recognition accuracy exceeding 98%, demonstrating its effectiveness and 

potential for practical applications in marine exploration, environmental monitoring, and underwater robotics. 
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1. Introduction 

In the field of image recognition, most research 

focuses on the processing of grayscale images or utilizes 

commonly employed classifiers for example Naive Bayes 

Classifier and Support Vector Machine [1, 2]. There is a 

scarcity of studies that retain color images while 

integrating BPNN technology [3–7], let alone the design 

and development of a comprehensive image recognition 

model to assist in marine image recognition. Chapter 1 is 

an introduction, which outlines the structure and 

research direction of this paper. Chapter 2 details the 

methods for image preprocessing and color retention. 

Chapter 3 employs Hu's invariant moments for feature 

extraction. Chapter 4 discusses the experimental results 

of recognizing marine images using Back Propagation 

Neural Network (BPNN). Finally, Chapter 5 presents the 

conclusions drawn from the study. 

2. Image Conversion 

2.1. Image Capture 

The purpose of image preprocessing is to effectively 

separate targets from blurred images, preparing them for 

further recognition. The main steps involved in the image 

preprocessing are illustrated in Figure 1. 

 

Figure 1. Steps in Image Preprocessing. 

Marine images are captured using marine cameras. 

Due to insufficient lighting in the marine environment, 

the images tend to be blurred. The image acquisition 

system consists of marine imaging cameras, personal 

computers, image capture cards, image processing 

software, and other components. 

2.2. YCbCr Color Model 

An image in the RGB color model consists of three 

independent image planes, each corresponding to one 

of the three primary colors: red, green, and blue. When 

these three image planes are transmitted to an RGB 

display, they combine to form a full-color image. 
Color information plays a crucial role in image 

processing. However, to effectively reduce data size and 
computational complexity, color images are often 
converted to grayscale. This conversion inevitably 
results in the loss of significant color information. 
Therefore, this study focuses on transforming RGB 
color space into the YCbCr color space, which is less 
sensitive to luminance variations. This choice is 
motivated by the fact that many studies on image and 
color detection are conducted in this color model, as 
shown in Equation (1) [3,4]. 

𝑓(𝑥, 𝑦) = 𝑓𝑦(𝑥, 𝑦)𝑖 + 𝑓𝑐𝑏(𝑥, 𝑦)𝑗 + 𝑓𝑐𝑟(𝑥, 𝑦)𝑘 (1) 

The YCbCr color model is a type of full-color 

representation widely used in continuous image 

processing for video and digital video formats, such as 

JPEG and MPEG compression standards. The method 

proposed in this paper also operates within this color 

space. In this model, luminance information is 

represented by a single component, Y, while color 

information is stored in two chrominance components, Cb 

and Cr. The Cb component represents the difference 

between the blue channel and a reference value, whereas 

the Cr component represents the difference between the 

red channel and a reference value. The conversion 

formula from RGB toYCbCr is given in Equation (2). 

A key advantage of using the YCbCr color model is 

that the transformation between RGB and YCbCr is linear, 

fast, and reversible. If the YCbCr color model needs to be 

converted back to the RGB color model, the inverse 

transformation can be performed using Equation (3). 

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 

𝐶𝑏 = −0.1687𝑅 − 0.3313𝐺 + 0.5𝐵 + 128 

𝐶𝑟 = 0.5𝑅 − 0.4187𝐺 − 0.0813𝐵 + 128 

(2) 

𝑅 = 𝑌 + 1.402(𝐶𝑟 − 128) 

𝐺 = 𝑌 − 0.3441(𝐶𝑏 − 128) − 0.714(𝐶𝑟 − 128) 

𝐵 = 𝑌 + 1.772(𝐶𝑏 − 128) 

(3) 

This paper uses color images and the commonly  

used YCbCr model to extract feature values, which is  

different from traditional image processing methods 

(such as grayscale images, edge enhancement, noise 
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elimination, and binarization).

 3. Invariant Moment Feature 

Extraction 

Hu's proposed that these invariant moments 

possess properties of translation, rotation, and scale 

invariance [8, 9]. If f(x,y) is a piecewise continuous function 

with nonzero values only within a finite region of the 

plane, then invariant moments of all orders uniquely 

exist. Mathematically, an infinite sequence of moments 

can uniquely represent {μp,q, p + q = 0, 1,2 … } using the 

f(x,y), as shown in Equation (4). 

𝑓(𝑥, 𝑦) = ∫ ∫ 𝑒𝑥𝑝[−2𝑗𝜋(𝑢𝑥 + 𝑣𝑦)]
+∞

−∞

+∞

−∞

∙ [∑ ∑ 𝑚𝑝,𝑞

(2𝑗𝜋)𝑝+𝑞

𝑝! 𝑞!

∞

𝑞=0

∞

𝑝=0
] 𝑑𝑢𝑑𝑣 (4) 

 

  

 

𝜇00 =∑ ∑ (𝑥 − 𝑥𝑐)
0(𝑦 − 𝑦𝑐)

0𝑓(𝑥, 𝑦) = 𝑚00

𝑁

𝑦=1

𝑀

𝑥=1
𝑓(𝑥, 𝑦) (5) 

In this study, the method of integrating color 

information with Hu's invariant moments considers the 

transformed image's color function as the vector part of 

a three color components, denoted as f(x, y) = fy (x, y)i + 

fcb (x, y)j + fcr (x, y)k. 

Table 1. Physical interpretation of central moments. 

μpq Physical Meaning >0 <0 

μ20 
Represents the image's horizontal 

spread 
  

μ02 Represents the image's vertical spread   
μ11 Represents the image's tilt Tilted to the left Tilted to the right 

μ30 
Represents the centroid shift in the 

horizontal direction 
Centroid shifts left Centroid shifts downward 

μ03 
Represents the centroid shift in the 

vertical direction 
Centroid shifts upward 

Upper part expands more than the 

lower part 

μ21 
Represents the balance of horizontal 

expansion 

Lower part expands more than 

the upper part 
 

μ12 
Represents the balance of vertical 

expansion 

Right side expands more than the 

left side 

Left side expands more than the 

right side 

The central moment μpq reflects the distribution of 

pixel values relative to the pixel centroid of the image. 

Based on the mathematical formulation of μpq central 

moments are invariant to translation and scale 

transformations. To ensure that invariant moments also 

possess rotational invariance, Hu's proposed seven 

invariant moments defined using normalized central 

geometric moments. These seven moments exhibit 

translation invariance, scale invariance, and rotation 

invariance, as shown in Equation (6). 

𝜙1 = 𝜇20 + 𝜇02 

𝜙2 = (𝜇20 + 𝜇02)
2 + 4𝜇11

2 

𝜙3 = (𝜇30 − 3𝜇12)
2 + (𝜇03 − 3𝜇21)

2 

𝜙4 = (𝜇30 − 𝜇12)
2 + (𝜇03 − 𝜇21)

2 

𝜙5 = (𝜇30 − 3𝜇12)(𝜇30 + 𝜇12)𝜙𝑥 + (𝜇03 − 3𝜇21)(𝜇03 + 𝜇21)𝜙𝑦 

𝜙6 = (𝜇20 − 𝜇02)[(𝜇30 + 𝜇12)
2 − (𝜇03 + 𝜇21)

2] + 4𝜇11(𝜇30 + 𝜇12)(𝜇03 + 𝜇21) 

𝜙7 = (3𝜇21 − 𝜇03)(𝜇30 + 𝜇12)𝜙𝑥 + (𝜇30 − 3𝜇21)(𝜇03 + 𝜇21)𝜙𝑦 

(6) 

The formulas for 𝜙𝑥 and 𝜙𝑦 are shown below. 

     
  

  The central moment  μpq  can be expressed by  mpq. For 
example,  μ00  as shown in Equation (5). The physical mea-
nings of each central moment are shown in Table 1.
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𝜙𝑥 = (𝜇30 − 𝜇12)
2 − 3(𝜇

03
+ 3𝜇

21
)
2
, 𝜙

𝑦
= (𝜇

03
− 𝜇21)

2
− 3(𝜇

30
+ 𝜇

12
)
2

 (7) 

4. Back Propagation Neural 
Network (BPNN) 

The images used in the experiment were taken 

by divers in the waters of the Penghu Islands (Taiwan) 
and are indeed used for training and testing 
recognition. These images were taken by divers in the 

waters of the Penghu Islands (Taiwan). The images were 
selected to include various shapes of animals and 
plants and take into account high, medium and low 

frequency components. This study utilizes 96 images 
from 12 common types of marine imagery, focusing on 

the recognition of blurred images in low-resolution 

marine environments, as shown in Figure 2. 

Because marine images are difficult to collect and 

the number of images is relatively small, this study 

increased the hidden units and number of operations of 

the neural network. After applying Backpropagation 

Neural Network (BPNN) recognition, with a sufficiently 

large number of iterations (50,000), the average 

recognition accuracy exceeds 98% [10–14]. The training 

and recognition results are presented in Figure 3 and 

Tables 2–5. 

 

Figure 2. Marine Images (12 Categories). 

Table 2. Neural Network Parameter Settings. 

Name  Parameter Settings  

Input Units 7 units (Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7) 
Hidden Units 10 units 

Output Units 12 units (corresponding to 12 image categories) 

Number of Iterations 50000 

Learning Rate 0.5 

Momentum Term 0.5 

Number of Training and Testing 

Samples 
48 training samples, 48 testing and validation samples 

Table 3. Normalized Invariant Moments of Marine Images (12 Categories). 

Sample\Invariants Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 

1 0.1188 0.3944 0.4396 0.4247 0.9219 0.6346 0.8423 

2 0.1138 0.3620 0.4557 0.4619 0.9599 0.6673 0.9297 

3 0.1173 0.3907 0.4596 0.4482 0.9169 0.6454 0.8883 

4 0.1123 0.3082 0.4183 0.4253 0.8476 0.5807 0.8270 

5 0.1189 0.3171 0.4306 0.4770 0.9092 0.6366 0.8937 

6 0.1188 0.2970 0.4018 0.4142 0.8126 0.5919 0.8322 

7 0.1153 0.3655 0.5000 0.4657 0.9523 0.6831 0.9816 
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Table 3. Cont. 

Sample\Invariants Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 

8 0.1194 0.3809 0.4559 0.4527 0.9108 0.6432 0.9208 

9 0.1201 0.3310 0.4329 0.4727 0.9248 0.6620 0.9515 

10 0.1191 0.3679 0.4729 0.5188 0.9929 0.7029 1.0000 

11 0.1199 0.3955 0.4674 0.4957 0.9868 0.7167 0.9472 

12 0.1175 0.4222 0.4437 0.4429 0.8698 0.6779 0.8821 

Table 4. Weights and Biases After Neural Network Training. 

Weights Biases 

Weighting = 

[Input][ 

Hide] = [7][10] 

11.38 –102.55 –47.84 9.2 –2.65 19.37 21.16      

7.74 –3.5 –8.37 –17.25 –40.23 20.61 37.35      

2.9 –49.95 –11.09 56.16 –14.74 –38.77 43.32      

9.74 8.92 –42.54 –40.95 –25.42 45.05 5.78      

5.03 –20.81 3.2 21.74 –20.91 –17.77 38.88      

12.22 10.3 14.03 –21.32 –21.22 –68.58 –10.74      

–2.37 –39.53 32.22 –15.03 –1.75 –61.9 24.66      

9.55 –15.63 –10.89 –8.6 –39.3 9.38 33.3      

–9.57 18.25 20.87 –80.56 –2.02 32.92 –1.51      

9.04 –0.59 –56.88 21.17 18.86 16.71 –33.4      

Weighting = 

[Hide][output 

] = [10][12] 

–10 –4 –14.3 –0.08 –5.02 31.22 3.14 –5.22 2.84 –4.6   

15.9 –7.66 –3.65 1.67 –5.33 –16.2 8.54 –6.89 16.77 10.7   

–43 –10.9 23.18 –7.28 –16.0 1.63 10.1 –12.1 9.49 –0.3   

5.93 –7.29 –3.86 –11.8 0.36 24.17 19.6 –4.8 –5.41 –10   

22.4 –9.58 –3.04 –15.3 –1.46 –6.42 15.4 –1.65 –23.6 6.38   

20.3 4.08 –0.67 15.6 –3.78 4.98 –0.9 6.17 0.31 5.88   

–11 0.23 –0.28 –12.8 –4.72 –17.4 8.25 –1.97 14.86 –15   

–25 6.15 35.03 –3.32 3.14 10.09 7.86 7.28 –16 –2.7   

22.2 11.06 –8.04 9.59 –0.34 –19.7 –6.1 12.48 0.68 2.23   

–1.3 –3.52 14.31 –13.5 7.71 –31.4 –4.0 –1.94 –17.1 –4.3   

–19 2.28 4.02 1.00 3.54 –36.5 –23 –3.63 –6.52 5.53   

–11 2.46 –17.1 7.46 –8.09 –9.43 –14 –2.47 11.93 –4.3   

Bias hide  –24 –0.87 0.32 –21.2 9.27 –71.7 –27 –12.4 –4.28 –18   

Bias output  17 21.6 15 21.6 24 42 0 31 23.4 6.1 –8.4 2.5 

Figure 3. Neural Network Training Curve. 
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Table 5. Neural Network Recognition Results. 

Rec. 

rate 
1 2 3 4 5 6 7 8 9 10 11 12 Er. fnc. 

1 1.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00007 

2 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00007 

3 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00026 

4 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00007 

5 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00009 

6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00005 

7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00006 

8 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00018 

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00005 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 0.00 0.00 0.00005 

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00002 

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00001  
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5. Conclusions

  This paper adopts an approach for preserving color

image  processing,  combined  with  Hu's  invariant

moments  for  feature  extraction,  which  includes

rotational  and  non-integer  scaling  invariance.  These

features  are  applied  to  achieve  rotation  and  scale

invariance  in  object  recognition.  The  Backpropagation

Neural Network (BPNN) is currently one of the most e- 
fficient  algorithms  in  the  field  of  image  processing,

achieving an overall recognition accuracy exceeding 98%.

In the future, if we can improve the image pre-processing

technology  and  collect  more  training  samples,

Convolutional  Neural  Network  (CNN)  deep  learning

techniques could be applied to train recognition models,

enabling the broader application of the research results.
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