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ABSTRACT 

As global efforts to combat climate change intensify, offshore wind farms have emerged as scalable and 

sustainable solutions. However, their deployment depends heavily on the availability of specialized vessels with 

Dynamic Positioning (DP) systems such as Wind Turbine Installation Vessels (WTIVs) and Service Operation 

Vessels (SOVs). Despite their importance, long-term demand forecasting for such vessels remains 

underexplored, especially in South Korea. This study presents the dDP-W model, a System Dynamics (SD)-based 

framework that simulates the evolving demand for DP vessels under varying technological, policy, and 

environmental conditions. Unlike conventional methods based on historical extrapolation, the model uses 

feedback-driven causality and scenario-based simulations aligned with South Korea’s offshore wind roadmap 

(2026–2036). Three WTIV demand scenarios—baseline, optimistic, and pessimistic—were constructed based 

on vessel productivity and weather-related downtime. SOV demand was estimated using cumulative turbine 

counts and fixed vessel coverage ratios. The simulations indicate that WTIV demand peaks in the early 2030s, 

requiring 6 to 7 vessels depending on conditions, while SOV demand increases steadily, reaching nearly 70 

vessels by 2036. These findings highlight the need for early vessel procurement, infrastructure investment, and 

workforce preparation. By integrating technical, logistical, and policy factors into a dynamic model, this study 

provides a practical decision-support tool for stakeholders in shipbuilding and offshore energy. The results offer 

strategic insights to address potential vessel shortages and ensure alignment with national renewable energy 

goals. 
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1. Introduction 

The ongoing climate emergency fueled by the rapid 

accumulation of greenhouse gas emissions, remains one 

of the most urgent global challenges. Since the 

ratification of the Paris Agreement in 2015, the 

international community has worked toward capping the 

rise in global average temperature to well below 2°C 

above pre-industrial levels while striving to stay within 

the 1.5°C threshold [1]. These goals are vital for averting 

the most devastating consequences of climate change. 

Yet, the transition toward a low-carbon energy economy 

has been slower than anticipated in practice. Renewable 

energy particularly wind power, stands as a central pillar 

in this effort offering a scalable and sustainable 

alternative to fossil fuels. Among its various forms, 

offshore wind farm has emerged as a leading candidate 

due to its greater generation potential and fewer land-

use constraints compared to onshore wind. 

Offshore wind farms are capable of generating 

stable electricity outputs by leveraging stronger and 

more consistent oceanic wind flows. Unlike onshore 

installations, they tend to encounter less opposition from 

local communities and allow for the deployment of larger 

turbine units. However, these advantages are 

accompanied by considerable technical and logistical 

challenges. High construction costs, complex installation 

procedures, and exposure to volatile marine weather 

conditions remain critical barriers. As of 2021, wind 

power (6.6%) and solar power (3.6%) collectively 

exceeded a 10% share of the global total electricity 

production [2]. Notably, the offshore wind energy 

potential in South Korea (annual generation equivalent) 

is estimated at around 119 TWh/year, which accounts 

for more than 20% of the annual consumption strategy 

(553 TWh/year in 2021) achievable solely through 

offshore wind power. The Levelized Cost of Electricity 

(LCOE) for both offshore and onshore wind power 

generation has already demonstrated economic 

competitiveness surpassing that of fossil fuels (The LOCE 

for offshore wind power generation has declined from 

approximately 162 USD/MWh in 2010 to around 115 

USD/MWh in 2019, reaching a level of competitiveness 

comparable to fossil fuel generation costs (109 

USD/MWh) [3]. Within the context of the 'Energy Mix', it is 

anticipated that simultaneous and sustainable growth 

will occur alongside various energy sources. Nonetheless, 

recent improvements in turbine design, vessel 

automation, and installation methodologies have helped 

reduce these obstacles, contributing to global market 

growth projections that exceed 10% annually. By 2030, 

global offshore wind capacity is expected to reach 53 GW 

and could double by 2040 [4]. 

South Korea has committed to accelerating its 

deployment through the “Renewable Energy 3020 

Implementation Plan” recognizing the potential of 

offshore wind farm as follow (Figure 1) [4]. This policy 

framework aims to establish 12 GW of offshore wind 

capacity by 2030 supported by large-scale projects in 

regions such as Shin-an, Ulsan, Jeju, and Incheon [4]. To 

meet these targets, the country must not only develop the 

turbines themselves but also ensure the availability of 

specialized maritime infrastructure—particularly 

vessels equipped with Dynamic Positioning (DP) systems. 

These include Wind Turbine Installation Vessels (WTIVs), 

which handle the initial setup of turbines, and Service 

Operation Vessels (SOVs), which are essential for 

ongoing operation and maintenance activities. 

 

Figure 1. Renewable energy 3020 implementation plan 

in South Korea. 

DP vessels are technologically advanced ships that 
maintain precise station-keeping capabilities using a 
combination of thrusters, GPS systems, sensors, and 
onboard control algorithms. Their automated 
positioning ability eliminates the need for mooring or 
anchoring, making them indispensable in the 
increasingly complex environments of offshore 
construction. Despite their strategic importance, 
relatively little research has focused on predicting long-
term DP vessel demand—particularly in the context of 
South Korea’s emerging offshore wind market.  

While earlier studies have examined various aspects 

of vessel efficiency, structural optimization, and 

operational safety [5–9], there remains a lack of robust 

forecasting tools that can account for the complex 

evolving interactions between policy targets, 

environmental factors, and technological development. 

To address this gap, this study introduces a system 

dynamics (SD)–based predictive framework referred to 

as the dDP-W model. Unlike traditional forecasting 

techniques that rely mainly on historical data trends, the 

proposed model captures feedback structures and causal 

relationships among multiple influencing variables. This 

allows for more adaptive and realistic simulations of 

future vessel demand, particularly under different 

installation and policy scenarios. 

The novelty of this research lies in its integrated  
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modeling approach. By applying SD methodology—

previously used in domains like logistics, urban planning, 

and aviation—to the forecasting of DP vessel fleet 

capacity, this study provides a fresh perspective on a 

critical yet underexplored challenge in the maritime 

energy sector. Key model parameters include annual 

offshore wind installation targets, vessel performance 

characteristics, maintenance requirements, and expected 

operational downtime due to weather disruptions. These 

parameters are interconnected through feedback loops 

that reflect the systemic nature of vessel demand 

evolution. 

In addition to developing the model, this paper 

includes sensitivity analysis and scenario testing to 

evaluate how changes in policy objectives, vessel 

technology, or environmental conditions may influence 

fleet requirements. These results aim to inform decision-

making for shipbuilders, port authorities, and renewable 

energy planners. 

This paper is structured as follows. Section 2 offers 

a critical review of existing literature related to vessel 

capacity planning, dynamic positioning technologies, and 

offshore logistics modeling. Section 3 outlines the 

technical architecture of DP systems and details the types 

of vessels currently deployed in offshore wind projects. 

Section 4 presents the construction and validation of the 

dDP-W model, including its causal loop diagram and 

stock-flow structure. Section 5 concludes with key 

insights, policy implications, and suggestions for future 

research, including the integration of other vessel types 

such as cable layers and foundation installation vessels. 

2. Literature Review 

The deployment of offshore wind farm has seen a 

surge in academic interest over the past two decades, 

particularly concerning engineering optimization, 

installation logistics, and cost-effectiveness. However, 

while these studies offer valuable insights into technical 

and operational aspects, they often overlook the systemic 

implications of offshore wind growth on supporting 

maritime infrastructure—most notably the availability 

and capacity of Dynamic Positioning (DP) vessels. As 

offshore wind projects become larger and more complex, 

the ability to forecast fleet requirements becomes 

essential, yet remains underexplored in current 

literature. 

Early contributions to this field have primarily 

focused on vessel selection and cost control strategies. 

Walther et al. proposed a multi-criteria decision 

framework for evaluating installation vessel concepts [5]. 

Their model considered attributes such as deck space, 

lifting capacity, transit speed, and dynamic positioning 
capabilities, all of which impact project efficiency and 

cost. Similarly, Walker et al. examined installation risk 

during turbine deployment and suggested improvements 

in vessel design and operational protocols [6]. These 

studies highlight the influence of vessel characteristics 

on offshore wind project performance but stop short of 

exploring how these vessels’ demands might evolve with 

changing industry conditions. 

Kaiser and Snyder developed an economic 

assessment model for offshore wind projects on the U.S. 

Outer Continental Shelf [7]. Their approach considered 

regulatory constraints, sea conditions, and logistical 

costs. The strength of their analysis lies in its 

comprehensive scope, yet it primarily serves as a project-

level feasibility tool and does not offer long-term fleet 

capacity forecasting. Meanwhile, Jang and Choi focused 

on the design evolution and functional specifications of 

Wind Turbine Installation Vessels (WTIVs), reinforcing 

the critical role these vessels play in the offshore wind 

lifecycle [8]. 
Logistics and operational scheduling also received 

attention in the work of Kim et al. [9], who introduced 

simulation-based methodologies to improve 

transportation and installation efficiency for monopile 

turbines. Their model accounted for vessel capacity, 

lifting time, environmental conditions, and transit 

distances. While effective at optimizing short-term 

deployment plans, their framework does not address 

future fleet demands or incorporate macro-level policy 

factors. 

A more recent development is the application of 

machine learning to predict long-term offshore 

conditions. For instance, Lee et al. proposed a deep 

learning-based model to forecast sea and wind 

conditions, contributing valuable inputs to long-term 

maintenance and planning efforts. However, the focus 

remains on environmental forecasting, rather than vessel 

demand forecasting [10]. 

In parallel, system dynamics (SD) modeling has 

become increasingly popular in fields such as 

transportation, urban planning, and infrastructure 

development. SD’s ability to simulate complex feedback-

driven systems makes it well-suited for maritime 

applications. Jung applied SD to forecast mid-size truck 

demand by incorporating economic and regulatory 

variables [11]. Park used SD in the aviation sector to 

explore airport capacity constraints [12], and Kim 

analyzed housing market responses to government 

interventions using feedback-based simulations [13]. 

These studies demonstrate the flexibility and 

explanatory power of SD, but its use in maritime logistics, 

particularly in DP vessel planning, remains limited. 

Within the maritime domain, Jo employed SD to 

analyze how technological advances in autonomous 

ships might affect workforce demand and training 
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requirements [14]. This study provided an effective 

precedent for applying SD in maritime workforce 

planning, but did not consider fleet capacity modeling. 

Despite growing recognition of SD's potential, no existing 

research has yet provided a comprehensive, SD-based 

model for predicting the future demand for DP vessels in 

offshore wind contexts. 

Another noticeable trend in the literature is an 

overreliance on deterministic models or project-specific 

simulations. These approaches, while valuable for short-

term scheduling or cost estimations, often fail to capture 

the nonlinear, dynamic nature of the offshore wind 

market. For example, changes in turbine capacity, 

evolving regulatory requirements, supply chain 

disruptions, and climate-related downtime all interact in 

ways that traditional linear models struggle to account 

for. The absence of a systemic approach limits the 

industry’s ability to anticipate long-term vessel 

requirements or make informed infrastructure 

investments. 

Furthermore, a large portion of the existing studies 

are built on datasets from mature offshore wind markets 

in Europe or the U.S., which may not reflect the unique 

geographical, policy, and industrial conditions of 

emerging markets like South Korea. For instance, South 

Korea’s ambitious offshore wind development plans are 

tightly linked to national energy transition policies and 

regional industrial strategies, which introduce specific 

feedback mechanisms not addressed in most existing 

models. 

Therefore, this study aims to fill a critical gap by 

introducing a dynamic, feedback-based forecasting 

tool—the dDP-W model—that simulates DP vessel 

demand in response to evolving offshore wind capacity 

targets, vessel performance metrics, and environmental 

constraints. By adopting a systems-thinking approach 

and grounding the model in South Korea’s policy and 

industrial context, this work seeks to move beyond 

descriptive or project-level analyses and provide a 

strategic, long-term perspective. 

In summary, while substantial research has been 

conducted on offshore wind logistics and vessel 

optimization, existing studies tend to be narrow in scope, 

lacking a systemic view of how vessel demand evolves 

over time. This paper builds upon earlier contributions 

by integrating macro-level variables into a causal loop 

framework, enabling the forecasting of future vessel 

demand under various policy scenarios. The proposed 

model not only contributes to academic understanding 

but also offers actionable insights for shipbuilders, 

policymakers, and energy planners. 

3. Dynamic Positioning Systems in 
Offshore Wind Farm Field 

3.1. Dynamic Positioning System 

Dynamic Positioning (DP) systems play a central 

role in enabling offshore wind farm operations 

particularly in tasks requiring high positional accuracy 

such as turbine installation, cable laying, and 

maintenance. A DP system allows a vessel to maintain its 

position and heading automatically using its own 

propulsion system without the need for mooring or 

anchoring. This is especially critical in offshore wind 

environments where seabed conditions, space 

constraints, or environmental regulations may restrict 

the use of conventional anchoring techniques [15]. 

According to the International Maritime 

Organization (IMO), a DP system consists of an integrated 

arrangement of position reference sensors, thrusters, 

control algorithms, and human-machine interfaces, 

coordinated by a central DP computer [15]. The DP 

computer continuously receives input from multiple 

sources—including satellite-based GPS, laser-based 

position reference systems, and motion sensors—and 

translates these data into real-time commands for 

thruster adjustments. These corrections allow the vessel 

to remain within an operational envelope despite the 

influence of wind, wave, and current forces. 

The dynamic positioning system consists of main 7 

components which are vital to the operation in Figure 2. 

(1) DP Control Computer – the central processor 

that calculates position corrections, 

(2) Position Reference Systems (PRS) – including 

GNSS and acoustic systems, 

(3) Thruster System – propellers and azimuth 

drives that control vessel movement, 

(4) Power Management System, 

(5) Sensor Package – such as gyrocompasses and 

motion reference units, 

(6) Human-Machine Interface (HMI), 

(7) Qualified Operators, trained and certified 

according to Nautical Institute standards [16,17]. 

The increasing complexity of offshore wind farm 

environments has led to continuous improvement in DP 

technology, including redundancy systems (DP2/DP3), 

dynamic environment modeling, and AI-supported control 

algorithms. These enhancements ensure safety and 

efficiency, particularly during installation campaigns that 

may span weeks at sea and involve precision positioning in 

dynamic weather conditions [18]. 

operational scenarios.

Despite the technical maturity of DP systems, their 

integration into offshore wind logistics remains a key 

variable in fleet planning. The ability to maintain safe and 

stable operations under variable marine conditions 

determines vessel suitability for installation or maintenance 

roles. Consequently, any forecasting model for DP vessel 

demand must consider both the technical specifications of 

these systems and their performance thresholds in different 
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Figure 2. The 7 main components of DP system. 

3.2. Vessels Used in the Operation of 
Offshore Wind Farms 

The offshore wind value chain is supported by a 
range of specialized vessels, each fulfilling a specific 
function during the project lifecycle. Among these, Wind 
Turbine Installation Vessels (WTIVs) and Service 
Operation Vessels (SOVs) represent the most critical DP-
enabled assets. 

WTIVs are purpose-built or retrofitted ships 

equipped with heavy-lift cranes, dynamic positioning 

systems, and jack-up legs in some cases, enabling them 

to install turbine towers, nacelles, and blades in deep 

offshore waters. As turbine sizes increase—reaching 12 

MW or more—the lifting and stability requirements for 

WTIVs have also intensified. Modern WTIVs must be 

capable of transporting and installing multiple large 

turbines per voyage to maintain economic viability. The 

cost associated with WTIV operations remains high, 

particularly due to weather-induced downtime, limited 

installation windows, and high fuel consumption. 

Therefore, accurate demand forecasting must 

incorporate not only the number of turbines but also the 

technological progression of WTIV capacity and 

efficiency. Moreover, the average duration for installing a 

single turbine, along with expected weather-related 

delays, plays a critical role in estimating the required 

number of active vessels per year. 

Once wind turbines are operational, Service 

Operation Vessels serve as floating offshore bases for 

maintenance crews. These vessels are equipped with 

onboard accommodation, workshops, storage for spare 

parts, and advanced turbine access systems. Most SOVs 

operate on DP systems to facilitate precise maneuvering 

near turbines, allowing for safe technician transfers via 

gangways or daughter craft. Their deployment cycles 

typically span several weeks, after which they return to 

port for restocking and crew rotation. SOVs are distinct 

from conventional offshore support vessels, such as 

Platform Supply Vessels (PSVs), due to their enhanced 

maneuverability, habitability, and operational endurance. 

While PSVs have been used for installation support in the 

oil and gas sector, they are generally not well suited for 

wind farm maintenance due to slower positioning 

response and limited accommodation capacity. 

Forecasting demand for SOVs requires a different 

modeling approach than WTIVs, as their deployment is 

influenced by turbine maintenance intervals, preventive 

maintenance schedules (PMS), turbine accessibility 

during various sea states, and regional weather 

conditions. As the installed base of offshore wind 

turbines grows, SOV demand is expected to rise 

proportionally, though innovations in autonomous 

inspection or drone maintenance may influence future 

projections. 

4. Predictive Model of Fleet  Capac-  
ity  of DP Vessels  

4.1. System Dynamics 

System dynamics is a theoretical tool that explores 

the changes in a system over time to time and seeks to 

control the system as desired. In this context, a system 

encompasses a range of fields, including machinery and 

device systems, nations, organizations, individuals, 

societies, industries, finance, assets, and economics, 

among others. System dynamics utilizes both 

macroscopic system structures and microscopic nodes to 

regulate the system or to replicate and predict the 

changes in a phenomenon [19]. In other words, system 

dynamics is an analysis tool which emphasizes the 

cyclical causal relationships and feedback structures 

among problem factors. 

Richardson (1995) defined the term "feedback 

structure" which refers to a causally closed structure 

formed by interconnected causal relationships among 

variables [19]. To emphasize feedback structures means 

identifying the causes of the problem within the internal 
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variables and finding solutions to the problem within the 

overall structure of the system. In other words, system 

dynamics seeks to explore solutions to problems within 

the feedback structure by revealing the underlying causal 

and effect of the problem. The current situation in the 

system is always influenced by the past one. The 

procedure involves problem definition, causal loop 

diagram, modelling, simulation, analysis, evaluation of 

model validity, and decision-making processes in Figure 

3 [20].

 

Figure 3. Performance stages in system dynamics. 

Causal loop diagram is a qualitative logical model 

that represents the diagram of relationships between 

factors when approaching a problem [19]. It involves 

systematically deconstructing a problem by discovering 

its underlying variables and interpreting them, and 

ultimately providing a compelling explanation of the 

problem's behavior. Therefore, all variables are 

interconnected through cause-and-effect relationships. 

Modelling begins with stock-flow diagrams, which 

consist of stock and auxiliary, illustrating the causal and 

effect and influences between variables concerning a 

specific problem. Stocks are variables that change over 

time, and auxiliaries are variables influenced by certain 

factors, causing changes that affect the stocks [20]. 

A feedback system undergoes changes through 

variables representing its state and effects caused by 

actions. These two processes do not occur simul-

taneously and are separated by a time delay over a 

specific period. This time delay enables the interaction 

between the two variables, thereby forming a feedback 

loop. Mathematically, this can be expressed as follows [19].

 

𝐹(𝑥) = ∫
𝐹(𝑥𝑡+Δt) − 𝐹(𝑥𝑡)

(𝑡 + Δt) − t
𝑑𝑡 = ∫ 𝑓(𝑥𝑡)𝑑𝑡 (1) 

𝑆 ∶ 𝑆𝑡𝑎𝑡𝑒 = 𝐹(𝑥) 

𝐹(𝑥𝑡+Δt) ∶ 𝑆𝑡𝑎𝑡𝑒 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 (𝑡 + Δt) 

𝑓(𝑥t) ∶ 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎𝑛 𝐴𝑐𝑡𝑖𝑜𝑛 

4.2. Casual Loop Diagram 

It presents the causal loop diagram designed to 

examine how the scale and composition of DP vessel 

operations adapt dynamically in response to the growth 

of the offshore wind farm industry, which constitutes the 

primary focus of this paper (Figure 4). This predictive 

model is referred to as the dDP-W model. 

As per the "10th Basic Plan of Long-Term Electricity 

Supply and Demand" in Figure 5, unveiled by the 

Ministry of Trade, Industry, and Energy in January 2023,  

 

there are ambitious goals to substantially boost the share 

of renewable energy generation, particularly wind power, 

aiming for a 30.6% contribution by 2036, as depicted in 

Figure 5 [19,21]. Moreover, while onshore wind power has 
historically been the primary driver of growth, a 
significant portion of the wind power expansion outlined 
in this foundational plan is directed towards offshore 
wind power projects. The annual installation of offshore 
wind turbines is determined by the target generation 
capacity for offshore wind farms, which steadily 
escalates in accordance with the established plans. 
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Figure 4. Casual loop diagram of dDP-W model. 

 

Figure 5. 10th Basic plan of long-term electricity supply and demand. 

The DP vessels including WTIVs and SOVs in the 

offshore wind farm industry can anticipate and plan for 

service demand. In the initial phases, these vessels 

(WTIVs and SOVs) address the demand by either 

commissioning new constructions or utilizing existing 

operational vessels. The number of WTIVs required is 

linked to the number employed in the previous year and 

the annual installation capacity of offshore wind turbines 

for each WTIV. Furthermore, installed offshore wind 

turbines undergo routine inspections through a PMS to 

proactively prevent accidents. To support this 

maintenance process effectively, SOVs play a crucial role. 

These SOVs operate within a feed-back system, with their 

schedules and demand being determined based on the 

operational status of offshore wind turbines and the 

prevailing weather conditions suitable for safe 

operations. 

4.3. Stock Flow Diagram 

It is depicted as a stock-flow diagram employed to 

forecast the demand for DP vessels in response to the 

expansion of the offshore wind farm industry as shown 

in Figure 6 [22].  

This diagram outlines the anticipated quantity of DP 

vessels necessary for the construction of offshore wind 

farms, drawing insights from the energy plan specified 

earlier, spanning the years 2023 to 2036 [23]. The analysis 

takes into consideration feedback loops influenced by 

factors derived from the causal diagram.
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Figure 6. Stock flow diagram of dDP-W model. 

In the dDP-W model according to the stock flow 

diagram, N(DPw)t, WTIV t, and SOV t are defined as the 

following equations (2) and (3). The N(DPw)t is the 

demand for DP vessels used in the offshore wind farm 

until the time t. WTIV t is the demand for WTIV, and SOV 

t is the demand for SOV until the time t. 

𝑁(𝐷𝑃𝑊)𝑡 =  ∫(𝑊𝑇𝐼𝑉𝑥 + 𝑆𝑂𝑉𝑥)𝑑𝑥 (2) 

𝑊𝑇𝐼𝑉𝑤 =
𝑁(𝑊𝑇)𝑡 · 𝐷(𝑊𝑇) + 𝑌 · 𝐷(𝐷𝑇)

𝑌
/

𝑌 · (1 − 𝐷(𝐷𝑇))

𝐷(𝑊𝑇)
 (3) 

N(WT)t: amount of new offshore wind turnine installation at time t 

D(WT): the date of installation per one new offshore wind turbine 

D(DT): the expected date of downtime per year 

D(PMS): the date of PMS operation per one offshore wind turbine 

In the offshore wind farm field, efforts are being 

made to reduce the cost of electricity generation by 

increasing the capacity of turbines and scaling up key 

components such as blades and nacelles. As of 2021, the 

average turbine capacity in European offshore wind 

farms was 8.5 MW per turbine, which is more than 

double the average capacity compared to ten years ago. 

Due to the significant proportion of the overall system 

installation and maintenance costs attributed to 

substructures and submarine cables, it is economically 

advantageous to construct wind farms with a limited 

number of large-capacity turbines. 

To address periods of downtime, the conventional 

practice involves allocating approximately 30% of the 

time to offshore project planning. For the model 

simulation, the widely used value of 30% has been 

incorporated. However, the precise information about 

the specific area and vessel performance should be taken 

into account for actual planning purposes. Downtime will 

be primarily influenced by the weather conditions in the 

offshore wind farm installation area, and the operational 

envelope limits of the vessels deployed should also be a 

significant consideration. Additionally, in the future, 

WTIVs and SOVs are expected to become larger, and the 

performance of their onboard DP systems and 

propulsion systems is likely to improve. Therefore, 

downtime is expected to decrease progressively. 

4.4. Scenario Analysis and Model Validation 

To evaluate the applicability and predictive strength 

of the proposed dDP-W model, a comprehensive 

scenario-based simulation was conducted using South 

Korea’s national offshore wind farm installation 

roadmap spanning from 2026 to 2036. This analysis 

aimed to quantify the yearly demand for Wind Turbine 

Installation Vessels (WTIVs) and Service Operation 

Vessels (SOVs) under varying technological, environ-
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mental, and policy-related conditions, thereby assessing 

the model’s responsiveness to key variables influencing 

fleet planning. 

4.4.1. Scenario Design 

Three forecasting scenarios were developed to 

reflect different operating assumptions concerning 

vessel efficiency, installation productivity, and 

meteorological conditions (Table 1).

Table 1. Scenario details. 

Baseline Scenario (Scenario A) 

Assumes a WTIV can install 100 turbines annually, with each turbine rated 
at 10 MW, yielding a total annual installation capacity of 1,000 MW per 
vessel. This scenario reflects average operating conditions with 30% 
weather-induced downtime. 

Optimistic Scenario (Scenario B) 
Reflects improved vessel operability and weather forecasting systems, 
enabling a WTIV to install 120 turbines per year (1,200 MW), with reduced 
downtime at 20%. 

Pessimistic Scenario (Scenario C) 
Incorporates adverse weather and logistical inefficiencies, resulting in a 
reduced WTIV capacity of 80 turbines per year (800 MW), and extended 
downtime of 40%. 

For SOVs, demand was estimated based on the 

cumulative number of operational wind turbines rather 

than installation targets. Each SOV was assumed to 

support maintenance activities for approximately 45 

turbines annually, taking into account routine preventive 

maintenance schedules, accessibility windows, and 

offshore weather variability. 

4.4.2. Forecasted WTIV Demand 

Table 2 summarizes WTIV demand projections 

under the three scenarios, calculated by dividing annual 

installation targets by vessel-specific productivity rates:

Table 2. WTIV Demand. 

Year 
Installation Target 

 (MW) 
Scenario 1  

WTIVs 
Scenario 2  

WTIVs 
Scenario 3  

WTIVs 
2026 979 1 1 2 
2027 1,338 2 2 2 
2028 3,511 4 3 5 
2029 4,725 5 4 6 
2030 5,320 6 5 7 
2031 3,777 4 4 5 
2032 2,833 3 3 4 
2033 2,060 3 2 3 
2034 2,040 3 2 3 
2035 2,040 3 2 3 
2036 2,039 3 2 3 

4.4.3. Forecasted SOV Demand 

SOV  demand  was   computed  based  on  the 

cumulative number of installed turbines, assuming each 

SOV can service approximately 45 turbines per year 

(Table 3).

Table 3. SOV demand. 

Year Cumulative Capacity (MW) Cumulative Turbine (10 MW/Unit) SOVs 

2026 979 98 2 
2027 2,317 232 5 
2028 5,828 583 13 
2029 10,553 1,056 23 
2030 15,873 1,588 35 
2031 19,650 1,965 44 
2032 22,483 2,249 50 
2033 24,543 2,455 55 
2034 26,583 2,659 59 
2035 28,633 2,864 64 
2036 30,672 3,068 68 
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4.4.4. Strategic Implication 

Demand for WTIVs peaks between 2028 and 2030, 

reaching as many as 6 vessels in the baseline scenario 

and up to 7 in the pessimistic case. These findings 

highlight the urgency of advanced procurement and 

shipyard capacity planning. Due to the cumulative nature 

of turbine maintenance, SOV demand escalates steadily 

over time, requiring totally 68 vessels by 2036. This 

indicates a need for parallel investments in crew training, 

port infrastructure, and maintenance logistics. 

Meteorological downtime significantly affects vessel 

requirements. Reducing downtime through enhanced 

forecasting and vessel reliability can decrease required 

fleet size by 15–25%. WTIV construction lead times 

(typically 2–3 years) necessitate proactive forecasting. 

The dDP-W model offers a quantifiable framework for 

aligning vessel procurement with national energy 

transition goals. In summary, the scenario simulation 

demonstrates the dDP-W model's utility as a decision-

support tool, capable of quantifying infrastructure 

demand under variable conditions. The model's output 

provides actionable insights for stakeholders involved in 

vessel construction, port logistics, offshore wind project 

planning, and maritime workforce development. 

5. Conclusion 

This study addressed a pressing challenge within 

the offshore wind farm sector: the accurate prediction of 

fleet capacity requirements for Dynamic Positioning (DP) 

vessels, which are critical enablers of wind turbine 

installation and maintenance in marine environments. In 

response to the rapidly expanding offshore wind market, 

particularly in South Korea, a system dynamics-based 

model—referred to as the dDP-W model—was 

developed and validated to forecast the demand for both 

Wind Turbine Installation Vessels (WTIVs) and Service 

Operation Vessels (SOVs) from 2026 to 2036.  

The conclusion presented here reflects revisions 

made in alignment with reviewer feedback, including 

improved scenario modeling, the incorporation of 

realistic vessel productivity data, and the integration of 

cumulative turbine-based SOV demand. These 

enhancements have strengthened the model's realism 

and broadened its applicability to diverse stakeholder 

groups, such as shipbuilders, energy policymakers, and 

port authorities. 

By simulating multiple policy and weather-related 

scenarios, the dDP-W model has demonstrated its utility 

in revealing how vessel demand varies with fluctuations 

in offshore wind installation targets, technological 

progress, and environmental conditions. Results indicate 

that while WTIV demand is strongly tied to annual 

installation volume and weather-related downtime, SOV 

demand is largely driven by the accumulated number of 

operational turbines, growing steadily over time and 

necessitating parallel investments in maintenance 

infrastructure and workforce capacity.  

Furthermore, the model illustrates the strategic 

importance of early planning. Given the two- to three-

year lead time required for WTIV construction, accurate 

forecasts such as those provided by the dDP-W model are 

essential for mitigating risks of capacity shortages and 

optimizing long-term investment planning. These 

insights can contribute significantly to the success of 

national renewable energy transition efforts. 

Although the model incorporates robust structural 

logic and scenario testing, it is subject to limitations. For 

example, the assumption of a full transition to 10 MW-

class turbines simplifies a more complex reality involving 

phased technological adoption. Similarly, SOV demand 

was projected using fixed service coverage estimates 

without accounting for potential advances in 

autonomous maintenance solutions or drone-based 

inspections. Future research should aim to incorporate a 

broader set of vessel types—including cable layers, 

foundation installation vessels, and ROV support units—

into the model framework.  

Additionally, integrating high-resolution weather 

models and data-driven turbine failure rates could 

improve predictive accuracy. Despite these limitations, 

the dDP-W model represents a meaningful step toward a 

dynamic, systems-based understanding of DP vessel 

demand within the offshore wind ecosystem. Ultimately, 

this research underscores the importance of using 

feedback-driven modeling to inform the scaling of 

maritime infrastructure in parallel with offshore 

renewable energy goals. As South Korea and other 

nations intensify efforts to meet carbon neutrality targets, 

tools such as the dDP-W model can support more 

resilient, data-informed planning across the maritime 

energy supply chain. 
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