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ABSTRACT
Rural‑Urban Migration (RUM) has increasingly become a key adaptation strategy to climate and weather‑

related shocks in rural communities. Through rural‑urban migration (RUM, households gain access to remittances,
which are often reinvested in climate‑smart agriculture (CSA) practices. However, the outcomes of such invest‑
ments arenot straightforward, asRUMcan lead to either a loss or a gain in laborproductivity dependingonaccompa‑
nying interventions. This study examines the impact of RUM on technical efficiency and productivity among maize
smallholder farmers using panel data constructed from nationally representative Integrated Household Surveys
(2010–2017). The findings show that RUM, when not accompanied by CSA practices such as soil and water conser‑
vation, agroforestry, and conservation agriculture, leads to a significant reduction in technical efficiency, averaging
9%, with sharper declines in 2010 and 2013 (18%) and a more moderate effect in 2016/2017 (7%). Conversely,
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when RUM is combined with CSA adoption, it has a positive effect on technical efficiency, carrying important policy
implications. They thus highlight the need for policymakers to carefully monitor labor outmigrationwhile avoiding
restrictive migration policies that overlook the economic pressures driving RUM. Instead, policies should focus on
balanced strategies that retain part of the rural labor force and enhance households’ ability to convert remittances
into productive agricultural investments. Key interventions include strengthening rural labor markets, promoting
mechanization and labor‑saving technologies, as well as enabling the effective use of remittances through financial
literacy, improved extension services, and targeted support for CSA adoption.
Keywords: Stochastic FrontierModel; Technical Efficiencies; Rural‑UrbanMigration; Climate andWeather‑related
Shocks; Climate Smart Agricultural Practices

1. Study Context
Agricultural production has demonstrated a world‑

wide upward trajectory over the past few decades, with
global maize output nearly doubling from about half a
million metric tons in 1989 to slightly above a million
metric tons in 2016 [1], following the increased use of
chemical fertilizers and improved maize seed varieties.
In Africa, where agriculture is the cornerstone of eco‑
nomic growth [2], its performance in Sub‑Saharan Africa
(SSA) reveals a declining trend, with total agricultural
production reducing from 12.8 million metric tons in
1989 to 8.0 million metric tons in 2016 [3]. An inter‑
play of several constraints, including limited use of fer‑
tilizers, continued reliance on traditional crop varieties,
dependence on rain‑fed agriculture, fragmented land‑
holding sizes, and recurring extreme weather events, is
attributed to the underperformance of the agricultural
sector [4]. To address these challenges, many SSA coun‑
tries have aligned their national agrifood systems strate‑
gies with continental frameworks, such as the Com‑
prehensive Africa Agriculture Development Programme
(CAADP), currently the Kampala Declaration, which ad‑
vocates for allocating at least 10% of resources to rein‑
force agricultural resilience to climate shocks [5].

In line with other countries in the SSA region, agri‑
culture is still the backbone of economy in Malawi, con‑
tributing approximately 22.3% of GDP, 64% of employ‑
ment, 80% of export earnings, and 85% of the liveli‑
hoods in rural areas [6]. However, smallholder farming,
contributing 70% to the agricultural sector, is custom‑
ary and rain‑fed dependent. Recent registration of farm
households reveals that there are slightly more than

3.4 million farming households, with 90% of them cul‑
tivating maize [6]. Smallholder farmers are constrained
by soil fertility depletion, land fragmentation, and inse‑
cure land tenure, particularly among women who cul‑
tivate less than 0.45 of a hectare [7]. Given these con‑
straints, scholars and policymakers have advocated for a
shift of agricultural productivity growth as the primary
pathway out of food insecurity in developing countries
like Malawi [8]. On the contrary, climate and extreme
weather events, such as droughts, floods, and pest out‑
breaks, have intensified further compromising efforts in
the agricultural sector [9].

Following extremeweather events and their associ‑
ated effects on agricultural production, rural households
have sent some of their members to engage in rural‑
urbanmigration (RUM) as an adaptive response [10]. The
National Statistical Office (NSO, 2020) highlighted that
over 40% of rural population in Malawi had migrated
to urban centers in search of income and remittances to
support their households in adopting climate‑resilient
agricultural practices. RUM‑induced remittances have
become a critical source of livelihood support and an en‑
abler of investment in climate‑smart agriculture (CSA)
practices, namely, soil and water conservation, drought‑
resistant maize varieties, conservation agriculture, soil
amendments, and agroforestry systems [10,11]. Between
2002 and 2016, remittance inflows to rural areas in‑
creased significantly, from US$0.84 million to approxi‑
mately US$40 million, resulting in a rise in rural income
from 1% in 2000 to over 23% in 2020 [11].

Nevertheless, empirical evidence on the impact of
RUM and remittances on agricultural productivity re‑
mains inconclusive [11]. Some studies report positive
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outcomes, including improved access to inputs and in‑
creased knowledge sharing. In contrast, others docu‑
ment adverse effects, including reduced household labor
availability, insecure land tenure, and weakened agri‑
cultural decision‑making [11,12]. For example, in Mex‑
ico, households have primarily used remittances for con‑
sumption rather than productive investments. In Ghana,
RUM has reduced the availability of family labor for agri‑
cultural production, as well as led to changes in house‑
hold headship. These contradictory findings limit policy‑
makers' ability to design targeted interventions that har‑
ness RUM as a tool for enhancing agricultural resilience
and productivity [12]. In Malawi, empirical studies exam‑
ining the link between RUM and farm productivity, par‑
ticularly maize, the staple crop, remain sparse and frag‑
mented. This gap hinders a comprehensive understand‑
ing of the full potential of RUM as an adaptive strategy
and its role in promoting long‑term agricultural develop‑
ment and food security, particularly in the context of in‑
creasing youth migration from rural Malawi to more de‑
veloped countries such as Israel and South Africa [12,13].

This study thus makes a timely and policy‑relevant
contribution to the growing but fragmented literature
on the nexus between climate‑induced rainfall uncer‑
tainty (RUM), remittances, and agricultural productiv‑
ity in Malawi [14]. While previous research has broadly
examined the socio‑economic impacts of RUM and re‑
mittance flows in developing countries, the evidence re‑
mains inconclusive, particularly concerning their influ‑
ence on farm‑level productivity outcomes [14]. Firstly,
much of the existing literature has focused either on
the welfare or consumption effects of remittances or
on the labor substitution effects of remittances on agri‑
cultural output, often overlooking the complex and dy‑
namic role that remittances can play in facilitating in‑
vestment in conservation agriculture (CSA) practices. By
linking RUM to maize productivity outcomes, this study
addresses a critical gap in understanding whether and
how RUM can serve as an adaptive strategy to mitigate
the impacts of extreme weather events in smallholder
farming systems.

Secondly, while recent studies have explored the
role of climate‑smart agriculture (CSA) in enhancing re‑
silience and productivity, the literature has not suffi‑

ciently integrated the role of RUM‑financed CSA prac‑
tices on farm productivity [15,16]. Thus, this paper pro‑
vides new empirical evidence on how rural households
can leverage remittances to invest in CSA practices. By
doing so, the study extends the discourse on CSA to in‑
clude remittance flows as enablers of sustainable agri‑
cultural intensification. Thirdly, there is limited em‑
pirical work in Malawi that rigorously assesses the la‑
bor or productivity implications of RUM using panel‑
constructed data to control for unobserved heterogene‑
ity, selection bias, and endogeneity concerns. Ultimately,
the study examines the interplay between RUM, climate
smart agriculture, and technical efficiency of maize pro‑
duction in rural Malawi. Besides, the paper contributes
to broader policy and academic discussions onhowRUM
canbe re‑framednot just as a copingmechanismbut also
as an investment strategy for the agrifood systems in the
global fight against hunger and climate stress.

2. Study Methods
2.1. Study Area and Household Data

This study focuses on rural areas of Malawi, a
landlocked country in southeastern Africa bordered by
Tanzania, Mozambique, and Zambia. Administratively,
Malawi is divided into threemain regions, Northern, Cen‑
tral, and Southern, which are further subdivided into 28
districts, including four major urban centers that func‑
tion as economic and administrative hubs, see Figure 1.
The country experiences a single rainy season each year,
typically fromOctober to April, which plays a crucial role
in shaping agricultural activities and cropping calendars.
Malawi’s diverse topography, with elevations ranging
frombelow500 to over 1,500meters above sea level, cre‑
ates significant climatic variation across regions. These
elevation differences lead to wide disparities in average
temperatures and rainfall patterns during the growing
season, thereby influencing crop productivity and farm‑
ing practices. According to theWorld Bank (2020), aver‑
age temperatures during the cropping season generally
range between 23 °C and 25 °C. Annual rainfall, however,
varies significantly by location and year, averaging be‑
tween approximately 86mm and 238mm. This variabil‑
ity in climatic conditions presents both opportunities
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and constraints for agricultural production, especially
for staple crops such as maize, which are highly sensi‑
tive to weather fluctuations. A nuanced understanding
of Malawi’s agroecological and climatic context is there‑
fore essential for analyzing rural livelihoods, evaluating
adaptive strategies, and assessing the impacts of climate
variability on agricultural performance.

Figure 1. Map showing study districts in Malawi.

This study draws on data from the Integrated
Household Panel Survey (IHPS), administered by
Malawi’s National Statistical Office (NSO) in partner‑
ship with the World Bank over three waves between
2010 and 2017. The IHPS employed a multi‑stage strati‑
fied sampling design, beginning with the division of the
country into districts, followed by subdivisions into tra‑
ditional authorities and enumeration areas. From these,
approximately 3865 households were randomly se‑
lected for participation [16,17]. A balanced panel of 1300
households was constructed by tracking and matching
respondents across the 2010/2011, 2013 (n = 1272),
and 2016/2017 (n = 1289) survey rounds. The IHPS
collects comprehensive household‑level data on demo‑
graphics, education, labor and time use, food security,

income, credit access, consumption, asset ownership,
migration, and non‑farm enterprises. It also includes
information on institutional factors such as access to
land, input and outputmarkets, credit facilities, and agri‑
cultural extension services. Farm‑level data cover land
characteristics, input use, crop production, post‑harvest
storage, and sales. In the context of migration, the IHPS
captures whether any household member has relocated
to another area, including urban destinations. For this
study, households reporting at least onemigrant, regard‑
less of whether remittanceswere received, are classified
as households with a migrant (HWM), while those with‑
out any migrant members are designated as households
with nomigrant (HNM). These classifications are consis‑
tently applied across all three IHPS waves.

2.2. Theoretical and Empirical Strategy

Rural‑urban migration (RUM) has long been rec‑
ognized in academic literature, as early as the 1900s,
as a key livelihood strategy, particularly for income di‑
versification among rural households [18,19]. Yet, despite
its prominence in development discourse, the implica‑
tions of climate‑induced RUM for agricultural perfor‑
mance, especially the technical efficiency of staple crops
like maize, remain underexplored [20]. This study seeks
to fill that gap by investigating how climate variabil‑
ity influences migration decisions and, in turn, affects
maize production efficiency. Figure 2 presents a con‑
ceptual framework illustrating the interplay between
extreme weather events, climate‑driven RUM, adoption
of climate‑smart agriculture (CSA) practices, and their
combined effects on maize productivity. The framework
underscores how both household‑ and farm‑level char‑
acteristics shape migration choices, determine the like‑
lihood of adopting CSA technologies, and ultimately in‑
fluence the technical efficiency of maize production [20].
We assume that households receive remittances from
migrated members, which is further invested in CSA re‑
lated practices. In addition, the study conceptually pos‑
tulates that increased farm productivity at the house‑
hold level can influence climate‑induced rural‑urbanmi‑
gration, potentially triggering either positive or negative
feedback loops [20,21].
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Figure 2. Conceptual Framework of the Linkages Between Ex‑
tremeWeather, RUM, and Climate‑Smart Agriculture Adoption.

To empirically evaluate these relationships, the
study applies a panel‑based Cobb‑Douglas Stochastic
Frontier Analysis (SFA) alongside a two‑stage Tobit re‑
gression. Other than the Cobb‑Douglas, several Stochas‑
tic Frontier Analysis (SFA)models can be applied, includ‑
ing the linear, Translog, and the general Constant Elas‑
ticity of Substitution (CES) forms. However, this study
opts for the Cobb‑Douglas functional form, as it allows
for an initial estimation of technical efficiency attributed
solely to physical production factors [22]. This provides
a clear foundation for subsequently analyzing the im‑
pact of rural‑urban migration (RUM) on the technical ef‑
ficiency of maize production [23].

The analytical approach is grounded in a house‑
hold decision‑making model premised on random util‑
ity maximization, where migration occurs when the per‑
ceived benefits of relocating to an urban area outweigh
those of remaining in a rural setting. The study further
posits that rural households are increasingly exposed
to erratic and frequent climate shocks. In adapting to
these stresses, some households engage in migration as
a risk management strategy. Remittances received from
migrant members are often reinvested into CSA‑related
technologies, such as improved seed varieties or soil con‑
servation practices, with the aim of boosting productiv‑
ity and resilience.

Farm production analysis can be approached
through either parametric or non‑parametric frontier
methodologies, each with distinct analytical strengths
and assumptions [23]. Non‑parametric methods, most
notably Data Envelopment Analysis (DEA), do not re‑
quire the specification of a particular functional form
for the production function, nor do they rely on assump‑

tions about the statistical distribution of error terms. In‑
stead, DEA constructs a piecewise linear frontier based
on observed input‑output combinations, making it well‑
suited for identifying relative efficiency without impos‑
ing strong parametric constraints. In contrast, paramet‑
ric frontier models specify a functional form of a priori
and make explicit assumptions about the distribution
of the composite error term, typically distinguishing be‑
tween random noise and inefficiency. Among the most
commonly applied functional forms in parametric analy‑
sis are the Cobb‑Douglas (CD), Translog, Generalized,
and Transcendental production functions [24]. These
models are widely used due to their ability to accommo‑
date multiple inputs, capture technical inefficiency, and
allow for hypothesis testing within a stochastic frame‑
work.

Production functions represent the maximum out‑
put that can be achieved from a given combination of
inputs under prevailing technological conditions. This
study adopts a theoretical framework informed by the
works of Battese [24], which conceptualize production as
a process of transforming inputs into outputs. Central to
this framework is the notion of the production frontier,
the theoretical upper bound of output attainable when
inputs are used with full technical efficiency. While pro‑
duction functions themselves may lack direct economic
interpretation, they provide a powerful mathematical
foundation for analyzing optimization behavior in pro‑
duction settings. These functions are characterized by
essential properties such as weak monotonicity, quasi‑
concavity, non‑negativity, and essentiality, all of which
support their application in empirical economic analy‑
sis. In this study, production is modeled through an op‑
timization framework based on a latent utility function,
which ismaximized under amaize‑specific Translog pro‑
duction technology. The optimization is subject to spa‑
tial and temporal constraints on input availability, most
notably capital and labor. The econometric basis for
estimating technical efficiency stems from the pioneer‑
ing work of Farrell [25], who introduced the concept of
a production frontier. This approach was later formal‑
ized into the Stochastic Frontier Analysis (SFA) frame‑
work and later allowed for the decomposition of devi‑
ations from the frontier into inefficiency and statistical
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noise [26,27]. The specific SFA model employed in this
study is detailed in Equation (1).

yijt=f (xijkt,,t)≡lnyijt=βj

∑
xijt+βtt+vitk, (1)

Let yijkt denote the non‑negative farm productiv‑
ity of a household on a plot or farm at time. The vector
xijt(i=1, 2….,J) represents the quantity of input usedby
each household on a farm at a time, including conven‑
tional inputs as well as rural‑urban migration (RUM) as
a potential determinant of productivity. The parameters,
, are unknown coefficients to be estimated by the model.
To analyze the marginal effects of inputs, we apply stan‑
dard production theory assumptions. Specifically, we
derive the first and second partial derivatives of output
with respect to a single input holding all other inputs
constant. As established in Fuss et al. (1978), these are
given by: dyijt/dxjt ≥ 0 and d2yijt/dx

2
jt < 0, of one in‑

put while fixing the other inputs. These conditions en‑
sure that the production function satisfies weak mono‑
tonicity and concavity in inputs, which are foundational
for estimating economicallymeaningful production fron‑
tiers. As per the SFA construction assumption, the vitk is
the error term is composed of two parts: a symmetric
random error term (εitk) that captures statistical noise
(such as measurement errors or external shocks beyond
the farmerquotesingle s control), and a one‑sided ineffi‑
ciency term(uitk) that reflects the shortfall in output due
to technical inefficiency [27,28]. The random error term is
typically assumed to follow a normal distribution, while
the inefficiency term is assumed to followanon‑negative
distribution, such as half‑normal, truncated‑normal, or
exponential. This separation of the error components al‑
lows the model to distinguish between inefficiency and
random variation, making it crucial to clearly specify the
distributional assumptions and justify their appropriate‑
ness for the data at hand [27,28].

Technical inefficiency occurs when a household
fails to attain the maximum possible output given its
set of inputs, thereby operating below the production
frontier. It reflects the shortfall between actual and po‑
tential productivity [28]. A household is deemed techni‑
cally inefficient if it could either produce more output
(y) with the same input bundle (x) or achieve the same
output level using fewer inputs. In essence, technical in‑
efficiency signals suboptimal input utilization relative to
the efficient frontier. Although the impact of rural‑urban
migration (RUM)on the technical efficiency ofmaize pro‑
duction canbe estimatedusing a cross‑sectional Stochas‑
tic Frontier Analysis (SFA), this approach presents no‑
table limitations. Specifically, cross‑sectional models
often suffer from endogeneity and fail to capture tem‑
poral variations in efficiency. Furthermore, unless cor‑
rected through methods such as Corrected Ordinary
Least Squares (COLS), thesemodels rely on strong distri‑
butional assumptions and typically conflate inefficiency
with random noise. Panel data models offer a more ro‑
bust alternative by accounting for unobserved hetero‑
geneity, time‑specific effects, and potential state depen‑
dence. They enable more accurate estimation of ef‑
ficiency dynamics over time by controlling household‑
specific factors that remain constant across periods, as
well as time‑varying shocks. In this study, the Cobb‑
Douglas production function is employed as the empiri‑
cal specification due to its analytical simplicity, ease of
interpretation, and compatibility with frontier estima‑
tion techniques other than its counterparts: Translog
or Ordinary Least Squares Linear function forms [29].
When linearized, the model facilitates the identification
of RUM's impact on maize production efficiency, allow‑
ing for distinctions between households with migrants
(HWM) and those without migrants (HNM). The panel‑
based SFA model is formally presented in Equation (2).

uitk=β0+

N∑
i=1

βj lnPitk+

N∑
i=1

βj lnZitk+ωRUM it+ΩCSA∗RUM it+eit (2)

In the model, the β, ω and Ω represent vectors of
unknown parameters to be estimated. The term uit cap‑
tures the technical inefficiency associated with maize
production for households at a time. The vectorPitk rep‑

resents production inputs, including labor (measured in
person‑days), seed quantity (in kilograms), total land‑
holding size (in hectares), and chemical fertilizer use
(in kilograms). The vectorZitk includes household‑level
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socioeconomic characteristics hypothesized to influence
technical inefficiency, such as education, access to ex‑
tension services, and asset ownership. The error term
eit represents white noise, capturing measurement er‑
ror and other random shocks not attributable to ineffi‑
ciency. To investigate the effect of rural‑urban migra‑
tion (RUM) on technical efficiency, a two‑stage Tobit re‑
gression approach is employed. In the first stage, tech‑
nical efficiency scores are estimated from the Stochastic
Frontier Analysis (SFA) model [29,30]. The SFA can only
be applied if the data is negatively skewed [31], which be‑
comes a testable hypothesis before estimation. In the
second stage, following Pangapanga‑Phiri [2], a Tobit re‑
gression is used to examine how RUM and other house‑

hold characteristics influence the predicted technical
efficiency scores. This two‑stage framework accounts
for the censored nature of efficiency scores, which are
bounded between zero (0) and 1, and allows for the iden‑
tification of factors driving inefficiency in maize produc‑
tion [31]. bfTable 1 shows variables used during model‑
ing of the interplay between RUM, CSA, and technical ef‑
ficiency of maize production in rural Malawi as empir‑
ically guided [31]. Variables include physical factors of
production like seed, land, fertilizers, and labour, socio‑
institutional factors like age, gender, education, access to
credit, extension services, and markets like ADMARC, as
well as land characteristics like soil type (ST), soil quality
(SQ), and slope (SP).

Table 1. Data variables used in the study.
Variables Expected Sign Definition

Farm Productivity Yield in/ha
Seeds planted + Seed in kg
Labour + Personal labour days
Fertilizer applied + Fertilizer in kg
Land holding sizes +/− Farm size in ha
Age of household (HH) head +/− Age of HH head in years
Access to credit +/− Credit access = 1 if yes
Distance to ADMARC +/− Kilometer
Distance to main road +/− Kilometer
Attended any level of education +/− Attended education = 1 if yes
Highest education class +/− Years
Access to extension services + Extension access = 1 if yes
Gender +/− Gender of the hh head
Household size +/− Counts
Organic fertilizers + kg
CSA + CSA = 1 if adopted CSA practices
RUM +/− RUM = 1 if one HHmember migrated
Mobile phone +/− Own a mobile phone = 1 if yes
Remittance receipt +/− Received remittance = 1 if yes
Flat slope +/− Yes if flat slope
Gentle slope +/− Yes if gentle slope
Steep slope +/− Yes if steep slope
Very steep slope +/− Yes if very steep slope
Yes if good soil quality + Yes if good soil quality
Fair soil quality − Yes if fair soil quality
Yes if poor soil quality − Yes if poor soil quality
Clay soil type +/− Yes if clay soil type
Loamy soil type + Yes if loamy soil type
Sandy soil type +/− Yes if sandy soil type
Loamy sandy soil type +/− Yes if loamy sandy soil type

Note: +/− denotes the variables has either positive (+) or negative (−).

3. Results and Discussion
3.1. Descriptive Summary of Household

Characteristics

Table 2 provides a comprehensive summary of
household and farm‑level characteristics, comparing

householdswithmigrants (HWM) and thosewithoutmi‑
grants (HNM) over the period from 2010 to 2016/2017.
The data show that roughly 40% of the sampled house‑
holds have at least one member who has migrated to ur‑
ban areas, predominantly driven by various economic
incentives. Male‑headed households constitute about
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75% of the sample, though this proportion has declined
slightly from nearly 78% in 2010 to approximately 72%
in 2016/2017. This shift likely reflects demographic
changes influenced by RUM dynamics. The average age
of household heads is 46 years overall; however, HWM
are typically headed by older individuals, averaging 57
years, compared to an average age of 38 years among
HNM. This age gap suggests that younger, more eco‑
nomically active members tend to migrate to urban cen‑
ters in pursuit of better opportunities, leaving older
household members to manage farm operations. RUM
shows an upward trend, increasing from 35% in 2010
to just over 40% by 2016/2017. Education levels re‑
veal that over two‑thirds of households have attained

some formal schooling, typically up to grade five, indi‑
cating moderate literacy rates among the rural popula‑
tion. Meanwhile, mobile phone ownership has risen dra‑
matically from 58% in 2010 to 88% in 2016/2017, re‑
flecting enhanced access to communication technologies
that facilitate remittance transfers and information ex‑
change as highlighted in Pangapanga‑Phiri [2]. Regard‑
ing remittances, about 33%of householdswithmigrants
reported receiving financial support from their urban‑
based members, accounting for 13% of the total house‑
holds surveyed. These findings are consistent with prior
studies and underscore the increasing importance of mi‑
gration and remittance flows in shaping agricultural in‑
vestment decisions [32].

Table 2. Descriptive statistics of the household and plot‑level characteristics.
HNM HWM POOLED HNM vs HWM

Variables Mean Mean Mean Std. Dev. P‑value
Seed in kg 9.588 10.56 9.974 9.519 ***
Yield in/ha 1463 1538 1,493.251 1,144.091 **
Personal labour days 27.01 30.58 28.438 20.358 ***
Fertilizer in kg 46.43 47.52 46.864 59.554
Farm size in ha 0.478 0.550 0.507 0.473 ***
Age of hh head in years 37.93 57.17 45.614 15.369 ***
Credit access 0.127 0.116 0.123 0.329
Distance to the admark in km 7.497 7.500 7.498 5.163
Distance to the main road in km 9.369 9.676 9.492 9.867
Attended education 0.876 0.751 0.826 0.379 ***
Highest education class 6.001 4.368 5.349 4.262 ***
Extension access 0.628 0.674 0.646 0.478 ***
Gender of the hh head 0.804 0.674 0.752 0.432 ***
Hh size 5.459 5.156 5.338 2.301 ***
Organic fertilizer in kg 110.6 147.9 125.5 2.513 ***
Mobile phone 0.722 0.678 0.705 1.022
Remittance receipt 0.00 0.334 0.133 0.340 ***
Flat slope 0.673 0.650 0.664 0.472
Gentle slope 0.264 0.275 0.269 0.443
Steep slope 0.0460 0.0590 0.051 0.221 *
Very steep slope 0.0160 0.0160 0.016 0.126
Good soil quality 0.493 0.499 0.495 0.500
Fair soil quality 0.377 0.389 0.382 0.486
Poor soil quality 0.130 0.112 0.123 0.328
Clay soil type 0.211 0.210 0.210 0.408
Loamy soil type 0.545 0.519 0.535 0.499
Sandy soil type 0.218 0.243 0.228 0.420 *
Loamy sandy soil type 0.0250 0.0280 0.026 0.160

Note: t statistics in parentheses; * p < 0.10, ** p < 0.05, and *** p < 0.01.

The study further examines how households allo‑
cate key productive resources and the resulting impact
on maize production outcomes. On average, households
cultivate 0.52 hectares of maize, with those having mi‑
grant members (HWM) tending to farm slightly larger
plots, about 0.55 hectares, compared to 0.48 hectares
cultivated by households without migrants (HNM). Dif‑

ferences in productivity are also apparent: the aver‑
age maize yield across all households stands at 1493
kg per hectare, but HWM achieve a notably higher
mean yield of approximately 1556 kg/ha, surpassing
the 1463 kg/ha recorded for HNM. This yield gap of
roughly 83 kg/ha likely reflects the positive influence
of remittances, among other factors, which may enable
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greater investment in improved inputs and farming prac‑
tices. Labor allocation follows a similar pattern, with
HWM dedicating an average of 30 person‑days per sea‑
son to farm work, slightly more than the 27 person‑
days reported by HNM. Fertilizer use also differs, al‑
beit marginally; both groups typically apply about one
50 kg bag of inorganic fertilizer per plot, with HWM
averaging 48 kg of NPK fertilizer compared to 46 kg
by HNM. More pronounced variation is evident in or‑
ganic fertilizer application, where HWM apply an aver‑
age of 148 kg per plot, substantially exceeding the 110
kg applied by HNM. Additionally, approximately 65% of
households report receiving agricultural extension ser‑
vices, indicating amoderatelywidespread level of techni‑
cal support across the sample. Collectively, these dispar‑
ities in resource allocation and access to extension ser‑
vices help explain the observed differences inmaize pro‑
ductivity and technical efficiency between migrant and
non‑migrant households [33].

Figure 3 provides a comprehensive overview of
household and plot‑level characteristics across the 2010
to 2017 survey periods. A striking trend is the substan‑
tial increase in household access to agricultural exten‑
sion services. In 2010, only 41%of households reported
receiving extension support; this figure rose sharply
to 70% in 2013 and further climbed to 90% by 2016.
This pronounced growth signals a strengthened institu‑
tional commitment to smallholder farmers, likely facil‑
itating broader dissemination and adoption of modern
and climate‑resilient agricultural practices. Regarding
farm characteristics, approximately 66% of households
cultivated land on flat terrain, while 27% farmed on gen‑
tly sloping (SP) land. These topographical variations
carry important agronomic implications, influencing fac‑
tors such as soil erosion and water retention, both criti‑
cal for sustainable maize production. Perceptions of soil
quality (SQ) varied across the sample, with nearly half of
households rating their soil as good, and 38%describing
it as fair. Encouragingly, perceived soil quality showed
a gradual improvement over the survey years, likely
driven by increased adoption of sustainable land man‑
agement (SLM) practices such as soil and water conser‑
vation, organic fertilization, and agroforestry. In terms
of soil types (ST), 54%of households cultivatedon loamy

soils, known for their favorable texture and nutrient‑
holding capacity, making them ideal for crop production.
Conversely, 23% farmed on sandy soils, which generally
have lower fertility and aremore prone to nutrient leach‑
ing. These findings highlight the critical need to tailor
soil improvement interventions and extension services
to local conditions, thereby enhancing farm productivity
and resilience [34,35].

Figure 3. Household and Plot‑level Characteristics: Propor‑
tional Trends from 2010 to 2017.
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3.2. Stochastic Frontier Analysis and Ro‑
bustness

Before estimating the empirical models, the study
undertakes a series of diagnostic tests to ensure the ro‑
bustness of both the data and the selected model spec‑
ifications. A crucial preliminary step involves applying
the Schmid and Lin residual test to determine the suit‑
ability of using the Stochastic Frontier Analysis (SFA)
framework [35]. This test requires that residuals from
an Ordinary Least Squares (OLS) regression exhibit neg‑
ative skewness, indicating the presence of a one‑sided
error component attributable to technical inefficiency,
a key assumption underlying the SFA model. As illus‑
trated inFigure4, the skewness and kurtosis test results
confirm this condition. Specifically, residuals from both
fixed‑effects and random‑effects panel models demon‑
strate significant negative skewness, consistent with the
asymmetric error structure inherent to SFA. This allows
us to confidently reject the null hypothesis of symmetry
and supports the appropriateness of employing the SFA
framework for analyzing technical inefficiency in maize
production. Moreover, the kurtosis statistics show pos‑
itive values, indicating distributions with heavier tails
than a normal distribution. This suggests the existence
of outliers or extreme inefficiency scores, which the SFA
methodology is designed to handle effectively. Taken to‑
gether, these diagnostic outcomes underscore the relia‑
bility and robustness of the empirical approach adopted
in this study.

Figure 4. Skewness and kurtosis tests.

The study further evaluated the validity and ro‑
bustness of the Stochastic Frontier Analysis (SFA)model
specification through the log‑likelihood ratio (LR) test,

which examines the presence of inefficiency effects by
testing the null hypothesis that no one‑sided error com‑
ponent exists. This test is conducted followingmodel es‑
timation via the Maximum Likelihood (ML) method. At
one percent significance level, the LR test statistics for
both households with migrants (HWM) and those with‑
out migrants (HNM) significantly exceeded the critical
value of 5.412, providing strong evidence to reject the
null hypothesis of zero technical inefficiency. This con‑
firms that the SFA model is well‑suited to capture inef‑
ficiency in maize production. In addition to the LR test,
panel unit root tests were performed to verify the sta‑
tionarity of the data, a necessary condition to avoid spu‑
rious regression results. Both the Levin‑Lin‑Chu and Im‑
Pesaran‑Shin tests were applied, and neither indicated
the presence of unit roots at the one percent significance
level. These findings confirm that the variables included
in the model are stationary, thereby reinforcing the re‑
liability of the panel data estimations. Together, these
diagnostic procedures strengthen the credibility of the
model and bolster confidence in the robustness of the
empirical results [35]. Furthermore, the use of panel data
in two‑stage selection models helps address potential
endogeneity arising from unobserved variables [35]. In
addition, the study employs several variants of the SFA‑
Cobb‑Douglas model as robustness checks to validate
the results. This includes estimating technical efficiency
and applying a two‑stage Tobit selection model, using
both pooled data and separate estimations across differ‑
ent waves to ensure consistency and reliability of the
findings.

3.3. Do Rural‑Urban Migration and Adop‑
tion of Climate‑Smart Agriculture Prac‑
tices Enhance Maize Productivity?

This study posits that remittances from rural‑
urbanmigration (RUM) facilitate the adoptionof climate‑
smart agriculture (CSA) practices, which in turn enhance
maize productivity amid climate variability and extreme
weather events. However, we hypothesize that the pos‑
itive effect of RUM‑related remittances on agricultural
productivity manifests primarily when coupled with the
adoption of CSA technologies. To investigate this, a two‑
stage Tobit sample selection regression approach is em‑
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ployed to estimate the impact of RUM on the technical
efficiency of maize production under adverse climatic
conditions as presented in Pangapanga‑Phiri [2], while
controlling for any potential presence of endogeneity
due to unobservable covariates [36,37], with results sum‑
marized in Table 3. In the first stage, the Battese and
Coelli (1995) Cobb‑Douglas Stochastic Frontier Analysis
(SFA) is applied separately to households with migrants
(HWM) and those without migrants (HNM). This step
assesses the contribution of various physical inputs to
maize productivity and generates household‑level tech‑
nical efficiency scores, which serve as the dependent
variable in the second stage. The second stage utilizes
a panel‑based Tobit regression to examine how RUM in‑
fluences these technical efficiency scores. Qualitative ev‑
idence supports the notion that households engage in
RUM as a copingmechanism to offset the adverse effects
of extreme weather, channelling remittances into CSA
practices that bolster maize yields. Table 3 presents the
findings, with Columns (1–4) showing the SFA estima‑
tion results and Columns (5–8) displaying the Tobit re‑
gression outcomes. Themodel’s log‑likelihood ratio test
is highly significant at the one percent level, confirming
the robustness of the specification and its suitability for
capturing productivity differences between HWM and
HNM households. The subsequent discussion focuses
primarily on the key insights derived from Columns (1–
3). However, the study does not examine the effect of
land productivity on rural‑urban migration as much of
the focus is placed on whether labour outmigration in‑
fluences land productivity in rural communities.

Several key factors drive maize productivity, with
farm size emerging as a particularly strong and statis‑
tically significant determinant. The results reveal that,
holding other variables constant, an increase of one acre
in cultivated land corresponds to a 12% rise in maize
productivity at the one percent significance level. This
effect is notably more pronounced among households
with high maize yields (HWM), who experience a 45%
increase, compared to only an 8% gain for households
with low maize yields (HNM). This disparity suggests
that land constraints may more severely limit productiv‑
ity improvements amongHNMhouseholds. Beyond land
size, input use plays a critical role in shaping productiv‑

ity outcomes. The analysis shows that an additional 100
kilograms of seed usage increases maize productivity by
8%, all else equal. Inorganic fertilizer application has an
even stronger impact, boosting productivity by 36%. La‑
bor input, measured in person‑days, also contributes sig‑
nificantly to productivity for both HWMandHNMhouse‑
holds. However, the marginal gain per additional labor
day ismuch smaller for HWMhouseholds, 3% compared
to 22% forHNMhouseholds, potentially reflecting differ‑
ences in labor quality, efficiency, or management prac‑
tices. These findings are consistentwith earlier research,
reinforcing the importance of land availability, input in‑
tensity, and labor effectiveness in driving maize produc‑
tivity [36,37].

Rural‑urban migration (RUM) does not directly in‑
crease maize productivity levels but significantly influ‑
ences maize production through its impact on technical
efficiency [37]. This distinction is important becauseRUM
primarily alters the availability and allocation of produc‑
tive household labor, which affects the efficiency with
which inputs are used. The Tobit regression results re‑
ported in Table 3 (Columns 5–8) reveal that the coeffi‑
cient for RUM is statistically significant at one percent
level, demonstrating the model’s robustness and sensi‑
tivity in capturing even subtle effects of migration on ef‑
ficiency. This strong statistical evidence supports the in‑
tuition that RUM plays a meaningful role in enhancing
the effectiveness ofmaize production rather thanmerely
increasing output quantity.

The study reveals that RUM has a statistically sig‑
nificant and negative impact on the technical efficiency
of maize production in Malawi, primarily due to reduc‑
tions in labor productivity. This negative effect is largely
driven by the decreased availability of productive fam‑
ily labor, which is vital for labor‑intensive tasks such
as timely weeding, fertilizer and organic manure appli‑
cation, and other essential agronomic practices. These
activities are crucial for buffering maize yields against
weather variability, especially in smallholder farming
systems where mechanization options are limited. The
results indicate that, holding other factors constant,
RUM reduces technical efficiency by an average of 9%
over the study period. When examined by year, the
negative impact is more pronounced between 2010 and
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2013, with an 18% decline, compared to a 7% reduction
in 2016. These findings highlight the disruptive conse‑
quences of labor shortages caused by migration, partic‑
ularly when lost labor is not replaced through alterna‑
tive means such as hired help or mechanization. This
aligns with prior research documenting the adverse ef‑

fects of migration on agricultural productivity through
labor substitution and diminished household engage‑
ment in farming activities. Collectively, the evidence un‑
derscores the need for policy interventions that address
rural labor constraints to protect agricultural productiv‑
ity in the face of climate stresses [37–42].

Table 3. Two‑ Stage Tobit regression Results on the impact of RUM on the technical efficiency and farm productivity.
SFA (Farm Productivity) Tobit(Technical Efficiency)

1 2 3 4 5 6 7 8
HNM HWM POOLED POOLED POOLED 2010 2013 2016

Log(farm size) Ha 0.447*** 0.078*** 0.116** 0.136*** 0.019*** 0.003 0.024*** 0.057***
(16.39) (13.20) (3.29) (3.70) (5.18) (0.46) (3.65) (9.38)

Log(seed) Kg 0.178*** 0.890*** 0.083*** 0.072*** 0.032*** 0.014*** 0.019*** 0.101***
(12.19) (25.08) (38.96) (19.99) (15.02) (4.83) (4.12) (17.65)

Log(labor) Personal days 0.310*** 0.216* 0.183** 0.186** 0.015* 0.011 0.013 −0.018
(5.70) (2.37) (2.95) (3.10) (−2.14) −0.84 (−1.05) (−1.63)

Log(fertilizer) Kg 0.208*** 0.360*** 0.361*** 0.286*** 0.006*** 0.001 0.008** 0.006*
(18.17) (15.36) (25.37) (19.93) (4.43) (0.21) (3.02) (2.52)

Gender Male = 1 0.029*** 0.040* 0.025 0.017
(3.75) (2.57) (1.77) (1.46)

Age Years 0.001 0.002 0.005* 0.002
(0.66) (0.94) (2.25) (1.83)

Age square Years −0.000 −0.000 −0.000 −0.000*
(−0.77) (−0.89) (−1.79) (−2.21)

Literacy Yes = 1 0.01 0.024 0.019 0.042***
(1.39) (1.78) (1.43) (3.57)

Extension Access = 1 0.012 0.01 0.058*** 0.038***
(1.90) (0.80) (4.77) (3.29)

Rum Yes = 1 −0.085*** −0.178*** −0.183*** −0.068**
(−5.89) (−4.96) (−6.43) (−2.97)

Rum*csa Interaction 0.017*** 0.047*** 0.038*** 0.009*
(6.84) (6.14) (7.53) (2.36)

Year Number −0.001*** −0.001*** −0.001*** −0.001***
(18.61) (19.47) (−33.33) (−34.75)

Gentle slope Yes = 1 0.227***
(−3.45)

Steep slope Yes = 1 −0.016
(−0.15)

Loamy soil Yes = 1 0.090***
(14.32)

Sandy soil Yes = 1 −0.721***
(9.12)

Fair soil type Yes = 1 −0.451***
(−6.99)

Poor soil type Yes = 1 −0.487***
(−5.41)

χ2 1057.74*** 471.61*** 1922.12*** 2672.14*** 282.66*** 30.02*** 90.93*** 622.70***
N 2533 1332 3865 3865 3827 1288 1266 1273

Note: t statistics in parentheses;* p < 0.10, ** p < 0.05, *** p < 0.01.

The study reveals that although RUM alone exerts a
negative effect on technical efficiency, which agreeswith
previous studies in Malawi [42–44], its interaction with
CSApractices produces a positive and statistically signifi‑
cant impact on maize production efficiency. Specifically,
households receiving remittances from migrated mem‑
bers who invest in CSA practices, such as soil and wa‑
ter conservation, drought‑tolerant maize varieties, and

agroforestry, are able to partially offset the labor losses
associated with migration. The results indicate that this
interaction between RUM and CSA adoption increases
technical efficiency by an average of 2% across the study
area, holding other factors constant. When disaggre‑
gated by year, the efficiency gains are 5% in 2010, 4%
in 2013, and 1% in 2016. These findings suggest that
remittances are being strategically redirected toward
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productivity‑enhancing technologies and practices that
help mitigate the adverse effects of weather variability.
However, without such investments, CSA adoption may
remain limited, particularly among HWM facing labor
shortages due to the intensive labor demands of these
practices. Additionally, constraints such as underdevel‑
oped agricultural input markets in rural areas may hin‑
der the effective use of remittances, thereby limiting
the full potential of RUM as a climate adaptation mech‑
anism [45,46] . These results corroborate earlier research
highlighting that the productivity benefits of migration
are contingent upon complementary agricultural invest‑
ments [47–52].

3.4. Conclusion and Recommendations

Rural‑urban migration (RUM) is increasingly em‑
ployed by households as a strategic adaptation to cope
with climate variability and weather‑related shocks that
threaten agricultural livelihoods. This migration strat‑
egy not only diversifies household income through re‑
mittance inflows but also facilitates the transfer of
knowledge, skills, and innovations from migrants to
their home communities. These remittances and inno‑
vations are often reinvested in agricultural inputs and
climate‑resilient farming practices, potentially enhanc‑
ing productivity and strengthening resilience in small‑
holder farming systems. This study explores the inter‑
play of RUM, CSA, and the technical efficiency of maize
production by applying a two‑staged stochastic frontier
analysis (SFA) framework in rural Malawi. The findings
reveal that, when considered independently, RUM exerts
a negative influence on technical efficiency in maize cul‑
tivation. The primary driver of this adverse effect is the
reduction in available household labor, which is critical
for completing labor‑intensive agronomic tasks such as
timely weeding, fertilizer application, and organic ma‑
nure use. These activities are essential to mitigating the
detrimental effects of erratic weather and ensuring opti‑
mal crop performance.

The study’s finding that rural‑urban migration
(RUM) reduces technical efficiency by an average of 9%
carries significant policy implications. This decline high‑
lights the need for policymakers to closely monitor and
manage labor outmigration from rural areas. Impor‑

tantly, the mitigating effect of Climate‑Smart Agricul‑
ture (CSA) adoption on the productivity losses associ‑
ated with RUM suggests that policy should not focus on
restricting migration, often driven by economic neces‑
sity, but rather on developing balanced strategies that
retain a portion of the rural workforce while enabling
households to benefit from migration. Such strategies
could involve investing in rural community labour mar‑
kets, promoting mechanization, and supporting labor‑
saving technologies to address labor shortages. Simulta‑
neously, policies should facilitate the productive use of
remittances by enhancing financial literacy, expanding
extension services, and incentivizing investment in CSA
practices such as soil and water conservation, drought‑
resistant crop varieties, and agroforestry systems. Fu‑
ture researchwould, however, examine the effect of farm
productivity on labour outmigration in rural communi‑
ties.
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