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ABSTRACT

The volatility of agricultural prices in Peru poses a critical challenge to food security and economic stabili-
ty, particularly for key crops such as artichoke, whose price fluctuations directly affect producers’ incomes and 
the accessibility of food for the population. This study evaluates the accuracy of several time series forecasting 
models—namely, SARIMA, ARIMA, Holt-Winters, Holt, and Naive—in predicting the average monthly price of 
artichoke in Lima, using historical data collected between January 2021 and December 2024. A comprehensive 
methodological approach was implemented that combines automated parameter optimization (using the Akaike 
Information Criterion, AIC), a 12-month retrospective validation, and the assessment of percentage errors against 
actual price values observed in January and February 2025. The results indicate that the SARIMA model ((0,0,1)
(0,1,0),12) achieved the lowest average error of 12.16%, and it demonstrated exceptional accuracy in February, 
with only a 5.62% deviation. This superior performance is attributed to its ability to capture complex seasonal 
patterns inherent in the data. In contrast, the Holt-Winters model exhibited the poorest performance, recording 
an average error of 17.41% and a particularly high error of 32.99% in February, which underscores its limitations 
in managing nontraditional seasonal fluctuations. Additionally, while the Naive model proved highly accurate for 
very short-term forecasts in January (0.50% error), it was found to be unsuitable for extended forecasting hori-
zons, as evidenced by a 28.94% error in February. Residual analysis further confirmed that SARIMA generates 
more robust predictions, with residual correlations that closely approximate white noise.
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1. Introduction
The economic stability of food prices in Peru has 

a significant impact on both the population and the 
country’s economy. This phenomenon is driven by the 
Peruvian population’s high dependence on basic food 
products, a concern widely addressed in economic 
literature. In Peru, where a considerable portion of 
household income is allocated to food purchases, a 
sudden increase in prices can lead to greater food 
insecurity, disproportionately affecting low-income 
households [1]. Moreover, food price volatility not only 
affects consumers’ purchasing power but also gener-
ates inflationary pressures on the economy, potentially 
exacerbating poverty and hunger in the country [2,3]. 
Therefore, food price stability is crucial for both social 
and economic well-being, as it prevents the erosion of 
purchasing power among the most vulnerable popu-
lations while fostering a more predictable and healthy 
economic environment.

The importance of predicting food prices in Peru 
lies in the need to anticipate changes that may impact 
both food security and overall economic stability. 
Forecasting these prices enables policymakers to im-
plement mitigation measures and proactively adjust 
agricultural and trade strategies. The ability to respond 
swiftly to price fluctuations can be crucial in minimiz-
ing the negative effects on both consumers and agri-
cultural producers [1–4]. Furthermore, an effective price 
forecasting system provides valuable information for 
financial markets and investments in the agricultural 
sector, assisting economic agents in making informed 
decisions that optimize resources and mitigate risks [2,5].

Regarding forecasting models used to predict food 
prices, the literature presents a variety of approaches. 
Among the most common are time series models and 
econometric methods such as Autoregressive Distrib-
uted Lag (ARDL) and Structural Vector Autoregression 
(SVAR), which have proven effective in assessing the 
relationship between food prices and other economic 
factors [6,7]. These models capture the dynamics of food 
prices in response to various variables, including mac-
roeconomic conditions and global factors such as trade 
policies and fluctuations in input prices [8]. Additionally, 
nowcasting models have been developed to estimate 

food price inflation in near real-time, enabling policy-
makers to respond rapidly to sudden price surges [1–9].

The application of forecasting models in previ-
ous studies has provided valuable insights into food 
price behavior and its relationship with the economic 
structure of developing countries. For instance, several 
studies have employed econometric models to analyze 
how food inflation rates in Peru may be influenced by 
international prices and local economic conditions [3,10]. 
These studies not only contribute to understanding 
the population’s vulnerability to food price fluctua-
tions but also highlight the need for more effective and 
adaptive food security policies aimed at stabilizing the 
supply and demand of essential goods during crises 

[11,12]. In this context, the necessity of robust and accu-
rate forecasting models becomes evident, as they are 
crucial for policy planning and design, ensuring both 
economic and food stability in the country.

1.1. Artichoke in the Economy

Artichokes hold significant relevance in the Peru-
vian economy, primarily due to their position as a key 
export product. In Peru, this crop has demonstrated 
steady growth in international markets, becoming 
one of the most prominent exports, particularly to the 
United States and Europe. This increase in interna-
tional demand not only promotes income generation 
for producers but also contributes to the economic de-
velopment of the regions where it is cultivated, as the 
land area dedicated to cultivation and the labor force 
involved have expanded in response to this demand [13].

Artichoke prices have a direct impact on the 
agricultural market in Peru. Price increases benefit 
farmers by allowing them to earn higher incomes, 
reflecting a balance between supply and demand in 
the market. However, significant price fluctuations 
can lead to economic instability for producers and 
affect the affordability of this food, particularly among 
low-income populations. Price dynamics can be influ-
enced by factors such as weather conditions, produc-
tion costs, and changes in global demand, which in 
turn affect farmers’ decisions regarding planting and 
marketing [14].
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1.2. Programming and Statistics

To forecast artichoke prices, various forecasting 
models can be employed. Time series models, such 
as ARIMA and VAR (Vector Autoregressive Models), 
are commonly applied in agricultural econometrics to 
analyze historical price data and generate projections 
based on identified patterns. These models are partic-
ularly useful due to their ability to account for season-
ality and inherent trends in agricultural production 
[15]. Additionally, machine learning techniques, such as 
neural networks and decision trees, are increasingly 
being implemented, as they can capture nonlinear and 
complex relationships among variables in large data-
sets, offering a more robust approach to forecasting in 
agricultural markets [16].

The use of computational tools like Python is es-
sential in developing these forecasting models due to 
its versatility and the extensive availability of statisti-
cal and machine learning libraries. Python streamlines 
data analysis processes and the implementation of 
complex algorithms, enabling the creation of precise 
models that can adapt to diverse market conditions [17]. 
Its capacity to perform dynamic analyses and simulate 
future scenarios represents an invaluable resource 
for farmers and economic agents seeking to optimize 
commercial and strategic decisions in the context of 
artichoke production.

Python’s role in developing forecasting models 
for artichoke prices—and food products in general—
is critical for several reasons. First, Python’s ability to 
manage and analyze large datasets is vital in an agri-
cultural context where extensive historical price data 
is available. The integration of libraries such as Pandas, 
NumPy, and Scikit-learn enables analysts to conduct 
advanced statistical analyses and apply machine learn-
ing techniques with relative ease, resulting in more 
accurate and efficient predictive models [18]. Further-
more, Python provides an accessible and flexible envi-
ronment widely adopted by the scientific community, 
which can be integrated with other technological tools 
and platforms, facilitating the organized and effective 
execution of complex forecasting projects [19].

Predicting food prices can have a significant im-
pact on food security and Peru’s economy. Accurate 

price anticipation allows producers to plan cultivation 
and commercialization strategies, thereby optimizing 
economic returns. This predictability is also crucial for 
consumers and government policies, as it enables the 
assessment of food availability and access at reason-
able prices. In a context where food insecurity remains 
a persistent challenge, forecasting future prices can 
help mitigate scarcity risks and ensure vulnerable pop-
ulations maintain access to nutritious food [20,21]. This 
becomes even more relevant during crises, such as the 
COVID-19 pandemic, where price volatility severely 
impacted household economies and food security [22]. 

This Python-based forecasting project for arti-
chokes is significant not only for its economic implica-
tions but also for its potential to contribute to agricul-
tural sustainability. By leveraging historical and current 
data to model price projections, producers can make 
informed decisions that promote optimal resource use 
and equitable food distribution in the market. This 
stabilizes prices and enhances access to essential prod-
ucts for the population. Effective price prediction can 
strengthen Peru’s agricultural market structure, align-
ing with Sustainable Development Goals (SDGs) related 
to zero hunger and food security [23,24].

1.3. Literature Review

Models such as ARIMA (Autoregressive Integrated 
Moving Average) and SARIMA (Seasonal ARIMA) have 
been widely employed for forecasting food prices due 
to their efficacy in time series analysis. These models 
are integral to economic planning, agricultural manage-
ment, and food security, enabling stakeholders to make 
informed decisions based on predicted price trends.

A significant application of the ARIMA model is 
evident in Zomchak and Kukhotska’s study, which fore-
casts wheat prices in Ukraine. Their work emphasizes 
the critical role food price dynamics play in economic 
strategies and agricultural commodity management. 
The research demonstrates that ARIMA effectively 
captures the temporal dependencies in wheat prices, 
thereby informing policymakers and producers [25]. 
Similarly, Mitra and Paul explore hybrid time-series 
models, confirming ARIMA’s precedence in agricultural 
commodities forecasting. They indicate that address-



276

Research on World Agricultural Economy | Volume 06 | Issue 03 | September 2025

ing homoscedasticity through approaches like ARCH/
GARCH alongside ARIMA leads to improved forecasting 
outcomes [26]. In addition, Wanjuki et al. utilized SA-
RIMA models to predict the food and beverages price 
index in Kenya, highlighting the model’s capability to 
account for seasonal variations within the data. This is 
crucial since many food prices exhibit seasonality due 
to agricultural cycles, thus enhancing the precision of 
forecasts in the food industry [27]. This seasonal aspect 
is supported by findings from Nurjati and Wiryawan, 
who applied SARIMA to predict shallot prices while 
identifying the model’s strengths in capturing seasonal 
fluctuations during the agricultural year [28].

Moreover, Menculini et al. broaden the discussion 
by comparing ARIMA to contemporary methods, such 
as Prophet and deep learning algorithms. Their ex-
ploration into wholesale food prices underscores the 
relevance of ARIMA in traditional forecasting environ-
ments while elucidating the emergent methodologies 
that complement ARIMA in a competitive landscape [29]. 
This combination of traditional and advanced methods 
illustrates the adaptability of ARIMA models across di-
verse forecasting scenarios.

Finally, the findings by Rosni and Othman further 
solidify ARIMA’s utility through comprehensive analy-
sis in the context of Malaysia’s food security inflation. 
Their results indicated robust performance of the 
model in accurately predicting food prices, especially 
in situations where data quality might be limited, thus 
validating ARIMA as a practical tool in economic as-
sessments related to food security [30].

2. Materials and Methods

2.1. Forecast Models

The Naive forecasting model is one of the simplest 
and most widely used methods in time series analysis. 
This model is based on the idea that future predictions 
can be made using the last observed value of the series. 
Specifically, the forecast for the next period is equal to 
the most recently known value, implying that no signif-
icant changes in trend or seasonality are expected—an 
assumption that may be valid in certain applications 
and contexts [31]. However, its accuracy is variable and 

it might not adequately capture the price dynamics in 
volatile markets [32].

The ARIMA model, which stands for “Autoregres-
sive Integrated Moving Average,” is a popular model 
for forecasting time series. This model is especially 
effective for data that are stationary or can be trans-
formed into stationary data through differencing. The 
ARIMA structure is composed of three parameters: p 
(autoregressive order), d (the number of differences 
needed to achieve stationarity), and q (moving average 
order). This flexibility allows ARIMA to model various 
data characteristics [33,34]. In Python, ARIMA can be ap-
plied using the statsmodels library. A plethora of stud-
ies has demonstrated that the ARIMA model produces 
remarkable results in predicting diverse phenomena, 
such as the incidence of diseases or the behavior of 
prices in financial markets [34,35].

The extension of ARIMA that takes seasonality 
into account is the SARIMA (Seasonal ARIMA) model, 
which includes seasonal components in its structure. 
The SARIMA model is generally defined as SARIMA 
(p, d, q) (P, D, Q, S), where P, D, and Q are the seasonal 
parameters and S is the seasonal frequency [35]. This 
approach is particularly useful when the data exhibit 
significant seasonal patterns. The use of SARIMA has 
been widely documented for diverse applications, in-
cluding disease outbreaks where the data display sea-
sonal variation [36,37]. When applying the SARIMA model 
in Python, a similar logic to that of ARIMA is employed, 
but with the specification of seasonal components. 
This model has proven effective in forecasting prices in 
various contexts, such as the incidence of diseases [30]. 
Previous studies suggest that combining SARIMA mod-
els with neural networks can further enhance forecast-
ing accuracy in complex contexts [37].

The Holt forecasting model is an extension of 
the exponential smoothing method that allows for 
the modeling of time series with trends. This model 
is based on two main components: the level and the 
trend. Similar to the simple exponential smoothing 
method, Holt uses a smoothing parameter (α) for the 
level, but includes a second parameter (β) that facil-
itates trend estimation. This approach renders the 
model more robust to changes in the data and useful 
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for forecasting prices in time series where a rising or 
falling trend is observed [38]. This type of forecast is 
useful in contexts such as predicting agricultural prod-
uct prices, where the trend may be a determining fac-
tor in the prices [39].

The Holt-Winters model, also known as the sea-
sonal exponential smoothing method, is an extension 
of the Holt model that also incorporates seasonality. 
This model employs three components: the level, the 
trend, and the seasonality, thereby allowing for the 
modeling of time series that exhibit significant season-
al patterns. Holt-Winters can be configured in its addi-
tive or multiplicative versions, depending on the nature 
of the time series [40]. This model is useful in forecasting 
contexts where market data exhibit seasonal patterns, 
such as commodity prices [41] or energy prices [42]. The 
implementation of Holt-Winters smoothing tends to 
outperform simpler models in terms of forecasting ac-
curacy in scenarios with seasonal patterns [43].

2.2. ARIMA and SARIMA Models

The development of ARIMA (Autoregressive Inte-
grated Moving Average) and SARIMA (Seasonal ARI-
MA) models was based on monthly average artichoke 
price time series data in Lima, provided by the Ministry 
of Agricultural Development and Irrigation (MIDAGRI) 
from 2021 to 2024. The study variable, expressed in 
Peruvian soles (PEN), modeled historical market fluc-
tuations using autoregressive (AR), moving average 
(MA), integration (I), and seasonal components. To en-
sure stationarity—a core requirement for ARIMA—an 
augmented Dickey-Fuller test was applied, identifying 
first-order differencing (d = 1) for ARIMA. In SARIMA, 
seasonal differencing (D = 1) with a 12-month period 
(S = 12) addressed inherent annual agricultural cycles. 
The final ARIMA model was specified as (p = 2, d = 1, q 
= 2), where the autoregressive order (p = 2) captures 
price dependencies on the two preceding months, and 
the moving average component (q = 2) models accu-
mulated random shocks. Parameters were optimized 
via automated grid search (ranges: p = 0–3, d = 0–2, q 
= 0–3), selecting configurations with the lowest Akaike 
Information Criterion (AIC). SARIMA was defined as 
((0,0,1) (0,1,0), 12), featuring a simple moving average 

term in the non-seasonal component (p = 0, d = 0, q = 
1) and annual seasonal differencing (D = 1, S = 12) to 
align with recurring patterns, such as export season 
demand peaks.

2.3. Programming Instructions

 This study develops a predictive model to esti-
mate the average price of artichokes in Lima during 
January and February 2025, using a monthly historical 
series provided by the Ministry of Agricultural De-
velopment and Irrigation (January 2021–December 
2024) [44]. To address the temporal nature of the data, 
five statistical approaches are implemented: The Naive 
method (based on the last observed value), ARIMA and 
SARIMA models (which capture trends and seasonality 
through parameter optimization), and the exponential 
smoothing methods of Holt and Holt-Winters (for se-
ries with a linear trend and additive seasonality). The 
step-by-step code developed for the forecasting pro-
cess is detailed below.

Figure 1 contains the Python code for forecasting 
artichoke prices using time series models. It imports 
libraries (ARIMA, SARIMA, Holt-Winters) and loads 
monthly price data (Jan 2021–Dec 2024) into a Data-
Frame. The configuration sets 2 forecast steps (Jan–Feb 
2025) and a 12-month validation window. Actual 2025 
values (January: 6.00, February: 4.63) are predefined 
for error analysis. The code structures data, initializes 
model frameworks, and prepares for training/pre-
diction workflows (model fitting and MSE evaluation 
implied). Visual elements and optimization logic are 
excluded but would typically follow this setup.

Figure 2 contains three core functions. The first 
function, optimize_arima, searches for the optimal (p, 
d, q) parameters for an ARIMA model by iterating over 
a defined range and selecting the configuration with 
the lowest AIC. The second function, optimize_sarima, 
performs a similar task for the SARIMA model by test-
ing combinations of both non-seasonal (p, d, q) and 
seasonal (P, D, Q) parameters, with a seasonal period 
m, and returns the best configuration based on the AIC 
value. Finally, the generate_comparison_table function 
creates a comparison table of forecasted versus actual 
values for January and February. It calculates the per-
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centage error for each month and the average error 
across both months, then compiles the results into a 
pandas DataFrame for easy interpretation.

Figure 3 implements an automated forecasting 
pipeline for time series analysis. First, the dataset is di-
vided into training and testing sets using a defined test 
size. The pipeline then optimizes ARIMA and SARIMA 
models by evaluating various parameter combinations 
on the training set’s “Price” column, selecting those 
with the best performance according to the AIC metric. 
Next, final models are trained on the full dataset. These 
include a Naive model (which simply repeats the last 

observed value), ARIMA and SARIMA models (using 
the optimized parameters), and exponential smoothing 
models (Holt-Winters and Holt) to capture trends and 
seasonality. Once the models are trained, forecasts for 
a predetermined number of future steps are generated. 
The Naive model outputs constant predictions, while 
the other models produce dynamic forecasts. Finally, 
the code visualizes the results. It plots historical data 
alongside the forecasted values. Each model’s forecast 
is displayed with distinct colors, line styles, and mark-
ers, enhancing the clarity of comparisons between ob-
served data and predicted outcomes.

Figure 1. Time Series Data Initialization and Forecasting Framework Setup.
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Figure 2. Model Optimization and Forecast Comparison.

Figure 3. Automated Forecasting Pipeline Overview.
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Figure 4 illustrates the evaluation and visualiza-
tion of forecasting results. This code compares model 
predictions with actual historical data by calculating 
error metrics—such as percentage errors for forecast 
periods—and compiling them into a consolidated ta-
ble for easy analysis. Additionally, it generates a visual 
plot where forecasted values are overlaid on histori-
cal trends. Each model is distinguished using unique 
colors, line styles, and markers, enhancing the clarity 
of comparisons. This visual analysis helps assess the 
performance of various forecasting methods, providing 
both quantitative and qualitative insights. The output 
assists in identifying models that offer more accurate 
predictions and informs subsequent decision-making. 

Figure 5 evaluates the 2025 forecast errors by 
comparing predicted values with actual data for Jan-
uary and February. The code calculates the error for 

each model by subtracting the forecast from the actual 
value for each month, storing the results in a dictio-
nary where each model’s errors are represented as a 
list [January error, February error]. Next, it generates 
a plot displaying these errors. Each model’s errors are 
plotted using markers and dashed lines, with the x-ax-
is representing the months (“Jan” and “Feb”) and the 
y-axis showing the error values (Actual - Forecast). A 
horizontal dashed line at zero is added to help identify 
whether forecasts were overestimated or underesti-
mated. The plot includes a legend positioned outside 
the plot area, gridlines for better readability, and a tight 
layout to ensure clarity. Note that the code block is 
repeated, which may be redundant. Overall, this visual-
ization provides a clear comparison of forecast accura-
cy across models for the year 2025, highlighting their 

performance in terms of deviation from actual prices.

Figure 4. Forecast Evaluation and Visualization.
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Figure 5. Forecast Error Analysis.

Figure 6 conducts residual diagnostics using ACF 
and PACF plots with 20 lags. For each final model, re-
siduals are calculated—using differences for the Naive 
model and the model’s residuals for others. Models 
with fewer than 10 residuals are skipped. The code 

generates two subplots per model: one for the ACF 
and one for the PACF. The PACF plot includes error 
handling to display “PACF Unavailable” if needed. Each 
subplot is formatted with fixed y-axis limits, a horizon-
tal zero line, and gridlines for clarity.



282

Research on World Agricultural Economy | Volume 06 | Issue 03 | September 2025

Figure 6. Residual Analysis: ACF and PACF Evaluation.



283

Research on World Agricultural Economy | Volume 06 | Issue 03 | September 2025

3. Results
In Figure 7, it is confirmed that SARIMA best 

follows the historical trend, while the Naive and 

Holt-Winters models exhibit clear deviations: the for-

mer underestimates volatility, and the latter systemat-

ically overestimates prices in 2025. The historical peak 

in September 2024 (7.64 PEN) is not replicated by 

any model, suggesting that external factors influenced 

this outlier. Specifically, SENAMHI Bulletin No. 05 on 

Meteorological Drought Monitoring reported SPI‑1 
and SPI‑3 indices showing rainfall deficits exceeding 
60 % across several Andean regions, indicating severe 
drought conditions that likely constrained supply [45]. 
This underscores the need to incorporate exogenous 
variables in future analyses. Furthermore, all models 
except SARIMA forecast higher prices than the actual 
value in February (4.63 PEN), which could indicate an 
underestimation of the post-harvest supply or an un-
expected drop in demand.

Figure 7. Forecasts Values Artichoke Price in Lima.

Model Forecast Jan Actual Jan Error (%) Forecast Feb Actual Feb Error (%)
Naive 5.97 6.00 0.50 5.97 4.63 28.94

ARIMA 6.21 6.00 3.50 5.78 4.63 24.77
SARIMA 4.88 6.00 18.69 4.37 4.63 5.62

Holt-Winters 5.89 6.00 1.83 6.16 4.63 32.99
Holt 6.00 6.00 0.04 6.03 4.63 30.34

 Note: Python output, ARIMA (2,1,2), SARIMA ((0,0,1) (0,1,0),12).

Table 1. Forecast Values.

In Table 1, SARIMA stands out with the lowest av-
erage error (12.16%), particularly in February (5.62%), 
confirming its ability to handle complex seasonal pat-
terns. In contrast, Holt-Winters records the highest av-
erage error (17.41%), with an alarming error in Febru-
ary (32.99%), suggesting that its seasonal component 
does not adequately adjust to market fluctuations. The 
model with an average error of 14.14% performs at 
an intermediate level; its overestimation in February 
(24.77%) reflects difficulties in capturing sudden price 
drops.

In Figure 8, although SARIMA exhibits a high 
error in January (18.69%), its accuracy in February 
(5.62%) compensates for this, demonstrating its 
adaptability to abrupt seasonal changes. This indicates 
that SARIMA effectively “learns” from the annual sea-
sonality, thereby enhancing its performance in com-
plex months. Conversely, Holt-Winters deviates most 
from reality, pointing to a failure in its seasonal com-
ponent. This shortcoming could be attributed to the 
fact that the seasonality of artichokes does not follow a 
traditional additive or multiplicative pattern.
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In Figure 9, it can be observed that the residu-
als of the ARIMA and SARIMA models remain mostly 
around zero, albeit with some oscillations, suggesting 
that they capture much of the series’ dynamics. How-
ever, slight peaks occur at certain points, indicating 
possible outlier events or abrupt changes. Holt-Win-
ters exhibits more dispersed residuals, which aligns 
with the higher error observed in its forecasts. Finally, 
Holt shows notable fluctuations toward the end of the 
period, potentially indicating difficulty in adjusting to 
the series’ final phase.

In Figure 10, the ACF and PACF plots of the resid-
uals (up to 20 lags) for each model clearly demonstrate 
that ARIMA and SARIMA excel by exhibiting few obser-
vations outside the confidence intervals. This indicates 
that their residuals closely approximate white noise, 
thus effectively capturing both temporal and seasonal 

dynamics. In particular, SARIMA shows an outstanding 
ability to model seasonal components, confirming its 
capacity to accurately represent recurring patterns 
throughout the year. Similarly, ARIMA displays robust 
performance, with only a few significant lags, mak-
ing it a dependable choice when seasonality is less 
pronounced or can be managed through differencing. 
Conversely, Holt is somewhat less favorable, as its re-
siduals reveal several lags with statistically significant 
correlations, particularly in the ACF. This suggests 
that, although Holt efficiently models linear trends, it 
may encounter difficulties in capturing more intricate 
or seasonal variations. Nonetheless, its simplicity and 
expedited training process render it a viable option in 
scenarios characterized by stable trends and minimal 
seasonal fluctuation.

Figure 8. Forecasts Values Artichoke Price in Lima.

Figure 9. Forecasts Values Artichoke Price in Lima.
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Figure 10. ACF AND PACF Plots.
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4. Discussion
The results of this study reveal significant differ-

ences in the performance of the forecasting models 
applied to artichoke prices in Lima. The SARIMA model 
emerged as the most robust, with an average error of 
12.16%, and it was particularly accurate in February 
(5.62%), confirming its ability to capture complex 
seasonal patterns, consistent with previous findings in 
agricultural markets [15–31]. This success is attributed to 
its hybrid structure, which integrates autoregressive 
and seasonal components, thereby enabling it to adapt 
to the periodic fluctuations typical of crops such as 
artichoke. However, its high error in January (18.69%) 
suggests limitations when confronted with abrupt 
non-seasonal changes, possibly linked to exogenous 
events such as variations in initial annual demand or 
post-harvest logistical adjustments.

On the other hand, the Holt-Winters model ex-
hibited the poorest performance (average error of 
17.41%), with an error of 32.99% in February. This 
indicates that its assumption of additive/multiplicative 
seasonality does not align with the actual dynamics of 
artichoke prices, which may be influenced by nonlinear 
factors or interactions among unconsidered variables 
(e.g., export policies or climate). This finding is con-
sistent with studies that warn about the sensitivity of 
Holt-Winters in volatile markets [37]. The Naive model, 
although simple, outperformed Holt-Winters and ARI-
MA in January (0.50% error), reinforcing its utility for 
very short-term horizons. However, its lack of adapt-
ability to trends and seasonality renders it unfeasible 
for medium-term forecasts, as evidenced by its 28.94% 
error in February.

A critical finding was the inability of all models 
to replicate the September 2024 peak (7.64 PEN), in-
dicating the influence of unmodeled external factors, 
such as droughts or regulatory changes. This supports 
the need to incorporate exogenous variables in future 
studies, as proposed by Silva et al. (2024) in the con-
text of nowcasting. It is also important to highlight 
the fundamental role of Python in the implementation 
and optimization of these forecasting models. The use 
of Python, along with its extensive libraries (such as 
Pandas, NumPy, Scikit-learn, and Statsmodels), facili-

tates the processing of large volumes of historical data 
and the application of advanced time series analysis 
techniques. This not only enables the automation of 
parameter optimization in models such as ARIMA and 
SARIMA but also allows for precise comparisons and 
detailed visualizations of the results. Python’s versatil-
ity further facilitates the integration of new methods, 
such as machine learning techniques or hybrid models, 
which could further enhance forecast accuracy. Thus, 
Python emerges as an essential tool for addressing the 
challenges of predictive analysis in volatile markets, 
offering a robust and scalable platform for future re-
search and practical applications in the agricultural 
sector.

The results of this study exhibit key similarities 
and differences compared to prior research on agri-
cultural price forecasting. The superior performance 
of the SARIMA model ((0,0,1)(0,1,0),12)—with an 
average error of 12.16%—aligns with findings such as 
those by Wanjuki et al. (2021), who reported that SA-
RIMA reduced errors in forecasting Kenya’s food price 
index by capturing annual seasonality. However, the 
performance of Holt-Winters (17.41% error) contrasts 
with studies like Menculini et al. (2023), where this 
method outperformed ARIMA in markets with stable 
additive seasonality. This discrepancy suggests that 
the non-traditional seasonality of artichoke prices in 
Peru—influenced by abrupt climatic variations (SEN-
AMHI, 2024) and post-COVID logistical fluctuations—
limits the efficacy of models assuming fixed seasonal 
patterns.

Furthermore, the inability of all models to predict 
the atypical September 2024 price peak (7.64 PEN) 
mirrors limitations reported in works such as Silva et 
al. (2024), where exogenous factors (e.g., droughts, 
geopolitical conflicts) necessitated the use of external 
variables in ARIMAX models. This finding reinforces 
the need to integrate real-time climatic data, as imple-
mented in wheat price forecasts in Ukraine (Zomchak 
& Kukhotska, 2023). Finally, the Naive model’s high 
accuracy in January (0.50% error) aligns with obser-
vations by Nurjati & Wiryawan (2024) for very short-
term forecasts, but its failure in February (28.94% 
error) underscores the importance of selecting models 
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based on temporal horizons, as cautioned by Mitra & 
Paul (2017) for perishable commodities.

5. Conclusions and Recommenda-
tions

This study demonstrates that the choice of fore-
casting model significantly impacts the accuracy of 
agricultural price projections. The SARIMA model has 
proven to be the most effective in capturing season-
ality in artichoke prices, showing minimal errors in 
February (5.62%), which is critical for post-harvest 
planning. In contrast, Holt-Winters was found to be in-
adequate for this context, underscoring the importance 
of validating seasonal assumptions before its appli-
cation. The inability of the models to predict atypical 
peaks (e.g., September 2024) reveals the influence of 
unconsidered external factors, such as climatic or geo-
political variables, which highlights the need for more 
comprehensive data systems. Additionally, the utility 
of the Naive model for short-term horizons suggests 
that simple methods can complement complex mod-
els in resource-limited scenarios. To strengthen food 
security in Peru, it is recommended to adopt hybrid 
approaches that combine SARIMA with machine learn-
ing techniques, along with the integration of real-time 
external data. This would not only improve forecast 
accuracy but also align agricultural strategies with the 
Sustainable Development Goals, ensuring stability in 
food access and resilience against future crises.

For practical implementation in Peru’s agricul-
tural sector, we propose a structured roadmap: (i) 
integrate the SARIMA + machine learning forecasting 
pipeline into the MIDAGRI SISAP platform to automate 
monthly artichoke price projections; (ii) conduct ca-
pacity‑building workshops for regional agricultural an-
alysts on Python‑based time series modeling and data 
interpretation; (iii) establish a real‑time data ingestion 
framework for key exogenous indicators—such as 
precipitation records and transport disruption logs—
to feed into ARIMAX models or intervention dummies; 
and (iv) issue quarterly policy briefs that leverage 
these forecasts to guide targeted market interventions, 
subsidy allocations, and logistical planning. By follow-
ing this implementation path, policymakers can direct-

ly translate forecasting insights into concrete actions 
that stabilize producer incomes, ensure affordable con-
sumer prices, and strengthen resilience against future 
shocks.

6. Limitations, Policy Impact, and 
Future Pathway

This study presents certain limitations. First, it re-
lies on monthly frequency data and a two-month out-
of-sample validation, which may not adequately reflect 
high-frequency market dynamics or rare extreme 
events. Additionally, exogenous factors such as climatic 
anomalies or transport disruptions were not explicitly 
included in the evaluated models. From a public policy 
perspective, the results support the integration of the 
SARIMA forecasting system—combined with machine 
learning techniques—into MIDAGRI’s SISAP platform. 
This integration, enhanced with real-time indicators 
on climate (e.g., rainfall) and logistics (e.g., route block-
ages), would enable proactive responses to supply and 
demand shocks, adjustments in subsidy programs, and 
improved food distribution strategies across the coun-
try. For future research, it is recommended to develop 
ARIMAX and hybrid models that incorporate dynamic 
exogenous variables, extend the validation horizon to 
cover more forecast periods, and apply these methods 
to other key crops. Additionally, spatially disaggregated 
forecasting could support the design of region-specific 
policies tailored to the unique agricultural contexts 
across Peru.
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