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ABSTRACT
To maximize beneϐicial potassium (K) fertilizer use in irrigated soybean (Glycine max. (L.) Merr.) ϐields with

spatially varying soil‑test K (STK), the value of added information frommore precise STKmapsmust be greater than
the associated information collection costs. In eleven ϐields, we modeled the impact of soil sampling densities (SD)
ranging from 2.2 samples ha‑1 in the largest ϐield (41.2 ha) to 13.59 samples ha‑1 in the smallest ϐield (7.4 ha) on
STKmapswith 0.4 ha grid size. The accuracy of proϐit‑maximizing fertilizer rate prescriptionmaps varied by SD and
subsequent yield estimates using either uniform rate technology (URT) or variable rate technology (VRT). Fertilizer
rate recommendations also depended on: i) the expected ϐield yield; ii) the crop price; and iii) the fertilizer cost,
costs for fertilizer application, and information collection charges that varied by application technology. Relative
proϐitability comparisons across SD and ϐields revealed that collecting more than 1.1 samples ha‑1 was not viable.
URT was more proϐitable than VRT (ranging from $2.29 ha‑1 to $7.62 ha‑1) at both relatively low and high ϐield‑
level average STK and spatial variation in STK. At the mid‑range level of STK, where adding K‑fertilizer was on the
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verge of being proϐitable in light of nearly adequate STK, VRT outperformed URT in two of eleven ϐields by $11.50 to
$21.35 ha‑1. Regardless of soybean price and fertilizer cost, a smaller upcharge for VRT compared to URT fertilizer
application than the $5 ha‑1 modeled herein is necessary to increase VRT viability.
Highlights

• Across eleven ϐields soil‑test K (STK) spatial variance increased as ϐield average STK increased.
• At high STK (> 130 mg K kg‑1), fertilizer application was not proϐitable in the short term.
• None of the ϐields supported a soil sampling density greater than 1.1 samples ha‑1.
• Greater STKmap accuracy with more soil samples led to mixed revenue impacts when K fertilizer was needed

with low STK.
• VRT was rarely more proϐitable than URT except in ϐields with mid‑range average and standard deviation of

STK.
Keywords: Soybean; Potassium Fertilizer; Soil Sampling Density; Variable Rate Technology

1. Introduction
Tomaximize beneϐicial potassium (K) fertilizer use

in soybean (Glycine max. (L.) Merr.) ϐields with spa‑
tially varying soil‑test K (STK), the value of added in‑
formation from greater spatial detail in STK maps must
be greater than associated information collection costs.
This is especially true given three motivating factors.
First, the cost of commercial fertilizer has shown some
recent price peaks. In 2022, the average cost of muri‑
ate of potash or K fertilizer reached a 13‑year peak of
$0.863 kg‑1 K. Prices have since moderated, but projec‑
tions are subject to change given persistent challenges
faced bymajor global fertilizer suppliers [1]. Importantly,
changes in K cost affect proϐit‑maximizing K‑fertilizer
rates in agricultural production [2, 3].

Second, the cost of soil sampling and ϐield fertilizer
input prescription mapping services has increased no‑
ticeably. These information collection costs need to be
justiϐied by the beneϐits associated with the adoption of
precision agriculture (PA) technology by producers who
employ variable rate fertilizer application (VRT). Spatial
soil sampling recommendations by agronomists and agri‑
cultural extension specialists are inϐluenced by substan‑
tial year‑to‑year ϐluctuations in spatial soil nutrient lev‑
els. These ϐluctuations are driven by climate variability,
such as changes in rainfall patterns, temperature varia‑
tions, and extreme weather events, which affect crop nu‑
trient uptake, soil moisture, and microbial activity. More‑
over, high input costs and budget constraints often lead

to reduced fertilizer applications, further contributing to
nutrient imbalances and spatial variability [4].

Finally, the beneϐit of usingVRTversusUniformRate
Technology (URT) is nuanced. Analyzing soil nutrient
data from multiple ϐields provides some insights into the
reasons behind the complexity of fertilizer rate recom‑
mendations. For instance, Späti et al. [5] showed that high‑
resolution sensing increases proϐits in ϐields with high
spatial heterogeneity, though overall beneϐits and differ‑
ences between technologies remainmodest. Despite con‑
siderable experimental research, reaching a deϐinite con‑
clusion on soil sampling density and fertilizer applica‑
tion rates is hindered by the variability of environmental
factors from year to year [6, 7]. Conversely, some studies
provide evidence supporting VRT as the most econom‑
ically desirable technology. However, certain expense
variables, such as the cost of soil sampling, mapping, and
additional upcharges for technology, are omitted from
those analyses, which complicates the interpretation of
economic conclusions drawn from those efforts [8, 9].

Despite the concept of VRTgaining signiϐicant inter‑
est since the early 1990s in North America, the adoption
rate among producers is still low, ranging between 20
and 30 percent, suggesting that producers are still not
quite convinced about its proϐitability [10]. The concept
of an EconomicOptimumSamplingDensity (EOSD)men‑
tioned by Lawrence [11] suggests more work is needed
to identify what sampling density maximizes ϐield prof‑
itability for either URT or VRT fertilizer application. The
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ϐield's EOSD entails comprehensive investigation of both
agronomic (level and spatial variability of existing soil
nutrient content and crop grown) and economic factors,
including the cost per soil sample, the price of fertilizer,
crop yield potential, the crop’s price, and differential ap‑
plication cost between URT vs. VRT.

Challenges arise in optimizing the “4Rs” (Right
source, Right rate, Right time, Right location) of soil nu‑
trient application due to signiϐicant in‑ϐield variation in
soil nutrient levels and extremeweather impacts [12]. The
expected marginal value product of the additional infor‑
mation (from greater soil sampling density) increases at
a diminishing rate [13], which is supported by a recent
study involving the simulation of irrigated soybean yield
response to fertilizer K under varying soil sampling den‑
sities [14]. Badarch et al. [14] analyzed the tradeoff of bet‑
ter nutrient matching between plant needs and available
soil K reserves using VRT fertilizer application that var‑
ied by grid vs. using the same URT fertilizer application
rate across a ϐield. At issue was how the estimated aver‑
age STK value in the ϐield varied when changing soil sam‑
pling density, and more importantly, how the spatial dis‑
tribution of STKmaps changedwith soil sampling density.
They concluded that URTperforms better than VRT, given
the soil sampling cost and upcharges for VRT fertilizer ap‑
plication in comparison to URT fertilizer application. The
analysis was limited to one ϐield, however. Hence, this re‑
search expands on Badarch et al.’s [14] work by replicating
their approach across more ϐields to allow greater gener‑
alization of ϐindings. For example, Murdock andHowe [15]

found that larger ϐields exhibit greater spatial variability
in STK, justifying the use of VRT. At the same time, VRT for
phosphorus (P) and potassium (K) fertilization could be
proϐitable, especially when a ϐield had a mix of high and
low soil test levels, with at least 50% testing high. How‑
ever, VRT is generally not cost‑effective when most of the
ϐield tests are in the high to medium range.

Given this background information, this research is
framed around the following threemain questions. First,
does added soil sampling in a ϐield result in sufϐicient ex‑
tra soybean yield or K fertilizer cost savings to warrant
investment, and if so, at what sampling density? Second,
does the answer to the ϐirst question vary by ϐield? Third,
is there a rule of thumb for when VRT is more proϐitable

than URT based on average and spatial variance of STK,
crop price, fertilizer cost, and sampling density? Using
the average and the standard deviation of STK in eleven
ϐields, we attempt to predict proϐitability differences be‑
tweenVRT andURT in this research. We explore the rela‑
tionship between the standard deviation of STK, the av‑
erage STK, the ϐield size, and the soil sampling density
to assist with ϐinding a heuristic that would guide pro‑
ducers as theymake choices related to soil sampling and
what fertilizer application method to pursue.

Speciϐically, we analyzed STK data from eleven irri‑
gated soybean ϐields exhibiting different initial STK values
and spatial STK distributions. Each ϐield’s soybean yields
were estimated using proϐit‑maximizing fertilizer K rates
(K*) using a yield response function to K fertilizer devel‑
oped by Popp et al. [3] which is subject to i) STK in each
grid for VRT and the overall average ϐield STK for URT;
ii) crop price; and iii) fertilizer cost. Using K*, we obtain
ϐield partial returns as a function of simulated yield by
grid, crop price, fertilizer costs, soil sampling and fertil‑
izer application charges that vary by application method
(URT or VRT). Like Badarch et al. [14] we analyze the trade‑
off of cost savings from lesser sampling to net losses that
result with nutrient mismatch between plant needs and
available K because of lesser STK map accuracy in atten‑
dant fertilizer prescription maps that impact yields and
fertilizer use. We then compare proϐitability differences
between URT and VRT at various sampling densities and
across all ϐields in search of factors that determine what
ϐield characteristics impact those proϐitability differences.

2. Materials and Methods

2.1. Data and Mapping

The STK data used in this research were gathered
from eleven farm ϐields across three different regions in
Arkansas. Four ϐields are in St. Francis County inEast Cen‑
tral Arkansas, four are in Drew and Lincoln counties in
Southeastern Arkansas, and three are in Conway County
in Central Arkansas (Figure 1). All STK samples were col‑
lected to a soil depth of 0–10 cm in the spring season of
2022. Each ϐield’s STK statistics are summarized in Ta‑
ble 1 and vary based on sampling density. The overall av‑
erage of all ϐields’ STK is for relative comparisons across
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ϐields. Soil sampling density ranged from 2.23 to 13.59
samples ha‑1 (top rows for each ϐield) and varied by ϐield
size. County and state average STK information is pro‑
vided in Table 2 to compare the eleven ϐields analyzed to
centralized state‑level soil testing information.

To measure the impact of reduced sampling den‑
sity, each ϐield’s initial maximum number of soil sam‑
ples (multiplying the size of the ϐield times the sampling
density in the top row of each ϐield in Table 1) was
successively cut in half four times to showcase how re‑
ducing soil sampling density impacts ϐield STK statistics.
Since most prescription mapping software uses the In‑
verse Distance Weighting (IDW) interpolation method
to interpolate from soil sample locations to grids [17], all
STK maps were generated in this manner using ArcGIS

Pro software (ESRI, Redlands, California, USA). Further,
all STK maps utilized a 20 m x 20 m (400 m2) ϐishnet
grid size for twomain reasons: 1) application equipment
width, potentially with section control, is expected to al‑
low different rates in 20 m wide paths, 2) application
speeds of up to 4.5 m s‑1 and anticipatory rate change
time requirements of 2 s suggest that application rate
changes every 20m are possible. In line with Badarch et
al. [14], we assume fertilizer rate changes between grids
occur in 5.6 kg K ha‑1 increments. For illustration pur‑
poses, the ϐive different soil sampling densities for STK
maps in ϐield 1 are presented in Figure 2. Notice that
grids only partially contained near the ϐields’ boundary
were ignored, as was the selection of an optimal ϐield
path based on ϐield irregularities.

Figure 1. Locations and frequency of study ϐields in parentheses at the county level in Arkansas, USA.

Table 1. Descriptive statistics of Mehlich‑3 extractable soil‑test K (STK) to 10 cm soil depth across eleven ϐields that varied by
location, size, soil sampling density, and spatial variation in STK, Arkansas, 2022.

County Size (i) Sampling
Density1 (j) ID (k)

Field STKMap Statistics per Field in mg K kg‑1

Average Median Standard Deviation CV(%) Min. Max.

Lincoln 41.2

2.23

1

204.6 196.1 73.5 35.9 79.4 377.8
1.09 204.1 200.3 68.5 33.5 84.2 366.2
0.53 211.8 192.3 65.8 31.1 79.5 333.1
0.27 227.1 211.6 66.1 29.1 78.3 374.3
0.12 218.2 187.9 56.2 25.8 138.1 311.8

Drew 14.3

6.99

2

198.1 171.1 68.3 34.5 120.1 416.2
3.50 203.2 180.4 75.3 37.1 112.8 498.9
1.75 216.7 203.8 67.6 31.2 114.2 497.1
0.84 208.9 201.5 58.7 28.1 118.2 426.4
0.35 152.4 152.8 24.3 15.9 105.5 215.1

Drew 13.60

7.28

3

290.2 277.0 66.1 22.8 166.6 446.1
3.68 287.0 280.9 58.3 20.3 161.4 448.0
1.84 277.3 259.3 66.4 23.9 166.0 455.4
0.88 332.5 339.0 58.8 17.7 170.1 470.6
0.37 287.1 282.3 47.0 16.4 205.8 387.4

Conway 23.00 4.13 4 135.2 125.8 36.8 27.2 77.1 309.0
2.09 133.1 123.3 34.7 26.1 81.1 265.7
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Table 1. Cont.

County Size (i) Sampling
Density1 (j) ID (k)

Field STKMap Statistics per Field in mg K kg‑1

Average Median Standard Deviation CV(%) Min. Max.

Conway 23.00
1.00

4
133.7 125.8 36.1 27.0 73.2 269.7

0.48 149.8 139.5 39.7 26.5 94.7 339.2
0.22 130.1 121.1 24.4 18.7 98.4 202.4

Drew 23.2

4.31

5

130.4 120.0 34.9 26.8 78.9 284.7
2.16 135.9 124.6 34.5 25.4 88.2 289.4
1.08 132.6 125.9 30.8 23.2 77.5 290.8
0.52 140.2 132.8 33.6 24.0 89.6 301.5
0.22 142.3 123.3 34.3 24.1 110.2 237.6

Conway 22.04

4.58

6

156.1 155.0 20.4 13.1 111.6 232.5
2.04 155.6 153.7 19.1 12.2 116.8 245.8
1.00 151.9 152.1 13.9 9.2 107.0 195.5
0.50 145.4 145.4 15.0 10.3 113.8 189.8
0.23 166.9 176.6 20.6 12.4 126.4 195.9

St. Francis 12.48

8.01

7

125.4 121.2 19.9 15.8 47.4 206.2
4.01 124.1 120.5 17.8 14.3 85.2 186.8
2.00 127.4 124.4 17.2 13.5 85.9 184.7
0.96 124.2 121.9 16.3 13.1 82.9 170.8
0.40 113.9 112.1 10.4 9.1 90.5 136.7

Conway 23.04

4.34

8

130.4 129.3 15.6 11.9 94.3 182.7
2.17 133.2 131.1 16.6 12.4 93.3 195.5
1.09 137.9 131.9 21.3 15.4 88.6 201.0
0.52 139.0 138.2 15.4 11.1 94.6 197.9
0.22 142.6 140.1 20.2 14.2 86.2 193.6

St. Francis 12.48

8.01

9

73.0 69.7 16.9 23.2 44.4 141.6
4.01 75.5 69.7 16.0 21.1 56.9 145.5
2.00 72.7 69.0 13.8 18.9 52.8 145.2
0.96 75.6 71.0 15.6 20.7 56.9 148.5
0.40 69.9 67.8 10.2 14.5 54.2 98.3

St. Francis 12.28

5.05

10

66.1 61.5 11.5 17.4 45.4 113.4
2.52 65.1 62.0 8.3 12.8 52.8 96.6
1.22 61.3 58.3 9.6 15.7 45.0 96.5
0.65 67.0 65.7 6.2 9.3 52.8 81.6
0.41 65.4 64.0 5.2 7.9 58.1 80.5

St. Francis 7.36

13.59

11

60.6 59.3 8.0 13.2 44.0 80.6
6.79 59.8 59.7 6.6 11.0 45.9 78.5
3.40 61.0 61.1 6.0 9.9 47.6 81.1
1.63 57.3 57.1 6.5 11.3 42.5 77.7
0.68 63.3 61.5 5.5 8.7 55.1 72.8

Average 18.6

6.23

1–11

142.7 135.1 33.8 22.0 82.6 253.7
3.10 143.4 136.9 32.3 20.6 89.0 256.1
1.54 144.0 136.7 31.7 19.9 85.2 250.0
0.75 151.6 147.6 30.2 18.3 90.4 252.6
0.33 141.1 135.4 23.5 15.2 102.6 193.8

Note: Field size (i) is reported in ha. See Figure 2 for a visual example of changes in sampling density (j) in number of samples per hectare. Interpolating STK soil
sample information to 400 m2 grids using different sampling densities and k ϐields of varying sizes resulted in changes in the average, median, standard deviation,
coefϐicient of variation, minimum, and maximum value for each ϐield.

Table 2. Precentage Breakdown of state average and county‑speciϐic Mehlich‑3 extractable soil‑test K (STK) categories to 10 cm
soil depth from the Marianna soil testing lab, 2022.

Location # of Samples
Analyzed in 2022

Mehlich‑3 Soil Potassium (mg K kg‑1)

< 61 61–90 91–130 131–175 > 175 Median

Conway 185 11 15 33 25 17 120
Drew 181 33 24 20 12 10 78
Lincoln 1,979 14 17 22 14 34 123

St. Francis 836 11 15 14 8 52 186
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Table 2. Cont.

Location # of Samples
Analyzed in 2022

Mehlich‑3 Soil Potassium (mg K kg‑1)

< 61 61–90 91–130 131–175 > 175 Median

State Average 180,239 18 20 23 15 24 115
Source: Arkansas soil‑test summary for samples collected in 2022 [16] . Greater detail by soil series is contained in this publication.

Figure 2. Mehlich‑3 extractable soil K values in the 0–10 cm soil layer (STK) are mapped using k soil samples that are inter‑
polated to 400 m2 grids using ArcGIS Pro’s (ESRI, Redlands, CA, USA) inverse distance weighting (radius variable 12, power 2)
from highest (left) to least (right) soil sampling density. Sampling locations are shownwith black dots in Field 1, Lincoln County,
AR, Spring 2022.

2.2. Conceptual Framework of Proϐit‑
Maximizing K Fertilizer Rates

All STK maps for each ϐield with ϐive different sam‑
pling densities per ϐield or 55 maps in total, were used
to calculate proϐit‑maximizing fertilizer‑K rates (K*s)
per grid for VRT and the average proϐit‑maximizing
fertilizer‑K rates (UK*s) per ϐield for URT. Figure 3 il‑
lustrates how two different STK levels impact proϐit‑
maximizing K fertilizer rates. At low STK, a steeper yield
response to K fertilizer is expected, as plants require
more K than is available in the soil. Hence, the bene‑
ϐit of an added unit of fertilizer at low fertilizer applica‑
tion rates is higher than its added cost, and those bene‑
ϐits level off at higher fertilizer application rates as the
yield response to fertilizer levels off. For both STK situ‑
ations, the proϐit‑maximizing fertilizer application rates
are less than the yield‑maximizing rates, as the yield re‑
sponse to an added unit of K fertilizer at yield maximum
provides no beneϐit for the last added unit of K fertil‑
izer. Applying at the yield‑maximizing rate would only
be proϐit‑maximizing if K fertilizer were free. Further,
while a proϐit‑maximizing K rate of 51 kg K ha‑1 at 123
mg K kg‑1 STK is suggested in the right graph, the bene‑
ϐit of fertilizer application at 124mgK kg‑1 is insufϐicient
to cover the fertilizer application cost (Figure 3). Hence,
if the initial STK is > 123 mg K kg‑1 in a ϐield’s grid, the
K* for that grid was set to zero as the yield improvement
from K* beyond that level of STK no longer sufϐiced to
cover the fertilizer application cost and the cost of the

fertilizer itself.

2.3. Proϐitability Comparisons Between
VRT and URT at the Field Level

To make relative proϐitability comparisons be‑
tween VRT and URT, we calculated partial returns, de‑
ϐined as the revenue from ϐield yield less the cost of fer‑
tilizer and fertilizer application charges that varied by
fertilizer applicationmethod. Other charges for growing
irrigated soybean (e.g., irrigation, seed, labor, fuel, her‑
bicides) were assumed the same regardless of fertilizer
application method and thereby irrelevant for compar‑
isons of fertilizer application method.

To obtain estimates for ϐield yield, fundamental
steps for calculating ϐield fertilizer prescription maps,
which identify the fertilizer application rate for each 400
m2 grid in a ϐield, are explained ϐirst. We calculated
proϐit‑maximizing K fertilizer application rates that STK
impacted in grid (i), where STK varied by soil sampling
density (j), as shown in Figure 2 andTable 1, and ϐinally
ϐield (k) characteristics (e.g., size, inherent average, and
variance of STK). As shown in Equation (1), the proϐit‑
maximizing rate (K*) with VRT application is impacted
by STKijk as well as the cost of fertilizer (cK), the price of
the crop (PS), and a ϐield’s yield potential (YP) to meet
the proϐit‑maximizing condition where an added unit of
fertilizer is justiϐied given its yield impact and cost, us‑
ing the quadratic yield response equations to K fertilizer
estimated by Popp et al. [3] as in Badarch et al. [14].
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Figure 3. Estimated yield response and proϐit‑maximizing K fertilizer application rates at 50 (left) and 123 ± 10 ppm (right)
Mehlich‑3 extractable soil K values in the 0–10 cm soil layer (STK). Observed yields are fromexperimental trials used to generate
relative yield indices at varying STK to model yield outcomes for an example ϐield with 5,044 kg ha‑1 irrigated soybean yield
potential (Popp et al., 2020). Shaded boxes showcase proϐit‑maximizing K rates for 50 and 123 ppm STK using 2013–2022
average soybean and muriate of potash fertilizer (0‑0‑60) prices of $0.40 kg‑1 and $1.09 kg‑1 K, respectively.

Kijk
∗ =

[
cK

Y P
100 · PS

−
(
0.558− 5.150 · 10−3 · STKijk + 1.114 · 10−5 · STK2

ijk

)]
[
2 ·

(
−1.896 · 10−3 + 1.673 · 10−5 · STKijk − 3.614 · 10−8 · STK2

ijk

)] (1)

where PS = $10.82/bu ($0.40 kg‑1) is the average
10‑year price of soybean from 2013–2022 [18] to avoid
unduly impacting proϐit‑maximizing fertilizer rate by an
unusually high‑ or low‑price year. Similarly, the fer‑
tilizer cost, cK = 494.16/ton ($1.09 kg‑1 K), was trans‑
formed from muriate of potash fertilizer (500 g K kg‑1)
prices from historical Mississippi State University cost
of production budgets to $ kg‑1 K for the same period [19].
Finally, the irrigated soybean yield potential (YP) was

set at 5,044 kg ha‑1 to reϐlect yields producers expect in
ϐields not deϐicient in other macronutrients under good
weather conditions. Note that Popp et al. [3] estimate
yield response to K fertilizer using a relative yield index.
Multiplying the relative yield index by YP yields ϐield‑
speciϐic yield responses.

To estimate the proϐit‑maximizing URT fertilizer
rate, Equation (1) ismodiϐied toutilize the averageof STKi

in a ϐield k at varying soil sampling densities j as follows:

UKjk
∗ =

[
cK

Y P
100 · PS

(
0.558− 5.150 · 10−3 · STKjk + 1.114 · 10−5 · STK2

jk

)]
[
2 ·

(
−1.896 · 10−3 + 1.673 · 10−5 · STKjk − 3.614 · 10−8 · STK2

jk

)] (2)

The main difference between Equations (1) and
(2) is that grid‑level K* varies within a ϐield with VRT,
whereas UK* is applied uniformly or at the same level in
each grid within a ϐield. Nonetheless, UK* is still mod‑
eled to vary by ϐield with changes in sampling density

(Figure 2 andTable 1) and by ϐield. Hence fertilizer pre‑
scription maps showcase Kijk* by grid within a ϐield as
STKijk varies by soil map created at different sampling
densities (Figure 4) whereas UK* is a fertilizer rate rec‑
ommendation that is applied uniformly across the ϐield.
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Figure 4. Mehlich‑3 extractable soil K values in the 0–10 cm soil layer (STK) are mapped using k soil samples that are interpo‑
lated to 400m2 grids using ArcGIS Pro’s (ESRI, Redlands, CA, USA) inverse distanceweighting (radius variable 12, power 2) from
highest (left) to least (right) soil sampling density in the top row. Sampling locations are shownwith black dots. Corresponding
proϐit‑maximizing K fertilizer rates are mapped in the bottom row in Field 1, Lincoln County, AR, Spring 2022.

Successively removing soil sample information to
measure the impacts of soil sampling density saves on
soil sampling cost, but also reduces the accuracy of ϐield
STK maps and thereby impacts ϐield yield performance,
as K* based on less informed maps will be applied at
higher or lower rates than the K* assessed with the high‑
est level of STK information or the most soil samples.
That is, less information leads to poorer nutrient match‑
ing between K sources, STK, and K* (if any), and the
plants’ proϐit‑maximizing K needs.

Grid‑level yield estimates (Ŷijk) across all sampling
densities modeled for a ϐield are based on the most ac‑
curate STK map and vary across application technology.
Using Popp et al.’s [3] relative yield response coefϐicient
estimates, ϐield yields were calculated as the sum of all
yields observed per grid as follows:

Ŷijk = (60.01 + 40.35 · STKijk − 7.62

×10−4 · STK2
ijk + 0.56 ·K∗

ijk − 1.90

×10−3 ·K∗
ijk

2 − 5.15

×10−3 · STKijk ·K∗
ijk + 1.67

×10−5 · STKijk ·K∗
ijk

2 + 1.11

×10−5 · STKijk
2 ·K∗

ijk − 3.61

×10−8 · STKijk
2 ·K∗

ijk
2)/100 · Y P/25

(3)

where the part of the equation within parenthe‑
ses predicts the relative yield index for site‑speciϐic
STKijk and K*, and the coefϐicient estimates are derived
from 91 site years of fertilizer rate trials. Dividing the
relative yield index by 100 and multiplying by a ϐield’s
yield potential led to a per‑hectare yield estimate that

was divided by 25 to account for the number of 400m2

grid ha‑1. Using Equations (1) and (3), ϐield‑level par‑
tial returns from VRT (VPR) in different ϐields k and at
different sampling densities j were thus estimated us‑
ing:

V PRjk =
∑n

i−1(Ŷijk,V RT · PS −Kijk
∗/25 · cK

−CV RT /25)− FSSCjk

(4)

where n is the number of grids (i) in a ϐield (k), CVRT

= $5 ha‑1 are added VRT application charges in compar‑
ison to URT application, and FSSCjk are ϐield soil sam‑
pling charges that vary by the number of samples used
with different sampling densities (j) within each ϐield for
$5.50 per sample as reported by Mississippi State Uni‑
versity [19].

Field‑level partial returns for URT (UPR), use UKjk
*

from Equation (2) instead of Kijk
* in Equation (3) to ar‑

rive at yield estimates and ultimately UPR as follows:

UPRjk =
∑n

i−1(Ŷijk,URT · PS

−UKjk
∗/25 · cK)− FSSCjk

(5)

Both UPRj and VPRj within each of the k ϐields are
compared to identify the soil sampling densitywith the
highest partial returns. This was done to guide eco‑
nomically optimal soil sampling densities given trade‑
offs between the cost of soil sampling and the value of
added information it creates. As such, identifying the
highest UPR or VPR in a ϐield across the different soil
sampling densities determineswhat soil sampling den‑
sity is economically optimal across the eleven ϐields
evaluated.

773



Research onWorld Agricultural Economy | Volume 06 | Issue 04 | December 2025

2.4. Modeling Proϐitability Differences Be‑
tween URT and VRT Using Field STK In‑
formation

The difference between VPR and UPR, converted to
$ ha‑1 for proϐitability comparison between application
technologies across ϐields of varying size, was calculated
as follows:

∆PRjk =
V PRjk − UPRjk

Sizek
(6)

where a positive ∆PRjk indicated VRT as the proϐit‑
maximizing choice at a particular sampling density, j, in
a ϐield k.

To determine the inϐluence of ϐield STKmap charac‑
teristics on the proϐitability of VRT relative to URT, two
models using multivariate regression were estimated.
The ϐirst model assessed the relationship between the
standard deviation of STK as impacted by the level of
STK, the size of the ϐield, and sampling density, as spa‑
tial variation in STK should impact nutrient mismatch
and hence the viability of VRT in comparison to URT.
The second model quantiϐies the impact of the average
and standard deviation of STK, as well as sampling den‑
sity and ϐield size impact on proϐitability differences be‑
tween URT and VRT, along with crop price and fertilizer
cost.

σSTKjk
= α0 + α1STKjk

+α2SIZE + α3SDij + δij
(7)

∆PRij = β0 + β1STKjk + β2 · STK
0.5

jk

+β3σSTKjk
+ β4σSTKjk

2

+β5STKjk · σSTKjk
+ β6SIZE

+β7SD + β8SIZE · SD
+β9PS + β10cK + εij

(8)

where STK and σSTK are the mean and standard de‑
viation of STK, and SIZE and SD are the ϐield size and sam‑
pling density, respectively, for each of the eleven ϐields
k and j sampling densities, PS and cK are the crop price
and fertilizer cost, and δ and ε are normally distributed,
two‑sided error termswith zeromean. Error termswere
subjected to a Breusch‑Pagan heteroskedasticity test to
determine whether to correct standard errors of coef‑
ϐicient estimates using Huber‑White heteroskedasticity‑
consistent covariances. Each model’s explanatory and
predictive power was judged via adjusted R2, Akaike In‑
formation Criterion, F‑statistic, and the number of sta‑
tistically signiϐicant coefϐicient estimates. Further, Equa‑
tion (8) used ∆PRjk results that were replicated using
sample years with the highest fertilizer cost and soy‑
bean price (2022), lowest fertilizer cost and near aver‑
age soybean price (2016), second highest soybean price
and near average fertilizer cost (2013), and low fertil‑
izer cost and low soybean price (2018) to add predictive
power to themodel results andprovide a sensitivity anal‑
ysis on price and cost effects to add to the robustness of
this modeling effort (Table 3).

Table 3. Historical soybean price and fertilizer‑K cost along with estimated likelihood of lower price or cost by year.
Year Soybean Price ($ kg‑1) K fertilzer ($ kg‑1 K) Likelihood1

2013 0.48 1.05 41%
2014 0.39 1.04 32%
2015 0.35 0.94 16%
2016 0.36 0.75 3%
2017 0.36 0.84 12%
2018 0.32 0.89 7%
2019 0.33 1.22 10%
2020 0.39 0.98 27%
2021 0.47 1.16 51%
2022 0.53 2.06 94%

Avg. ('13–'22) 0.40 1.09 36%
Note: 1 Using ϐitted triangular distributions for soybean price (min. = 0.3, mode = 0.32, max. = 0.60 with an estimated mean of 0.41) and fertilizer cost (min. = 0.7,
mode = 0.75, max. = 2.1 with an estimated mean of 1.18) based on the 10 year history of price information provided above and accounting for correlation between
the two price series (ρ = 0.70), we used Monte Carlo simulation in @Risk v7.6 (Pallisade Corporation, Ithaca, NY, 2016) to generate 10,000 observations of soybean
prices and fertilizer cost to report the likelihood of lower soybean price and fertilizer cost than those observed in a particular year to assist with assessment of
likelihood of jointly observing a lower price and lower fertilizer cost than the observed price and cost point for that year or range of years.
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3. Results

3.1. Assessment of the Degree of Represen‑
tation of Fields, Price, and Cost Infor‑
mation Analyzed

Figure 4 provides a visual analysis of the variety
of ϐields analyzed by plotting STKmeans (STK) and stan‑
dard deviation (σSTK) of each ϐield in addition to the sum‑
mary information already provided inTable 1. The stan‑
dard deviation of STK was directly correlated with STK,
ϐield size, and sampling density (Table 4). Three ϐields
each were clustered in the low and high STK and σSTK

ranges. Five ϐields had mid‑level STK (near or above
the 123 mg K kg‑1 STK level required to justify a proϐit‑
maximizing fertilizer‑K application, as identiϐied in sec‑
tion 2.2.) with mid‑ or low‑level σSTK. In comparison to
state‑average STK (Table 2), the ϐields thus represent a
large range of STK conditions that are deemed represen‑
tative ofmid‑Southern agricultural ϐields. Towhat extent
within‑ϐield variation in STK is representative of ϐields in
the region is difϐicult to assess and considered beyond
the scope of this work.

3.2. Proϐitability Implications of Low, Mid‑
Level, and High STK on Sampling Den‑
sity and Technology Choice

Similar to Koch et al. [21], initial thoughts were that
greater σSTK in a ϐield’s STK would be greater justiϐica‑
tion for VRT asmore instances of grid‑levelmismatch be‑
tween nutrient source and needs would arise with URT
than VRT. We found VRT to be more proϐitable than URT
in only two instances, ϐields 4 and 5, as indicated by the
bold letters in the legend of Figure 5.

At high STK values, supplemental K fertilizer is not
needed, as shown in Table 5 with K* and UK* at or near
zero application rates for most grids. Soil sources of

K (STK) and supplemental K fertilizer for the high σSTK

ϐields 1–3 are shown in Figure 6A to illustrate how too
few grids with non‑zero K* drive the economic conclu‑
sion that zero UK* with URT is more proϐitable than VRT.
The same conclusion is observed at the least sampling
density, as shown in Figure 6B. Lesser STK map accu‑
racy translated to more nutrient mismatch in compari‑
son to the most accurate and costliest STKmaps―see in‑
sufϐicient fertilizer application in Field 1 and

excess application in Field 2―but the yield implica‑
tions of this mismatch did not justify greater sampling
density nor more costly VRT in comparison to URT as in‑
dicated in Table 5.

For ϐieldswithboth STK andσSTK atmid‑level (Figure
5), VRT proved more proϐitable than URT (Figures 7A
and 7B). Non‑zero, grid‑level K* covered most of the pre‑
scription maps and yield responses at the tipping point
between no fertilizer application and using supplemen‑
tal fertilizer were large enough to make VRT more prof‑
itable than URT (Table 5). Without this large VRT yield
impact over URT, where zero UK* was the prescription, a
situation unique to this level of STK, URT was the proϐit‑
maximizing choice in ϐields with the high STK (already dis‑
cussed above) and the lowest STK where supplemental K
needs are evident (Figures 8A and 8B). Before describing
low STK and σSTK results, however, referring again to Fig‑
ures 7Aand7B formid‑range STK andσSTK, the lesser STK
map accuracy played a large role in Field 5, as the high sup‑
plemental fertilizer need was left nearly undetected near
the right side of the ϐield, with fewer soil samples. This sug‑
gested a need for greater STK map accuracy for Field 5 in
comparison to Field 4 and all other ϐields for thatmatter, as
indicated by the bold VPR numbers inTable 5, which indi‑
cated the level of soil sampling accuracy needed to achieve
maximum partial returns with variable rate technology.
Fields 8 and 2were the only other ϐields where added STK
map accuracy played a role.

Table 4. Multivariate regression results describing the relationship between the standard deviation of soil‑test K (STK)1 and
average STK, ϐield size (SIZE), and soil sampling density (SD) across eleven ϐields.

Explanatory Variables2 Coefϐicient Estimate (SE)3

Constant –20.15*** (3.17)
STK 0.25*** (0.03)
SIZE 0.62** (0.19)
SD 1.19* (0.53)

F‑statistic (p‑value) 57.22*** (< 0.0001)
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Table 4. Cont.
Explanatory Variables2 Coefϐicient Estimate (SE)3

R2 0.77
Adj. R2 0.76
AIC 7.68

Note: 1 See Equation (7); 2 STK, SIZE, and SD are average STK values, ϐield size, and sampling density for the 55 observations available from Table 1; and 3 The
model results revealed statistically signiϐicant heteroskedasticity in the error terms (p = 0.07) using a Breusch‑Pagan‑Godfrey test. Standard errors were therefore
corrected using Huber‑White’s process in EViews v9.5 [20] . *** , ** , and * indicate statistical signiϐicance at p < 0.001, 0.01, and 0.05, respectively. AIC is the Akaike
Information Criterion, where lower values are desired to avoid over‑speciϐication.

Figure5. Average and standarddeviationof STK frommaps at thehighest soil samplingdensity. Bold ϐield numbers and counties
represent the ϐields where variable rate technology was more proϐitable than uniform rate technology for fertilizer application.

Table 5. Field partial returns as a function of estimated yield response to proϐit‑maximizing K fertilizer application per 400 m2

grid using STK maps that vary by sampling density and application method, Arkansas, 2013–2022.
Size (i) SD (j)c Avg. STK ID (k) Variable Rate Technology (VRT) Uniform Rate Technology (URT) EOSD4 Method

FSSC +
CVRT2

Fert.
Cost

Y (kg
ha‑1)

VPR3 FSSC Fert.
Cost

Y(kg
ha‑1)

UPR3

41.2

2.23 205

1

712 536 4,9235 79,425 506 0 4,863 79,177

0.12 URT
1.09 204 454 366 4,906 79,562 248 0 4,863 79,436
0.53 212 327 194 4,882 79,466 121 0 4,863 79,562
0.27 227 267 109 4,872 79,448 61 0 4,863 79,623
0.12 218 28 0 4,863 79,656 28 0 4,863 79,656

14.3

6.99 198

2

621 5 4,877 27,074 550 0 4,876 27,143

0.35 URT
3.50 203 346 23 4,881 27,351 275 0 4,876 27,418
1.75 217 209 8 4,878 27,486 138 0 4,876 27,556
0.84 209 137 5 4,877 27,557 66 0 4,876 27,627
0.35 152 99 117 4,877 27,480 28 0 4,876 27,666

13.6

7.28 290

3

545 0 4,804 25,440 545 0 4,804 25,440

0.37 URT
3.68 287 275 0 4,804 25,710 275 0 4,804 25,710
1.84 277 138 0 4,804 25,847 138 0 4,804 25,847
0.88 333 66 0 4,804 25,919 66 0 4,804 25,919
0.37 287 28 0 4,804 25,957 28 0 4,804 25,957

23.0

4.13 135

4

638 904 4,865 42,959 523 0 4,686 42,343

0.22 VRT
2.09 133 379 939 4,862 43,153 264 0 4,686 42,601
1.00 134 242 945 4,858 43,254 127 0 4,686 42,739
0.48 150 176 435 4,778 43,096 61 0 4,686 42,805
0.22 130 143 972 4,859 43,329 28 0 4,686 42,838

23.2

4.31 130

5

666 1,023 4,840 42,965 550 0 4,654 42,393

1.08 VRT
2.16 136 391 726 4,783 43,017 275 0 4,654 42,668
1.08 133 254 738 4,787 43,182 138 0 4,654 42,805
0.52 140 182 475 4,744 43,116 66 0 4,654 42,877
0.22 142 144 752 4,767 43,084 28 0 4,654 42,915

22.0

4.58 156

6

666 35 4,866 41,955 556 0 4,861 42,049

0.23 URT
2.04 156 358 13 4,863 42,252 248 0 4,861 42,357
1.00 152 231 36 4,865 42,379 121 0 4,861 42,484
0.50 145 171 47 4,864 42,418 61 0 4,861 42,544
0.23 167 28 0 4,861 42,577 28 0 4,861 42,577

12.5 8.01 125 7 612 514 4,820 22,798 550 0 4,646 22,509 0.40 URT4.01 124 337 535 4,800 22,953 275 0 4,646 22,784
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Table 5. Cont.

Size (i) SD (j)c Avg. STK ID (k) Variable Rate Technology (VRT) Uniform Rate Technology (URT) EOSD4 Method

FSSC +
CVRT2

Fert.
Cost

Y (kg
ha‑1)

VPR3 FSSC Fert.
Cost

Y(kg
ha‑1)

UPR3

12.5
2.00 127

7
200 431 4,792 23,154 138 0 4,646 22,921

0.40 URT0.96 124 128 507 4,801 23,195 66 0 4,646 22,993
0.40 114 90 798 4,8575 23,219 28 887 4,867 23,242

23.0

4.34 130

8

665 559 4,788 42,653 550 0 4,692 42,441

0.22 URT
2.17 133 390 493 4,772 42,842 275 0 4,692 42,716
1.09 138 253 402 4,754 42,904 138 0 4,692 42,853
0.52 139 181 198 4,724 42,906 66 0 4,692 42,925
0.22 143 143 177 4,713 42,865 28 0 4,692 42,963

12.5

8.01 73

9

612 105 4,930 22,425 550 110 4,938 22,459

0.40 URT
4.01 76 337 103 4,922 22,682 275 105 4,924 22,732
2.00 73 200 106 4,932 22,832 138 110 4,938 22,872
0.96 76 128 103 4,923 22,897 66 105 4,924 22,941
0.40 70 90 109 4,937 22,928 28 110 4,938 22,982

12.3

5.05 66

10

402 1,493 4,946 22,259 341 1,477 4,940 22,310

0.41 URT
2.52 65 232 1,504 4,947 22,425 171 1,477 4,940 22,480
1.22 61 144 1,527 4,952 22,511 83 1,544 4,954 22,567
0.65 67 105 1,493 4,945 22,550 44 1,477 4,940 22,607
0.41 65 89 1,509 4,947 22,564 28 1,477 4,940 22,623

7.4

13.59 61

11

587 921 4,956 13,000 550 926 4,957 13,034

0.68 URT
6.79 60 312 925 4,957 13,274 275 926 4,957 13,309
3.40 61 174 921 4,956 13,411 138 926 4,957 13,447
1.63 57 103 935 4,961 13,482 66 926 4,957 13,518
0.68 63 64 909 4,951 13,520 28 926 4,957 13,557

Note: We assume yield potential of 5,044 kg ha‑1 , 10‑year average soybean price ($0.40 kg‑1), and fertilizer‑K cost ($1.09 kg‑1 K). Proϐit‑maximizing K fertilizer rates
are applied in increments of the nearest 5.6 kg K ha‑1 when modeling VRT, and uniformly, based on average ϐield STK, when modeling URT. 1 Sampling density (j)
is the number of soil samples per hectare (SD) with ϐield size (i) reported in hectares (SIZE). See Figure 2 for a visualization of sampling density changes in a ϐield
(k); 2 Sampling cost (FSSC) is impacted by ϐield size and sampling density. It is the number of samples times $5.50 per sample ($0.50 for collection and $5.00 for
analyzing soil information). For VRT, added fertilizer application charges amount to $5.00 ha‑1 compared to URT (CVRT); 3 See Equation (4) for calculating ϐield partial
returns (VPR) using proϐit‑maximizing, variable rate K fertilizer rates at the grid level (K*) and Equation (5) for ϐield partial returns (UPR) using the same, uniform,
proϐit‑maximizing K fertilizer rate (UK*) for the entire ϐield; 4 The economically optimal sampling density (EOSD) is the sampling density that led to maximum ϐield
partial returns for either URT or VRT as indicated in the column titled Method; and 5 Bold and italicized numbers are the maximum for a ϐield in terms of yield (Y),
VPR and UPR across SD.

(A)

(B)
Figure 6. High STK value and variance ϐields with STKmaps in the top row and corresponding K fertilizer prescription maps in
the bottom row: (A) highest soil sampling density; and (B) least soil sampling density.
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(A)

(B)
Figure 7. Mid‑range STK value and variance ϐields with
STKmaps in the top row and corresponding K fertilizer
prescription maps in the bottom row: (A) highest soil
sampling density; and (B) least soil sampling density.

(A)

(B)
Figure 8. Mid‑low range STK values and low‑range variance
ϐields with STK maps in the top row and corresponding K fertil‑
izer prescription maps in the bottom row: (A) highest soil sam‑
pling density; and (B) least soil sampling density.

In ϐields with low σSTK (Figures 8A and 8B), sev‑
eral interesting observations unfold. Field 6 had both
low σSTK and sufϐiciently high STK that supplemental fer‑
tilizer use was not justiϐied. Regardless of sampling den‑
sity, this ϐield was more proϐitably farmed using URT
than VRT (Table 5).

Field 7 was more nuanced in the sense that the
STK was very close to the threshold for using supple‑
mental fertilizer, leading to a prescription map at the
highest soil sampling density, which suggested mod‑
erate fertilizer use in some areas of the ϐield, whereas
UK* was uniformly zero with URT. Similar to Field 5,
Field 7 demonstrated relatively large yield gains for
VRT compared to URT. However, at the least soil sam‑
pling density, STK declined, making UK* with URT non‑
zero and economically superior to the partial returns
observed with VRT. Also evident for Field 7 is nutrient
mismatch with VRT when soil sampling was the least
(0.4 samples ha‑1), as opposite ends of the ϐield were

ϐlagged for higher K fertilizer rates (Figures 8A and
8B). The mismatch led to greater fertilizer use with
the least‑accurate soil maps, where soil sampling cost
savings and yield beneϐits outperformed greater sam‑
pling accuracy at greater cost with less yield. At the
least sampling density, only ϐive soil sampling loca‑
tionswere used. Had other soil sampling spots in Field
7 been picked, this ϐield’s classiϐication frommost prof‑
itably farmed with URT could have easily changed to
one that could beneϐit fromVRTwith slightlymore soil
sampling (0.96 samples ha‑1) than the choice identi‑
ϐied for Field 7 with bold lettering (Table 5), a situa‑
tion that was explained in greater detail by Badarch et
al. [14]. Field 8 had many grids with non‑zero K*, but
yield gains were insufϐicient to outweigh the added
cost of VRT vs. URT fertilizer cost and technology
charges, as zero‑UK* with URT was the prescription
across all soil sampling densities. Finally, Fields 9–
11 were most proϐitably farmed with URT. They were
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smaller ϐields, which partially led to lower σSTK (Table
4), and with low STK and σSTK, estimated VRT yields
were nearly the same as those of URT, given little nu‑
trientmismatch. As such, the value proposition of VRT
was not supported (not enough variation in prescrip‑
tion maps). Higher sampling density without much
range in STK led to only greater sampling costs that
were not accompanied by large yield gains over URT
(Table 5).

3.3. Sensitivity Analysis of Soybean Price
and Fertilizer Cost

A summary of Table 5 ϐindings is provided in Ta‑
ble 6 to quickly ascertain optimal technology choice
as impacted by the EOSD, proϐit‑maximizing fertilizer
rate, technology, and soil sampling charges, as well as
yield implications. The information in the table is re‑
peated for different soybean prices and fertilizer cost
assumptions. Higher soybean prices led to greater jus‑
tiϐication of VRT. At the same time, higher fertilizer
cost, ceteris paribus, had the opposite effect. Higher
fertilizer costs lead to reduced fertilizer use and, con‑
sequently, smaller changes in fertilizer cost savings be‑
tweenURT and VRT. The results are robust in the sense
that alternative price levels had little implications for
the proϐitability of VRT vs. URT. Using average price
and cost information, VRT was justiϐied near the eco‑
nomic threshold of STK, where fertilizer use ceased to
be proϐitable. At relatively high or low soybean prices
and costs, the same ϐieldswere identiϐied to be feasibly
farmed using VRT.

3.4. Generalizations From Study Findings
About Field Size, Soybean Price and Fer‑
tilizer Cost, Sampling Density, and STK

While the analysis of individual ϐields is interest‑
ing, Table 7 suggests that some generalizations based
on ϐield size, sampling density, soybean price, and fertil‑
izer cost are possible. Both STK and σSTK had non‑linear
impacts on VRT proϐitability that peaked near the eco‑
nomic STK threshold of K fertilizer use, as shown in Fig‑
ure 9 for an average‑sized ϐield using 0.5 samples ha‑1
sampling density at average soybean price and fertilizer
cost. The area highlighted in green points to ϐield charac‑
teristics where VRT proϐitability exceeds URT proϐitabil‑
ity by $10 ha‑1, a threshold trigger value considered ad‑
equate for producers to pay attention to an alternative
production method. The area highlighted in green mir‑
rors the results shown in Table 6. Yellow and red‑tinted
areas, where VRT is sufϐiciently less proϐitable than URT,
as indicated in the legend of Figure 9, pinpoint ϐield
characteristicswhere non‑zeroK* occur too infrequently
to justify K fertilizer application charges, as STK is sufϐi‑
ciently high to obviate the need for K fertilizer, or σSTK

is too low to justify the value proposition of VRT when
STK and σSTK are low. Areas in Figure 9without a color
scheme indicate STK and σSTK combinations based onTa‑
ble 4 results that suggested a direct correlation between
STK and σSTK. The attached spreadsheet allows the user
tomodify sampling density, ϐield size, soybean price, and
fertilizer cost to visualize the feasibility of VRT vs. URT
fertilizer application, given the ϐield STK and σSTK for
varying scenarios they may be interested in.

Table 6. Summary statistics identifying the economically optimal sampling density (EOSD), proϐit‑maximizing fertilizermethod
(uniform rate technology (URT) vs. variable rate technology (VRT)) and their partial return and yield differences as a function
of STK and K‑fertilizer under varying conditions in AR.
Size (i) SD1 Range

(j)
ID (k) EOSD2 T3 ∆PR4 @

EOSDT
(STK ) (σSTK)5
@EOSDT

FSSC + CVRT6@
EOSDT

UK=,7 @
EOSDT

K=,8 (Range,
Avg.) @ EOSDT

∆Y9 @
EOSDTURT VRT

2013–2022 avg. soybean and fertilizer at $0.40 kg‑1 and $1.09 kg‑1 K, respectively. K threshold = 123 mg K kg‑1

41.2 0.12–2.23 1 0.12 0.12 URT $0.00 218 (56) $27.50 0 0–0, 0.0 0
14.3 0.35–6.99 2 0.35 0.84 URT $7.62 152 (24) $27.50 0 0–60, 0.3 −1
13.6 0.37–7.28 3 0.37 0.37 URT $0.00 287 (47) $27.50 0 0–0, 0.0 0
23.0 0.22–4.13 4 0.22 0.22 VRT $21.35 130 (24) $142.50 0 0–90, 38.6 −172
23.2 0.22–4.31 5 0.22 1.08 VRT $11.49 133 (31) $253.50 0 0–105, 29.1 −133
22.0 0.23–4.58 6 0.23 0.23 URT $0.00 167 (21) $27.50 0 0–0, 0.0 0
12.5 0.40–8.01 7 0.40 0.40 URT $1.83 114 (10) $27.50 65 0–95, 58.5 10
23.0 0.22–4.34 8 0.22 0.52 URT $2.49 143 (20) $27.50 0 0–90, 7.8 −32
12.5 0.40–8.01 9 0.40 0.40 URT $4.32 70 (10) $27.50 110 90–120, 108.9 1
12.3 0.41–5.05 10 0.41 0.41 URT $4.79 65 (5) $27.50 110 105–115, 112.4 −7
7.4 0.68–13.59 11 0.68 0.68 URT $4.99 63 (5) $27.50 115 110–115, 112.9 6
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Table 6. Cont.

Size (i) SD1 Range
(j)

ID (k) EOSD2 T3 ∆PR4 @
EOSDT

(STK ) (σSTK)5
@EOSDT

FSSC + CVRT6@
EOSDT

UK=,7 @
EOSDT

K=,8 (Range,
Avg.) @ EOSDT

∆Y9 @
EOSDTURT VRT

2013 soybean and fertilizer at $0.48 kg‑1 and $1.05 kg‑1 K, respectively. K threshold = 131 mg K kg‑1

41.2 0.12–2.23 1 0.12 1.09 VRT $1.90 204 (68) $453.50 0 0–110, 9.3 −46
14.3 0.35–6.99 2 0.35 0.84 URT $7.53 152 (24) $27.50 0 0–75, 0.4 −1
13.6 0.37–7.28 3 0.37 0.37 URT $0.00 287 (47) $27.50 0 0–0, 0.0 0
23.0 0.22–4.13 4 0.22 0.22 VRT $38.73 130 (24) $142.50 0 0–95, 46.3 −192
23.2 0.22–4.31 5 0.22 1.08 VRT $24.69 133 (31) $253.50 0 0–110, 34 −146
22.0 0.23–4.58 6 0.23 0.23 URT $0.00 167 (21) $27.50 0 0–0, 0.0 0
12.5 0.40–8.01 7 0.40 0.40 URT $2.08 114 (10) $27.50 80 0–105, 67.7 21
23.0 0.22–4.34 8 0.22 1.09 VRT $3.30 138 (21) $252.70 0 0–105, 19.1 −69
12.5 0.40–8.01 9 0.40 0.40 URT $4.46 70 (10) $27.50 115 95–125, 115.2 −2
12.3 0.41–5.05 10 0.41 0.41 URT $4.80 65 (5) $27.50 120 110–120, 118.2 4
7.4 0.68–13.59 11 0.68 0.68 URT $5.08 63 (5) $27.50 120 115–120, 118.1 4

2016 soybean and fertilizer at $0.36 kg‑1 and $0.75 kg‑1 K, respectively. K threshold = 129 mg K kg‑1

41.2 0.12–2.23 1 0.12 0.12 URT $0.00 218 (56) $27.50 0 0–0, 0.0 0
14.3 0.35–6.99 2 0.35 0.84 URT $7.56 152 (24) $27.50 0 0–75, 0.4 −1
13.6 0.37–7.28 3 0.37 0.37 URT $0.00 287 (47) $27.50 0 0–0, 0.0 0
23.0 0.22–4.13 4 0.22 0.22 VRT $29.54 130 (24) $142.50 0 0–100, 47.7 −195
23.2 0.22–4.31 5 0.22 1.08 VRT $17.39 133 (31) $253.50 0 0–115, 34.9 −148
22.0 0.23–4.58 6 0.23 0.23 URT $0.00 167 (21) $27.50 0 0–0, 0.0 0
12.5 0.40–8.01 7 0.40 0.40 URT $3.36 114 (10) $27.50 80 0–105, 69.2 18
23.0 0.22–4.34 8 0.22 1.09 VRT $0.72 138 (21) $252.70 0 0–105, 19.6 −70
12.5 0.40–8.01 9 0.40 0.40 URT $4.60 70 (10) $27.50 115 100–125, 117.1 −6
12.3 0.41–5.05 10 0.41 0.41 URT $4.85 65 (5) $27.50 120 110–120, 119.1 1
7.4 0.68–13.59 11 0.68 0.68 URT $5.10 63 (5) $27.50 120 115–125, 119.7 1

2018 soybean and fertilizer at $0.32 kg‑1 and $0.89 kg‑1 K, respectively. K threshold = 121 mg K kg‑1

41.2 0.12–2.23 1 0.12 0.12 URT $0.00 218 (56) $27.50 0 0–0, 0.0 0
14.3 0.35–6.99 2 0.35 0.84 URT $7.64 152 (24) $27.50 0 0–60, 0.3 −1
13.6 0.37–7.28 3 0.37 0.37 URT $0.00 287 (47) $27.50 0 0–0, 0.0 0
23.0 0.22–4.13 4 0.22 0.22 VRT $16.61 130 (24) $142.50 0 0–90, 38.9 −173
23.2 0.22–4.31 5 0.22 1.08 VRT $7.69 133 (31) $253.50 0 0–105, 29.2 −134
22.0 0.23–4.58 6 0.23 0.23 URT $0.00 167 (21) $27.50 0 0–0, 0.0 0
12.5 0.40–8.01 7 0.40 0.40 URT $1.40 114 (10) $27.50 70 0–95, 58.6 20
23.0 0.22–4.34 8 0.22 0.52 URT $3.22 143 (20) $27.50 0 0–90, 7.9 −32
12.5 0.40–8.01 9 0.40 0.40 URT $4.48 70 (10) $27.50 110 90–120, 109.2 1
12.3 0.41–5.05 10 0.41 0.41 URT $4.82 65 (5) $27.50 110 105–115, 112.5 −7
7.4 0.68–13.59 11 0.68 0.68 URT $5.01 63 (5) $27.50 115 110–115, 113.0 5

2022 soybean and fertilizer at $0.53 kg‑1 and $2.06 kg‑1 K, respectively. K threshold = 115 mg K kg‑1

41.2 0.12–2.23 1 0.12 0.12 URT $0.00 218 (56) $27.50 0 0–0, 0.0 0
14.3 0.35–6.99 2 0.35 0.84 URT $7.70 152 (24) $27.50 0 0–35, 0.2 −1
13.6 0.37–7.28 3 0.37 0.37 URT $0.00 287 (47) $27.50 0 0–0, 0.0 0
23.0 0.22–4.13 4 0.22 0.22 VRT $10.81 130 (24) $142.50 0 0–70, 23.2 −120
23.2 0.22–4.31 5 0.22 1.08 VRT $3.52 133 (31) $253.50 0 0–90, 19.2 −100
22.0 0.23–4.58 6 0.23 0.23 URT $0.00 167 (21) $27.50 0 0–0, 0.0 0
12.5 0.40–8.01 7 0.40 0.96 VRT $5.04 124 (16) $128.40 45 0–85, 23.6 59
23.0 0.22–4.34 8 0.22 0.52 URT $4.60 143 (20) $27.50 0 0–75, 4.9 −23
12.5 0.40–8.01 9 0.40 0.40 URT $3.57 70 (10) $27.50 95 70–105, 96.6 −9
12.3 0.41–5.05 10 0.41 0.41 URT $4.78 65 (5) $27.50 100 90–105, 100.5 −3
7.4 0.68–13.59 11 0.68 0.68 URT $4.65 63 (5) $27.50 100 95–105, 101.6 −7

Note: 1 Sampling density (SD) is the number of soil samples ha‑1 (j) with ϐield size (i) reported in hectares. See Figure2 for a visualization of sampling density
changes on STKmaps and attendant changes in proϐit‑maximizing fertilizer prescriptionmap in Field 1 and across all ϐields (k) in Figures 6 to 8; 2 The economically
optimal sampling density (EOSD) is the SDwith highest partial returns in a ϐield (PR), calculated as ϐield yield in kg ha‑1 (Y) times soybean price in $ kg‑1 less fertilizer
cost, fertilizer application technology (CVRT) and soil sampling charges (FSSC). See details in Equations (4) and (5); 3 The proϐit‑maximizing fertilizer application
technology (T) is the one with the highest PR for URT vs. PR for VRT at their respective EOSDT , which is T‑dependent; 4 The difference in PR ($ ha‑1) between URT
and VRT at their respective EOSDT . Note that the sign is always positive and indicates the extra proϐit generated by using the optimal technology noted in the prior
column; 5 The average soil‑test K (STK) and its standard deviation at EOSDT; 6 Soil sampling cost is impacted by ϐield size (SIZE), EOSD and T. See Equations (4)
and (5); 7 The proϐit‑maximizing K fertilizer rate, UK* in kg K ha‑1 with URT; 8 The proϐit‑maximizing K fertilizer rates, K* in kg K ha‑1 with VRT. See Figures 6 to
8 for spatial detail; and 9 Negative yield differential between using the EOSD for URT vs. using the EOSD for VRT suggests yield improvement with lesser nutrient
mismatch and greater average application rate. A positive number is a function of lesser fertilizer use with VRT and potential nutrient mismatch due to low SD and
low STK map accuracy.

Table 7. Multi‑variate regression results explaining proϐitability1 differences between variable rate (VRT) and uniform rate
(URT) fertilizer application as a function of average and standard deviation, sampling density, ϐield size and interactions using
information from eleven ϐields.

Explanatory Variables2 Coefϐicient Estimate (SE)3

Constant −115.12*** (22.75)
STK −1.27*** (0.24)
STK0.5 22.19*** (4.75)
σSTK 0.88*** (0.20)
σSTK

2 −0.03*** (0.002)
STK∙σSTK 0.01*** (0.002)
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Table 7. Cont.
Explanatory Variables2 Coefϐicient Estimate (SE)3

SIZE −0.09 (0.07)
SD −1.31*** (0.36)

SIZE∙SD 0.13*** (0.03)
PS 35.01** (13.44)
cK −7.48*** (2.08)

F‑statistic (p‑value) 25.30*** (< 0.0001)
R2 0.49

Adj. R2 0.47
AIC 7.03

Note: 1 See Equation (8) for estimating the difference between VPR and UPR in USD ha‑1; 2 STK and σSTK are the sample average and standard deviation of soil‑test K
(STK), respectively. Sampling density (SD), is the number of soil samples per hectare, and the size of a ϐield (SIZE) is in ha; 3 The model results revealed statistically
signiϐicant heteroskedasticity in the error term [p< 0.001 for Equation (8)] using a Breusch‑Pagan‑Godfrey test. Standard errors were therefore corrected using
Huber‑White’s process in EViews v9.5 [20] . *** , ** , and * indicate statistical signiϐicance at p < 0.001, 0.01, and 0.05, respectively. AIC is the Akaike Information
Criterion, where lower values are desired to avoid over‑speciϐication. The model used 275 observations, as shown in Tables 1 and 5, as analyses were repeated at
alternative soybean price (PS) and K fertilizer cost (cK) values, with partial results of those analyses in Table 6.

Figure 9. Snapshot of feasibility map of attached VRT proϐit calculator.

4. Summary and Conclusion
This study analyzed actual soil test K information

obtained from eleven distinct ϐields in Arkansas to de‑
termine an economically optimum sampling density and
application technology based on estimated partial ϐield
net returns to irrigated soybean production. Modeling
involved calculating proϐit‑maximizing K fertilizer rates
that could be applied at variable rates across 400 m2

gridswithVRTvs. a ϐield‑average proϐit‑maximizing rate
with URT. A rule of thumb about relative proϐitability be‑
tweenURTandVRTK fertilizer application emerged that
centered on i) ϐirst identifying the economic threshold

of soil available K or STK where supplemental K fertil‑
izer was no longer justiϐiable (that threshold is lower
with higher fertilizer cost and increases with higher soy‑
bean price); ii) a ϐinding that ϐields with low average
STK tended to also have little spatial variation in STK
(thereby ϐields with high need for K fertilizer at low STK
exhibited little variation in STK and thereby little need
to change K fertilizer rate, the value proposition of VRT);
iii) a similar ϐinding that ϐields with high STK required
little K supplementation making yield improvement, in
few sub‑regions of ϐields with VRT, insufϐicient to af‑
ford added charges with VRT as in Sharma and Irmak’s
work [22]; and iv) a realization that added STK map accu‑
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racy provided insufϐicient value gain to sample at densi‑
ties greater than 1 sample ha‑1.

Limitations of this work are i) that a greater num‑
ber of ϐields may lead to further insights; ii) crop dif‑
ferences are likely; iii) yield potential among the eleven
ϐields was assumed the same but will vary in practice;
and iv) that the predictive model for proϐitability differ‑
ences between VRT and URT (Table 7) were limited to
differences at a particular sampling density. While the
economically optimal sampling density was always at
the low end for URT, higher sampling densities were jus‑
tiϐied for VRT in several instances making the feasibil‑
ity projections using Table 7 results, as used in the at‑
tached spreadsheet, biased in favor of VRT adoption as
higher soil sampling densities with URT were never jus‑
tiϐied and yet applied for comparison with VRT where
greater detail led to yield beneϐits from less nutrientmis‑
match. Finally, more details about the relationship be‑
tween ϐield size, STK and σSTKwould be beneϐicial to al‑
low a more reϐined assessment of how representative
this study’s ϐindings are. Also, emerging technologies
using remote sensing via drones, satellites, equipment‑
mounted sensors, or handheld devices, in‑ϐield sensors,
and in‑season supplemental fertilization deserve atten‑
tion as they could capture ϐield‑level nutrient variabil‑
ity that may be addressable at low cost without nutrient
runoff.
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[5] Späti, K., Huber, R., Finger, R., 2021. Beneϐits of
Increasing Information Accuracy in Variable Rate
Technologies. Ecological Economics. 185, 107047.
DOI: https://doi.org/10.1016/j.ecolecon.2021.
107047

[6] Ma, B.L., Wu, T.Y., Shang, J., 2014. On‑Farm Com‑
parison of Variable Rates of NitrogenWithUniform
Application to Maize on Canopy Reϐlectance, Soil
Nitrate, and Grain Yield. Journal of Plant Nutrition
and Soil Science. 177(2), 216–226. DOI: https:
//doi.org/10.1002/jpln.201200338

[7] Whelan, B.M., Taylor, J.A., McBratney, A.B., 2012. A
Small Strip Approach to Empirically Determining
Management Class Yield Response Functions and
Calculating the Potential Financial NetWastage As‑
sociatedWithWhole‑Field Uniform‑Rate Fertilizer
Application. Field CropsResearch. 139, 47–56. DOI:
https://doi.org/10.1016/j.fcr.2012.10.012

[8] Nijbroek, R., Hoogenboom, G., Jones, J.W., 2003. Opti‑
mizing IrrigationManagement for a Spatially Variable
Soybean Field. Agricultural Systems. 76(1), 359–377.
DOI: https://doi.org/10.1016/S0308‑521X(02)
00127‑0

[9] Yang, C., Everitt, J.H., Bradford, J.M., 2001. Com‑
parisons of Uniform and Variable Rate Nitrogen
and Phosphorus Fertilizer Applications for Grain
Sorghum. Transactions of the ASAE. 44(2), 201.
DOI: https://doi.org/10.13031/2013.4676

[10] Lowenberg‑DeBoer, J., Erickson, B., 2019. Setting
the Record Straight on Precision Agriculture Adop‑
tion. Agronomy Journal. 111(4), 1552–1569. DOI:
https://doi.org/10.2134/agronj2018.12.0779

[11] Lawrence, P.G., Roper, W., Morris, T.F., et al., 2020.
Guiding Soil Sampling Strategies Using Classical
and Spatial Statistics: A Review. Agronomy Journal.
112(1), 493–510. DOI: https://doi.org/10.1002/
agj2.20048
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