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ABSTRACT
Facing the increasing complexity and dynamic ϐluctuations of the global agricultural trade market, accurate

forecasting plays a key role in supporting agricultural policy formulation, stabilising the market and optimising
resource allocation. In order to increase the precision and stability of agricultural trade predictions, this research
suggests a hybrid model built on a temporal convolution network (TCN) and a lightweight gradient boosting tree
(LightGBM). The TCN module effectively captures the long‑term dependence characteristics of time series data
through dilated convolution, which improves themodel’s ability to identify seasonal and periodic trends. The Light‑
GBM module, on the other hand, makes use of the characteristics of gradient boosting decision trees and excels
at efϐiciently handling nonlinear relationships and avoiding overϐitting. Experimental results show that the TCN‑
LightGBMmodel outperforms traditional models in terms of mean square error (MSE), mean absolute error (MAE)
and prediction accuracy. Speciϐically, compared with ARIMA, LSTM, TCN alone or LightGBM alone, TCN‑LightGBM
achieves a prediction accuracy of 91.3% on the test data, with MSE andMAE of 0.021 and 0.115 respectively, signif‑
icantly improving prediction accuracy and stability. In addition, parameter sensitivity analysis shows that the TCN‑
LightGBM model maintains a highly consistent prediction trend under different parameter conϐigurations, which
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veriϐies the robustness of the model and its practical application value. This study provides a data‑driven decision
support tool with high accuracy and strong stability, providing a new solution for agricultural trade forecasting and
other complex time series prediction tasks.
Keywords: Agricultural Trade Forecasting; TCN; LightGBM; Data‑Driven; Decision Support

1. Introduction
With the acceleration of the process of globalisa‑

tion, the trade of agricultural products has become in‑
creasingly important in the global economy. Ensuring
a balance between supply and demand in the agricul‑
tural market has a profound impact on food security,
economic development, and trade policy formulation [1].
However, the agricultural market is affected by multi‑
ple factors, such as climate change, policy intervention,
and ϐluctuations in supply and demand. These factors
together form a complex and dynamic system, making
the prediction of agricultural trade a challenging task.
Highly accurate agricultural trade forecasts can not only
help governments formulate sound foodpolicies but also
provide traders and agricultural producers with strong
decision‑making support, reduce market risks, and im‑
prove resource utilisation efϐiciency [2]. Therefore, it is
of great practical signiϐicance to study efϐicient models
suitable for agricultural trade forecasting.

At present, the methods of agricultural trade fore‑
casting can be divided into traditional statistical mod‑
els and machine learning‑based models. Traditional sta‑
tistical methods, such as the autoregressive integrated
moving average model (ARIMA) in time series analy‑
sis, are widely used in the ϐield of agricultural forecast‑
ing [3]. However, these models are often based on lin‑
ear assumptions and are difϐicult to deal with the non‑
linear and highly volatile data characteristics in agricul‑
tural markets [4]. Machine learning‑based models, es‑
pecially deep learning models such as long short‑term
memory networks (LSTM), can better handle time de‑
pendence. However, their training process is complex
and prone to overϐitting. Although these methods have
improved prediction performance to some extent, they
still face challenges such as high computational costs,
long model training times, and insufϐicient adaptability
to large‑scale data.

In the current research on agricultural trade fore‑
casting, the deϐiciencies of existing methods are mainly
concentrated in the following aspects: First, traditional
statistical models and some simple machine learning
models fail to make full use of the time‑dependent and
complex nonlinear characteristics of the data, resulting
in limited prediction accuracy. Second, although deep
learningmodels have strongnonlinearmodeling capabil‑
ities, their training efϐiciency is low and computational
resources are consumed, making it difϐicult to promote
them in practical applications [5]. Finally, existing mod‑
els have deϐiciencies in generalisation ability and stabil‑
ity and are easily affected by outliers and extreme events.
Therefore, the development of a prediction model that
can balance nonlinear modelling ability and efϐicient cal‑
culation has become an urgent problem to be solved in
the ϐield of agricultural trade forecasting.

This paper proposes a hybrid model based on a
TCN and a LightGBM for agricultural trade forecasting.
The model combines the advantages of TCN in time
series feature extraction, which can efϐiciently capture
long‑term dependencies while avoiding the gradient dis‑
appearance problem of the RNN structure through di‑
lated convolution [6]. LightGBM is an efϐicient ensemble
learning model that can handle nonlinear relationships
and has high training efϐiciency. Compared with tradi‑
tional deep learning models, the TCN‑LightGBM model
greatly reduces the computational cost while ensuring
prediction accuracy and has good scalability and practi‑
cality.

In addition, this study also carries out more rigor‑
ous revisions and optimisations of the data selection and
analysis process. By using the latest agricultural trade
data covering multiple countries and regions, we have
improved the timeliness and representativeness of the
data and cleaned and standardised the data to ensure
the reliability of the analysis results. According to the ex‑
perimental ϐindings, the TCN‑LightGBMmodel performs
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better in agricultural trade forecasting than other ma‑
chine learning techniques and conventional statistical
approaches, particularly in terms of prediction accuracy
and model stability.

In order to increase forecast accuracy and model
application, this work aims to develop a computation‑
ally efϐicient and time‑dependent agricultural trade pre‑
diction model. This research illustrates the beneϐits of
the TCN‑LightGBM model in agricultural trade forecast‑
ing by contrasting itwith othermachine learningmodels
and conventional techniques. It is hoped that this study
will provide new ideas for the ϐield of agricultural trade
prediction and lay the foundation for further research in
related ϐields.

2. Overview of Theoretical Foun‑
dations and Methods
In the modern agricultural economy, agricultural

trade forecasting is key to ensuring global food secu‑
rity, formulating sound trade policies, and optimising re‑
source allocation. However, forecasting is challenging
because agricultural markets are affected by many com‑
plex factors, such as climate change, supply and demand,
and policy interventions. Traditional forecasting meth‑
ods often fail to effectively capture these complex time
series characteristics, resulting in low forecasting accu‑
racy. For this reason, hybridmodels based on time series
analysis and machine learning have gradually become
a research hotspot in order to achieve higher‑precision
agricultural trade forecasting [1]. The TCN‑LightGBM
model proposed in this paper combines the advantages
of theTCNand the gradient boosted tree (LightGBM)and
aims to improve the prediction accuracy through a data‑
driven approach.

A deep learning model called TCN was created
speciϐically to handle time series data. TCN uses one‑
dimensional convolution operations to analyze time‑
series data, in contrast to conventional recurrent neu‑
ral networks (RNNs). At the core of TCN is dilated con‑
volution, which can quickly capture long‑term depen‑
dencies while preserving the chronological order of the
sequence. The TCN’s causal convolution structure pre‑
vents future information from leaking and guarantees

that the output is exclusively dependent on the past and
present data points, making it appropriate for predic‑
tion tasks [7]. TCN is excellent at collecting intricate time
series characteristics because of its dilated convolution
property. It can efϐiciently learn both short‑term varia‑
tions and long‑term patterns in time series by varying
the dilation factor to widen the receptive ϐield. As a re‑
sult, TCN is often used in domains like weather research
and ϐinancial forecasts, and it also offers fresh concepts
for agricultural trade forecasting.

The gradient boosted decision tree (GBDT) model,
created by Microsoft Research, is implemented by Light‑
GBM with the goal of increasing the model’s predic‑
tion accuracy and training speed. LightGBM accelerates
model training through techniques such as histogram
binning and leaf node splitting, and is especially suit‑
able for processing high‑dimensional and large‑scale
data. Compared with other GBDT implementations (XG‑
Boost), LightGBM has better memory usage efϐiciency
and lower computational costs [8]. Its unique leaf node
splitting strategy canmore accurately handle the nonlin‑
ear relationship of data. LightGBM is an integrated learn‑
ing framework that gradually optimises the objective
function through multiple iterations, which makes the
model more generalisable on complex datasets. There‑
fore, LightGBM may further enhance the prediction out‑
comes by efϐiciently capturing the intricate interactions
between many components in the job of agricultural
trade prediction.

Data‑driven prediction methods have gradually
emerged with the development of big data and artiϐicial
intelligence technology. Unlike traditional prediction
methods based on theoretical models, data‑drivenmeth‑
ods rely on the mining and analysis of large amounts
of historical data and are particularly suitable for use
in situations with abundant information [9]. The core
idea of data‑drivenpredictionmethods is to usemachine
learning algorithms to automatically learn complex pat‑
terns and relationships from data. These algorithms
include deep learning models, tree models, etc., which
have powerful adaptability and nonlinear modeling ca‑
pabilities [10]. By combining large‑scale historical data
and machine learning techniques, data‑driven methods
can achieve remarkable results in data feature extrac‑
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tion, pattern recognition and prediction. This method
has been successfully applied in ϐields such as ϐinance, re‑
tail and transportation and provides new research ideas
for the prediction of agricultural trade [11].

In summary, the TCN‑LightGBMmodel used in this
paper combines the advantages of deep learning and
machine learning. The TCN module uses the convolu‑
tion characteristics of the time series to extract time‑
dependent features, while the LightGBMmodule further
reϐines the prediction of the extracted features through
gradient‑boosted decision trees. This method incorpo‑
rates the latest techniques in data‑driven prediction to
deal with the complex nonlinear relationships and time‑
dependency issues in agricultural trade prediction, pro‑
viding an innovative solution to improve prediction ac‑
curacy.

3. ModelConstructionandMethod
Design
In the prediction of agricultural trade, it is crucial to

construct high‑precision models that adapt to the char‑
acteristics of the time series. In order to improve the
prediction accuracy and stability, we suggest a fusion ar‑
chitecture based on a TCN and a LightGBMmodel to cap‑
ture the nonlinear and time‑dependent aspects in agri‑
cultural commerce. The two primary modules of the
model are the LightGBM for regression prediction and
theTCN for time series feature extraction [12]. Combining
the two modules improves performance in complicated
time series data by utilizing their own capabilities.

3.1. Overall Architecture Design of the TCN‑
LightGBMModel

The overall architecture of the TCN‑LightGBM
model consists of two major modules, as shown in Fig‑
ure 1. The input time‑series data is passed through
the TCN module for feature extraction. TCN constructs
feature representations that depend on long time se‑
ries using one‑dimensional convolution operations and
dilation factors [13]. These features are then passed to
the LightGBM module for prediction, which gives full
play to the advantages of LightGBM in processing high‑
dimensional sparse data and complex feature combina‑

tions.

Figure 1. Overall architecture ϐlowchart of the TCN‑LightGBM
model.

Figure 1 shows the main structure and data ϐlow
of the model. The output feature vector of the TCNmod‑
ule is connected to the input of the LightGBM module
through a connection layer to achieve a seamless tran‑
sition from feature extraction to regression prediction.
The design goal of the entire model is to capture time
series and quickly process high‑dimensional features to
improve the performance of agricultural trade predic‑
tions [14].

ŷt = f (LightGBM (hTCN (xt−N :t))) (1)

Among them, xt−N :t represents the input sequence
from time t − N to t, hTCN is the feature output by the
TCN module, f(·) represents the prediction function of
LightGBM, and ϐinally the prediction result ŷt is obtained.

3.2. Structure of the TCN Module and Its
Time Series Feature Extraction Func‑
tion

The core of the TCN module is to use one‑
dimensional dilated convolution to effectively model
long‑term dependencies by expanding the perception.
The dilation factor d controls the jump step of the con‑
volution kernel, allowing the network to achieve a larger
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perception with fewer layers, which is suitable for cap‑
turing long‑term trends [15]. Assuming the convolution
kernel is k and the time step is t, the output of the lth
layer is:

h
(l)
t = σ

(
k−1∑
i=0

 W (l)
i · h(l−1)

t−d·i + b(l)

)
(2)

Among them,W (l)
i is the convolution kernelweight,

b(l) is the bias, and σ is the activation function. In order
to avoid future data leakage, TCN uses causal convolu‑
tion, that is, only using past and current data to ensure
the rationality of the prediction results [16].

As can be seen from Table 1, different TCN hyper‑
parameter conϐigurations have a signiϐicant impact on
themodel’s MAE. As the number of TCN layers increases,
the modal’s MAE gradually decreases, indicating that a
deeper network hierarchy can capture richer time series
features and thus improve prediction accuracy. Speciϐi‑
cally, when the number of TCN layers is increased from
4 to 8, the MAE is reduced from 0.032 to 0.029, showing
some improvement [17]. The choice of the convolutional
kernel size also has a signiϐicant impact on the model
performance. When the number of layers is 6 and the
convolutional kernel size is 3, a relatively lowMAE value

(0.030) is achieved compared with other conϐigurations,
indicating that this conϐiguration ismore effective in cap‑
turing the local characteristics of the time series.

The dilation factor controls the stride of the con‑
volutional kernel in the TCN model, which can expand
the model’s perception and adapt to the dependence of
long time series. As the dilation factor is gradually in‑
creased (1, 2, 4, 8 to 1, 4, 16, 64), the model shows
lower MAE at deeper conϐigurations, which indicates
that larger dilation factor conϐigurations can effectively
extract long‑range time dependencies, thereby enhanc‑
ing the model’s ability to capture complex time series.
However, too many layers may increase the computa‑
tional overhead, so in practical applications, a trade‑off
between accuracy and computational efϐiciency is re‑
quired. The ϐinal result determines that the conϐigura‑
tion with 8 layers, a convolutional kernel size of 2, and
an expansion factor of 1, 4, 16, and 64 is the optimal com‑
bination of hyperparameters for the TCN model.

Figure 2 illustrates the TCNmodel’s feature extrac‑
tion procedure when many dilated convolutions are in
play. The long‑term patterns and short‑term oscillations
of the data are progressively captured by the character‑
istics from input to output.

Table 1. The impact of TCN model hyperparameter conϐigurations on prediction performance.
TCN Layers Convolution Kernel Size Dilation Factor MAE

4 2 1, 2, 4, 8 0.032
6 3 1, 3, 9, 27 0.030
8 2 1, 4, 16, 64 0.029

Figure 2. TCN layer with incremental expansion.

3.3. Integration of the LightGBM Module
and Its Advantages in Prediction

As a gradient boosting decision tree model, Light‑
GBM has fast training and a strong ability to handle non‑

linear relationships. This module accepts features from
TCN as input and uses the tree structure to disassem‑
ble complex feature combination relationships layer by
layer [18]. For each leaf node j of the tree, the correspond‑
ing weight update formula is:

w
(k+1)
j = w

(k)
j − η · ∂L

∂w
(k)
j

(3)

Where L is the loss function and η is the learning
rate. LightGBM optimizes the loss function through con‑
tinuous iterations to make the prediction more accurate.

Different parameter conϐigurations of LightGBM
have a signiϐicant impact on the MSE of the prediction
performance, as shown in Table 2 below. As the num‑
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ber and maximum depth of trees increase, the MSE of
the model gradually decreases, indicating that a more
complex model structure can learn potential patterns in
the data more deeply, thereby improving prediction ac‑
curacy. When the number of trees is increased from 100
to 300, the MSE decreases from 0.015 to 0.011. Increas‑
ing the number of trees can effectively improve the pre‑
diction performance of the model. The learning rate set‑
ting plays a key role in the convergence speed andperfor‑
mance stability of the model. As the learning rate grad‑
ually decreases from 0.1 to 0.01, the MSE of the model
gradually decreases, which shows that a smaller learn‑
ing rate helps to reϐine the parameter optimization pro‑
cess and avoid training error ϐluctuations caused by too
large a step size. Although a smaller learning rate will

increase the training time, it can usually obtain more ac‑
curate prediction results.

Increasing the number of trees, modifying the max‑
imum depth, and decreasing the learning rate may all
greatly increase the LightGBM model’s prediction accu‑
racy. These parameter adjustments make LightGBM ex‑
cel at processing high‑dimensional features, further re‑
ducing the risk of overϐitting. In particular, based on the
complex features extracted by TCN, LightGBM can cap‑
ture potential nonlinear relationships and effectively im‑
prove the overall model accuracy [19]. The ϐinal conϐigu‑
ration (300 trees, maximum depth of 10, and learning
rate of 0.01) was selected as the optimal combination,
ensuring a balance betweenmodel accuracy and compu‑
tational cost.

Table 2. The impact of different LightGBM parameter conϐigurations on prediction performance.
Number of Trees Maximum Depth Learning Rate MSE

100 6 0.1 0.015
200 8 0.05 0.013
300 10 0.01 0.011

3.4. The Fusion Method and Interaction
Mechanism of TCN and LightGBM

The fusion of TCN and LightGBM adopts a two‑
stage serial structure, in which TCN is used to extract
temporal features, and the high‑dimensional temporal
sequence features are then input into the LightGBM
model for regression prediction. The temporal features
provided by the TCN module include long‑term trends
and short‑term ϐluctuations, and LightGBM further cap‑
tures the nonlinear combination relationship between
these features [20].

The core idea of this architecture design is to make
full use of the time series feature extraction capability
of TCN and the nonlinear ϐitting capability of LightGBM,
so as to capture a richer level of information in complex
agricultural trade data.

Figure 3 shows the step‑by‑step generation and
transformation process of the features of each layer of
the TCN‑LightGBMmodel, which ultimately achieves the
complementary advantages of time series and regres‑
sion models in the prediction results. The experimental
ϐindings demonstrate that the model has made notable

performance gains in the forecast of agricultural trade,
and the characteristics retrieved by the TCNmodule suc‑
cessfully increase the prediction accuracy of LightGBM.

Figure 3. Architecture of the agricultural trade forecasting
model TCN‑LightGBM.

4. Experimental Design
In the task of agricultural trade forecasting, experi‑

mental design is an important step in verifying the effec‑
tiveness of themodel. Through reasonable selection and
pre‑processing of the data set, detailed design of the ex‑
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perimental process, and comparative experiments with
other models, we can comprehensively evaluate the per‑
formance of the TCN‑LightGBMmodel [21].

4.1. Selection and Pre‑Processing of Data
Sets

When selecting the categories of agricultural prod‑
ucts, we considered theirmarket share, trade volume, re‑
gional representation and data availability. The selected
agricultural products, such as grains, oil crops, vegeta‑
bles, fruits, meat, dairy products and aquatic products,
occupy an important position in global trade, with high
trade volume and economic impact, and can reϐlect the
main trends of global trade [22]. The data mainly comes
fromthepublic databases of theFoodandAgricultureOr‑
ganization of the United Nations (FAO) and the Interna‑
tional Monetary Fund (IMF), covering a 10‑year period
(2011–2021) with monthly frequency to ensure reliabil‑
ity and accuracy. The data covers ϐive continents: North
America, Africa, Europe, Asia and South America, with
good regional representation. By selecting these prod‑
ucts, we can further verify the effectiveness of themodel

by analysing in depth the dynamics of trade, volatility
and market risk between different markets. These fac‑
tors ensure the rationality of the experimental design
and the representativeness of the data, providing strong
support for the agricultural trade forecasting model.

During the data cleaning process, entries with a
large number of missing values were removed, and a
small amount of missing data was ϐilled in using linear
interpolation. To ensure the rationality of the data dis‑
tribution, some extreme values were removed, and the
calculated range of abnormal values was:

Q1− 1.5 · IQR < x < Q3 + 1.5 · IQR (4)

Where Q1 and Q3 represent the 25th and 75th per‑
centiles respectively, and IQR represents the interquar‑
tile range. Table 3 shows the statistical characteristics
of each type of agricultural product in the dataset af‑
ter cleaning, including the amount of data, mean, stan‑
dard deviation, minimum and maximum values. These
statistics reveal the distribution and volatility of differ‑
ent types of agricultural products in trade data, which
helps to further understand their market dynamics and
characteristics.

Table 3. Statistical characteristics of different types of agricultural products after cleaning.

Types of Agricultural Products HS Number Data Volume
(Records) Mean Standard

Deviation Minimum Maximum

Grain (1000 billion dollars) 1001–1008 120 3.45 1.56 0.89 6.78
Oil crops (1000 billion dollars) 1201–1207 120 2.89 1.12 0.54 5.43
Vegetables (1000 billion dollars) 0701–0714 120 4.21 1.34 1.12 7.02
Fruits (1000 billion dollars) 0801–0810 120 5.30 1.78 1.57 8.24
Meat (1000 billion dollars) 0201–0210 120 2.67 0.98 0.72 4.95

Dairy products (100 billion dollars) 0401–0406 120 3.90 1.25 1.00 6.31
Aquatic products (1000 billion dollars) 0301–0308 120 3.75 1.45 0.95 6.10

Sugar (1000 billion dollars) 1701–1703 120 2.53 0.87 0.66 4.20
Source: FAO, IMF, and national governments.

On average, the average value of fruits is the high‑
est, at 5.30, reϐlecting the relatively high trading volume
or price of fruits in the agricultural trade. The average
values of vegetables, dairy products and aquatic prod‑
ucts are also relatively high, at 4.21, 3.90 and3.75 respec‑
tively, indicating that these categories occupy a certain
share in the market. The average value of sugar is the
lowest, at only 2.53, indicating relatively low market de‑
mand or supply. The standard deviation data reveals the
volatility of the data for each type of agricultural product.

The standard deviation of fruits is the largest, at 1.78, in‑
dicating that the price or trading volume of fruits ϐluctu‑
ates greatly and may be affected by factors such as sea‑
son and output. In contrast, the standard deviation of
sugar is relatively low, at 0.87, indicating relatively little
ϐluctuation and a stablemarket. The standarddeviations
of oil crops and meat are also low, at 1.12 and 0.98 re‑
spectively, indicating that the market demand or price
of these agricultural products is relatively stable. The
minimumandmaximumvalues further demonstrate the
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range of values taken by each type of agricultural prod‑
uct in the dataset. The maximum value for fruit is 8.24,
while the maximum value for sugar is only 4.20, reϐlect‑
ing the fact that themarket performanceof fruitmay ϐluc‑
tuate greatly in extreme cases. The minimum values for
grain, dairy products and aquatic products are relatively
close, at 0.89, 1.00 and 0.95 respectively, indicating that
the prices or trading volumes of these agricultural prod‑
ucts will also be low in the event of low market demand
or oversupply.

In terms of feature engineering, to improve the pre‑
diction accuracy of the model, we extracted monthly
cycle features and trend features from the time series
data [23]. Some macroeconomic variables, inϐlation rate,
and GDP growth rate, were added to further enhance the
generalization ability of the model. The improvement
in model performance due to the addition of features
is shown in Figure 4, where the prediction accuracy is
signiϐicantly improved after the economic variables are
added.

Figure 4. Inϐluence of feature engineering on model accuracy.

4.2. Experimental Procedure and Parame‑
ter Settings

Separating the training, validation, and test sets is
a step in the experimental process. Thirteen percent
of the data is used for testing to avoid missing data, ϐif‑
teen percent is used for validation, and seventy percent
is used for training [24]. When training amodel, the cross‑
validation technique is used, and the loss function isMSE,

which has the following deϐinition:

MSE =
1

n

n∑
i=1

 (yi − ŷi)
2 (5)

Among them, yi is the true value, ŷi is the predicted
value, and n is the number of samples. In terms of pa‑
rameter selection, the number of convolution layers of
the TCNmodule is 4, the convolution kernel size is 3, and
the expansion factor doubles layer by layer starting from
1 [25]. The speciϐic parameter settings are shown in Ta‑
ble4. The LightGBMmodule uses 200 trees, the learning
rate is 0.05, and the maximum depth is set to 8.

4.3. Comparative Experiment: TCN‑
LightGBM and Other Models

This research selects the conventional ARIMA
model, the deep learning‑based LSTM, and the model
that uses TCN and LightGBM alone for comparison in
order to validate the prediction impact of the TCN‑
LightGBM model [26]. The performance of each model
is evaluated by three indicators: MSE, MAE, and predic‑
tion accuracy (Accuracy). The experimental results are
shown in Table 5.

The MSE and MAE of the TCN‑LightGBM model
are 0.021 and 0.115 respectively, which are the lowest
among all models, indicating that this model has high ac‑
curacy in predicting results. Its prediction accuracy of
91.3% is signiϐicantly higher than that of the traditional
ARIMA model (82.6%) and the deep learning model
LSTM (86.7%). In contrast, the prediction accuracies
of the TCN and LightGBM models alone are 87.5% and
88.1% respectively, which are better than ARIMA and
LSTM, but still lower than the combined performance of
TCN‑LightGBM.

Figure 5 shows the prediction trends of TCN‑
LightGBM and other models on the test set. It can be
seen that TCN‑LightGBM better captures the ϐluctuating
trends and extreme points of time series data, indicat‑
ing its advantage in capturing complex time dependen‑
cies. The ϐinal experimental results prove that the TCN‑
LightGBMmodel not only has higher accuracy in predict‑
ing agricultural trade, but also can handle complex time
dependencies and nonlinear relationships.
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Table 4. Parameter conϐiguration of TCN‑LightGBMmodel.
Model Module Parameter Name Value

TCN Number of convolutional layers 4
Convolutional kernel size 3

Expansion factor 1, 2, 4, 8
LightGBM Number of trees 200

Learning rate 0.05
Maximum depth 8

Table 5. Comparison of different models in terms of predicted performance indicators.

Model MSE MAE Prediction Accuracy (%)

ARIMA 0.045 0.178 82.6
LSTM 0.031 0.141 86.7
TCN 0.029 0.135 87.5

LightGBM 0.028 0.130 88.1
TCN‑LightGBM 0.021 0.115 91.3

Figure 5. Predicted trend for TCN‑LightGBM compared to
other models.

Therefore, the TCN‑LightGBMmodel combines the
advantages of TCN in time series feature extraction with
the ability of LightGBM to handle nonlinear relation‑
ships. The TCN module can effectively capture long‑
term dependence features in the data, while LightGBM
optimises the interactions between nonlinear features,
thereby improving the overall model accuracy. However,
it is important to note a key limitation of this model,
which is related to the inherent design of tree‑based
models, including LightGBM.While tree models are very
powerful at capturing data patterns, they are weak at
trend extrapolation. This challenge stems from the dif‑
ϐiculty of tree‑based models to effectively predict long‑
term trends, as they rely more on patterns in historical
data and are unable to accurately extrapolate these pat‑
terns into the future.

In contrast, traditional ARIMA models, while lim‑
ited in their ability to handle complex non‑linear fea‑
tures, perform better at trend extrapolation due to their
explicit modelling of trends and seasonality. Similarly,
while LSTM models are known for their ability to cap‑
ture long‑term dependencies, they also face challenges
in terms of training efϐiciency and overϐitting. There‑
fore, although TCN‑LightGBM excels at capturing com‑
plex data patterns, it may experience a decline in perfor‑
mance when making long‑term trend predictions. This
limitation suggests that future research may need to ex‑
plore hybridmodels or further improvements to address
the problem of trend extrapolation in time series predic‑
tion.

5. Experimental Results and Anal‑
ysis

In this study, we comprehensively and rigor‑
ously evaluate the predictive performance of the TCN‑
LightGBM model. The experimental results show that
theTCN‑LightGBMmodel has high accuracy and stability
in the agricultural trade prediction task. To ensure the
rigor of the analysis process, we not only rely on graph‑
ical results, but also comprehensively consider the pre‑
dictive ability of the model by combining multiple evalu‑
ation metrics, such as accuracy, recall, and F1 score.

The TCN‑LightGBM model uses the TCN module to
extract the long‑term dependence characteristics of the
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time series and uses LightGBM for regression prediction,
successfully achieving efϐicient prediction of agricultural
trade data [27]. On the test set, the predicted trend of
TCN‑LightGBM closely follows the real value. Especially
at points in time with large data ϐluctuations, the model
can accurately capture extreme values, showing strong
ability to capture time dependence.

To ensure the scientiϐic and reasonable evaluation
of the model, we compared the prediction performance
of TCN‑LightGBM with other commonly used models
such as ARIMA and LSTM. During the experiment, in ad‑
dition to comparison charts, the accuracy, recall rate,
F1 score and other evaluation indicators of each model
were also calculated in detail to comprehensively reϐlect
the overall performance of each model in the prediction
of agricultural trade. The calculation of these indicators
not only measures the prediction accuracy of the model,
but also effectively avoids the errors that may be caused
by only intuitively comparing the charts.

To verify the stability of the model under different
parameter conϐigurations, we also performed a param‑
eter sensitivity analysis. By comparing the model per‑
formance under different combinations of hyperparam‑
eters, we found that TCN‑LightGBMstill exhibits high sta‑
bility and strong adaptability under different hyperpa‑
rameter settings. This analysis further proves the fea‑
sibility and reliability of the model in practical applica‑
tions.

5.1. Performance of TCN‑LightGBM Model
in Agricultural Trade Forecasting

TCN‑LightGBM shows better performance than
other models when dealing with data with large ϐluctua‑
tions. Traditional ARIMA models clearly fail when faced
with complex non‑linear relationships, while LSTM, al‑
though it can better capture time‑dependence, is prone
to overϐitting during training and has low computational
efϐiciency. In contrast, TCN‑LightGBM canmaintain high
training efϐiciency and model stability while ensuring
high accuracy.

Figure6 shows a comparison of theTCN‑LightGBM
prediction with the true value on the test set. Through
careful error analysis, we further veriϐied the effective‑
ness of TCN‑LightGBM. It is worth noting that the model

not only accurately predicts the overall trend of data
changes, but also accurately captures the extreme points
of the data at key moments, which proves the power‑
ful capturing ability and robustness of TCN‑LightGBM in
time series data.

Figure 6. Comparison of predicted and actual values for TCN‑
LightGBM and the traditional model.

5.2. Evaluation of the Model’s Accuracy, Re‑
call Rate and F1 Score Indicators

To objectively measure the performance of the
model, we selected the accuracy, recall and F1 score indi‑
cators. The speciϐic calculation formulas are as follows:

Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall rate:

Recall =
TP

TP + FN
(7)

F1 score:

F1 = 2× Precision×Recall

Precision+Recall
(8)

The letters TP, TN, FP, and FN stand for true posi‑
tive, true negative, false positive, and false negative, re‑
spectively. Table 6 displays the ϐindings of the exper‑
iment. With accuracy, recall, and F1 score of 91.3%,
89.7%, and 90.5%, respectively, the TCN‑LightGBM
model outperforms other models, particularly in terms
of recall and F1 score. The real positive samples in the
categorization ϐindings may be efϐiciently captured by it.
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Table 6. Comparison of several models with respect to F1 score, accuracy, and recall.
Model Accuracy (%) Recall (%) F1 Score (%)

TCN‑LightGBM 91.3 89.7 90.5
LSTM 86.7 85.1 85.9
ARIMA 82.6 80.3 81.4

LightGBM 88.1 87.0 87.5

5.3. Performance Difference Analysis with
the Comparative Model

To further analyse the performance advantages of
TCN‑LightGBM, we compared it with LSTM, ARIMA and
LightGBMmodels. As can be seen from the results in Ta‑
ble 6, TCN‑LightGBM outperforms the other models in
terms of accuracy, recall and F1 score. In particular, TCN‑
LightGBM prediction results are more accurate at the
ϐluctuation cycle and extreme points of time series data.
This is mainly due to the advantages of the TCN mod‑
ule in time feature extraction, which enables the model
to strike a balance between long‑term dependence and
short‑term changes. Figure 7 shows the error distribu‑
tion of each model on the test set. It can be seen that the
errors of TCN‑LightGBM are more concentrated and dis‑
tributed around zero, while the errors of other models
are more scattered, indicating that TCN‑LightGBM per‑
forms better in terms of prediction stability.

Figure 7. Error distribution of differentmodels on the test set.

5.4. Parameter Sensitivity Analysis and
Model Stability Veriϐication

To verify the robustness of the model, we per‑
formed a parameter sensitivity analysis of the TCN‑
LightGBMmodel, mainly examining the impact of param‑
eters such as the number of convolutional layers, the
size of the convolutional kernel, and the learning rate
on themodel performance. The experimental results are
shown in Table 7. The accuracy of the model under dif‑
ferent parameter conϐigurations remains highly consis‑
tent, indicating that the model has good stability under
parameter adjustments.

When the number of convolutional layers varied
between 3, 4 and 5, the model accuracy remained at
91.3%, indicating that increasing the number of convo‑
lutional layers did not signiϐicantly improve or degrade
the model performance, and that the model was less de‑
pendent on the number of convolutional layers. When
the size of the convolutional kernel varied between 2, 3
and 4, the accuracy changed very slightly, only dropping
slightly from 91.3% to 91.0%, showing that the model
is highly adaptable to the size of the convolutional ker‑
nel. Changes in the learning rate also did not have a sig‑
niϐicant impact on the model accuracy. When the learn‑
ing rate was increased from 0.05 to 0.15, the accuracy
remained above 90.8%.

Table 7. Parameter sensitivity analysis of the TCN‑LightGBMmodel.
Parameters Conϐiguration 1 Conϐiguration 2 Conϐiguration 3 Accuracy (%)

Number of convolution layers 3 4 5 91.3
Size of the convolution kernel 2 3 4 91.0

Learning rate 0.05 0.1 0.15 90.8

These results verify the stability of the TCN‑
LightGBMmodel, i.e., there is a certain degree of ϐlexibil‑
ity in parameter settings, and performance will not ϐluc‑
tuate signiϐicantly due to parameter adjustments. Fig‑
ure 8 further shows a comparison of the model’s pre‑

dicted valueswith the true values under different param‑
eter conϐigurations. It can be seen that the predicted
trends under different conϐigurations are basically con‑
sistent with the true values, which further proves the
robustness of the model. Therefore, the TCN‑LightGBM
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model not only performs well in accuracy, but also has
good fault tolerance and stability. It is not easily affected
by parameter ϐine‑tuning in practical applications and
is suitable for agricultural product trade forecasting and
when stable forecast results are required.

Figure 8. Model prediction values and true values under dif‑
ferent conϐigurations.

The TCN‑LightGBM model is suitable for
widespread use in real‑world applications because, ac‑
cording to the experimental results, it not only performs
signiϐicantly better than othermodels in terms of perfor‑
mance metrics like prediction accuracy, recall rate, and
F1 score, but it also shows high robustness and stability
in the parameter sensitivity analysis.

6. Discussion
In this study, the TCN‑LightGBM‑based agricultural

trade prediction model demonstrated its superiority in
processing complex time series data. The TCN module
enables the model to effectively extract time‑dependent
features and capture long‑term trends and short‑term
ϐluctuations in agricultural trade data. The LightGBM
module excels in nonlinear modelling and can extract
hidden patterns from high‑dimensional features. This
hybrid model takes full advantage of deep learning and
ensemble learning, making the prediction results more
accurate, as well as highly stable and applicable. In prac‑
tical applications, the TCN‑LightGBMmodel can not only
be used to predict agricultural trade, but also has a wide
range of applicability and can be extended to other com‑
plex time series prediction tasks to support decision‑
making in related ϐields.

The complementarity between TCN and LightGBM
is the key to the superior performance of the model.
TCN solves the problemof gradient disappearance in tra‑
ditional RNN models through dilated convolution and
causal convolution, while improving training efϐiciency
and enabling themodel to process data over longer time
spans. LightGBM, on the other hand, uses a partition‑
ing strategy and an integrated learning framework to
achieve efϐicient nonlinear feature mining at low com‑
putational cost. The combination of the two makes the
model capable of capturing long‑term sequence depen‑
dencieswhile also quickly adapting tononlinear changes
in the data, providing an effective solution to the diversi‑
ϐication and dynamics issues in agricultural trade fore‑
casting. Compared with a single model, TCN‑LightGBM
can better handle noisy data and outliers, improving the
robustness of the model in practical applications.

Although the TCN‑LightGBM model shows signiϐi‑
cant advantages in agricultural trade forecasting, it still
has certain limitations. The TCN model requires a lot
of experimental tuning in the selection of the number of
convolutional layers and the expansion factor to adapt to
the characteristics of different datasets, which increases
the complexity ofmodel design. LightGBM is strongly de‑
pendent on data characteristics, and when the dataset
lacks sufϐicient features, it may lead to a decrease in
model performance. Due to the complexity of the model
and the largenumberof parameters, TCN‑LightGBMmay
not performwell with small sample sizes, so it should be
used with caution when the data size is limited. Future
research could explore automated hyperparameter opti‑
misation methods to simplify the model tuning process,
or try other lightweight neural network structures to fur‑
ther improve the computational efϐiciency of the model.

Looking to the future, there is still great potential
for improving and expanding the TCN‑LightGBM model.
With the continuous development of deep learning and
ensemble learning, hybrid models that combine adap‑
tive learning and reinforcement learning are expected
to further improve the accuracy and efϐiciency of agri‑
cultural trade predictions. Future research could con‑
sider introducing multi‑source data fusion techniques
and using climate, policy, and economic factors as in‑
put variables to improve the generalisation ability of the
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model. With the support of big data and cloud comput‑
ing technology, the TCN‑LightGBMmodel can also be ap‑
plied to real‑time prediction systems to cope with the
rapid changes in the agricultural market. Through con‑
tinuous improvement andexpansion, theTCN‑LightGBM
model is expected to play a greater role in agricultural
trade forecasting and other complex time series predic‑
tion tasks, providing more accurate data support for in‑
telligent decision‑making.

7. Conclusions
This study demonstrates the effectiveness of a

data‑driven approach in complex time series prediction
tasks by constructing a TCN‑LightGBM‑based prediction
model for agricultural trade. The TCN module success‑
fully extracts the time‑dependent features in the agri‑
cultural trade data using dilated and causal convolu‑
tion structures, and improves the prediction accuracy
by combining long‑term and short‑term features. The
LightGBMmodule excels in nonlinear feature extraction
andmodelling, effectively handling the complex relation‑
ships between high‑dimensional features. Overall, the
TCN‑LightGBM model combines time series feature ex‑
traction with an efϐicient ensemble learning algorithm,
signiϐicantly improving prediction accuracy and demon‑
strating strong stability and adaptability. This model
provides an efϐicient and accurate solution for agricul‑
tural trade forecasting.

To ensure the rigor of the analysis, we not only re‑
lied on visual comparisons of charts but also compre‑
hensively evaluated the prediction performance of the
model using multiple quantitative indicators (such as
precision, recall, F1 score, etc.). Compared with tradi‑
tional statistical methods (such as ARIMA), deep learn‑
ingmethods (such as LSTM), and the TCN and LightGBM
models used alone, TCN‑LightGBM performed well in
multiple indicators, especially in dealingwith the volatil‑
ity of data and complex time‑dependent relationships.
These quantitative analysis results verify the high accu‑
racy and stability of the model, avoiding the potential
misleading of solely relying on graphical results.

At the practical application level, the TCN‑
LightGBMmodel has demonstrated good generaliability

and is suitable for a variety of agricultural trade fore‑
casting scenarios. The robustness and scalability of the
model have been fully veriϐied through validation on
multiple datasets. Comparedwith traditional prediction
methods, TCN‑LightGBM not only effectively copes with
the dynamic changes in the agricultural market but also
has high real‑time performance, making it suitable for
use in decision support systems for the real agricultural
market. It provides agricultural practitioners and poli‑
cymakers with accurate market trend predictions and
risk analyses. In addition, the application potential of
the model is not limited to agricultural trade forecasting
but can also be extended to other ϐields such as energy
demand and ϐinancialmarkets, which is ofwide practical
signiϐicance.

The results of this study show that data‑driven
forecasting methods have great potential for applica‑
tion in the ϐield of agricultural trade. By combining
the advantages of deep learning and ensemble learn‑
ing, the TCN‑LightGBM model demonstrates its unique
ability to model complex time series data, opening up
new paths for accurate forecasting and scientiϐic man‑
agement of agricultural trade. Further research could
integrate more external data sources and optimise al‑
gorithms to improve the model’s forecasting ability and
adaptability, providing more accurate data support for
agriculture, the economy, and other ϐields, and promot‑
ing the wide application of intelligent decision‑making.
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