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ABSTRACT
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1. Introduction
In 2022, globally almost 54 billion tons of CO2

equivalents (CO2e) (To add up all the different green‑
house gases, i.e., carbon dioxide, methane, nitrous oxide,
and smaller trace gases such as hydroϐluorocarbons and
sulfur hexaϐluoride, into one number, they are expressed
in CO2 equivalents (CO2e).) was emitted into the atmo‑
sphere as a consequence of human economic activity [1],
causing rapid global warming. With the Paris Climate
Agreement, the world community has committed to sig‑
niϐicantly limit the greenhouse gas emissions across all
sectors of the economy. These global emissions must
reach net‑zero in 2050.

One sector that has a particularly large environ‑
mental impact is the food and agricultural industry. Agri‑
cultural production by itself is responsible for 11–15%
of all human emissions, and if the impact of land‑use
change, deforestation, and broader emissionswithin the
food supply chain are taken into account, this number
rises to roughly 50% [2]. About 60% of the total global
emissions of almost 54 billion tons of CO2e mentioned
above remains in the atmosphere. About 40% can be
absorbed back by earth, by soils, trees and oceans. So,
on the one hand agriculture emits a lot of greenhouse
gases. But on the other hand, farmers’ land and trees
have the unique capacity to take them out of the atmo‑
sphere again. It is therefore important, ϐirst and fore‑
most, to avoid and reduce these emissions. At the same
time, removing these greenhouse gasses from our atmo‑
sphere is every bit as important. As long as there are
high levels of these gasses in the atmosphere, the earth
will continue to warm, no matter how much we reduce
emissions. So, all sectors need to work both on the re‑
duction and removal of carbon emissions.

The agricultural sector can play a key role in the
removal of greenhouse gases from the atmosphere be‑
cause agricultural crops can capture CO2 and bind this
in the form of carbon into the soil. Carbon sequestration
takes place when regenerative production techniques
are applied. Conventional production of food has im‑
pacted the planet’s soils, reducing the natural carbon
content of cultivated soils by up to 70% [3]. Rising tem‑
peratures, combined with drought and ϐloods, exacer‑
bate this soil degradation and erosion. This has led to

severe biodiversity degradation, which poses a threat to
food security [4].

Only healthy soil has the ability to absorb carbon
from the atmosphere. Regenerative practices like reduc‑
ing tillage, using cover crops, implementing crop rota‑
tion schemes, limiting the use of fertilizers and pesti‑
cides can contribute to improving carbon sequestration
processes (ibidem). In this way regenerative agriculture
is a form of producing food that strengthens rather than
depletes the soil. By disturbing the natural processes in
the soil as little as possible, soil health increases and the
soil can sequester more carbon. It also improves water
balance, biodiversity and nutritional value of food. How‑
ever, switching to regenerative farming is costly for the
farmer [5]. This is due to the fact that the negative en‑
vironmental and climate impacts of conventional farm‑
ing are not priced, while the deployment of regenerative
practices may incur additional costs.

One of the fundamental problems in the food sys‑
tem is that the cost of greenhouse gas emissions, nitro‑
gen deposition, water usage, loss of biodiversity, chem‑
ical pollution and depletion of soils is not adequately
priced. Globally, we do not pay these external cost of
food production. The beneϐits that come from these
ecosystem services — such as biodiversity, better water
management and pest control — are freely available for
all, whereas farmers pay for them on their own. New
business models are needed for farmers and landown‑
ers that include compensation and reward schemes for
ecosystem services [6]. Without these models, farmers
will not invest sufϐiciently in more sustainable practices
as long as they cannot pass on the extra costs to play‑
ers down the supply chain, including food processors, re‑
tailers and consumers. These parties are currently not
willing to pay more for sustainably produced food. Yet,
many governments and food and other corporates have
committed to the Paris Accords and have set pathways to
net‑zero emissions accordingly. Meeting those commit‑
ments requires reducing the externalities of foodproduc‑
tion.

Carbon sequestration in soils is a potential income
source for farmers through the use of veriϐiable and cred‑
itable carbonmarkets that allow farmers to beneϐit from
sustainable practices [7]. The voluntary carbon market
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canplay anessential role in internalizing those effects, as
it facilitates the inϐlow of money from downstream sup‑
ply chain partners and actors in non‑food supply chains
who buy carbon credits from farmers.

A carbon credit that is sold on this market repre‑
sents one ton of CO2e reduced or removed per hectare.
Generated and certiϐied carbon credits are subsequently
sold to parties that would like to offset their carbon foot‑
print. The price per credit unit constitutes an explicit
subsidy for emission free production, such that a new
revenue stream is introduced for the farmer. So gener‑
ating carbon credits is not an end in itself but a means
of putting a price tag on ecosystem services provided by
farmers.

The economic incentives that farmers face under
a carbon credit mechanism are shaped by both carbon
credit price levels and market volatility [8, 9]. A carbon
credit mechanism will only signiϐicantly impact farmer
behavior when carbon credit prices are sufϐiciently high
to cover the net additional costs of carbon sequestra‑
tion practices. Carbon credit prices must be sufϐiciently
high not only to overcome any investment costs or ad‑
justment costs related to switching to regenerative farm‑
ing, but also to address behavioral problems (moral haz‑
ard, adverse selection) which require costly monitoring
approaches. Given the different costs of proposed prac‑
tices, the potential for global sequestered carbon has
been estimated to range between 400 to 1200 million
tons per year, depending on where carbon prices range
between $20–$100 [2, 10]. Furthermore, carbon credit
prices must all stay consistently at a high enough level
to form an attractive long‑term investment prospect. Un‑
der high market volatility farmers will face greater un‑
certainty about the stability of future inϐlows from car‑
bon credits and therefore provide disincentives to adopt
regenerative practices.

Voluntary carbon markets are relatively new and
have not fully matured [11], carbon credit price volatil‑
ity can be signiϐicant as a consequence. Unlike the com‑
pliance market, the voluntary nature of demand implies
that the perceived quality of credits plays a considerable
role in the price that that buyers of credits are willing to
pay [12, 13]. This perception can change rapidly depend‑
ing on e.g., stricter self‑regulation set up by NGOs like

the Integrity Council for the Voluntary Carbon market,
or by negative media attention when low integrity cred‑
its enter the market. The large variety in the types of
projects that generate nature based carbon credits also
make it difϐicult for buyers to discern differences in the
quality between projects. That is why certiϐication stan‑
dards are set by independent veriϐication organizations,
and credits can be veriϐied accordingly. Still, when some
project goes bad, thismay inϐluence the larger overall de‑
mand for other projects as well, even when project suc‑
cess is unrelated. Furthermore, voluntary carbon mar‑
kets derive their relevance from an absence of formal
regulation or government policy. New legislation by gov‑
ernments, e.g., the expansions of compliance markets
or the introduction of carbon taxes, would inϐluence de‑
mand for voluntary carbon credits and generates further
uncertainty.

Overall, when farmers contemplate switching to re‑
generative farming, the decision‑making process is char‑
acterized by (partially) unrecoverable investment costs
and considerable uncertainty surrounding future rev‑
enue ϐlows from generated credits. At the same time,
there is scope to delay the switching decision to later
crop years. Under these conditions, farmers may adopt
a ‘wait and see’ attitude. This inertia is not well de‑
scribed by classical investment theory that relies on the
net present value rule to capture investment behavior.
Real option analysis is frequently proposed as an alter‑
native technique that is tailored to decisionmaking prob‑
lems under uncertainty and irreversibility [14].

Real option theory describes how investment op‑
portunities that can be postponed and are costly to re‑
verse can be modeled as an investment option, i.e. the
holder of the option has the possibility, but not the obli‑
gation to initiate the investment at any point in time.
This option has an inherent value as it protects against
negative market outcomes, therefore exercising it cre‑
ates an opportunity cost. Real option analysis postulates
that this opportunity cost should be incorporated in the
cost beneϐit analysis for the investment decision. It then
presents the ultimate investment decision in terms of a
price threshold, such that when the so‑called state vari‑
able (e.g., a dynamically evolving carbon credit price)
passes this threshold, the investment should be carried
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out [14].
Real option methodology has been used to explain

observed investment decision making in a broad variety
of settings within the agricultural industry. Purvis et al.
pioneered with the application of real option methodol‑
ogy to agricultural investment problems [15]. Their study
delves into the analysis of technology adoption in free‑
stall dairy housing stressing the effects of uncertainty
and irreversibility. They quantify how these factors in‑
crease investment thresholds for farmers and empha‑
size the implications of these ϐindings for the formula‑
tion of environmental regulation related to agricultural
practices. Winter‑Nelson and Amegbeto use real option
analysis to research the impact of increased agricultural
price variability due to commoditymarket liberalization
on soil and water conversation [16]. They apply their
methodology to the case of terrace construction in Ke‑
nia and ϐind that the impact of greater price variability
can more than offset the incentivizing effects of higher
commodity price levels. In a study conducted by Oden‑
ing et al., real option theory is employed tomodel invest‑
ment behavior in hog production [17]. They conclude that
the value ofwaiting can drive investment triggers signiϐi‑
cantly above levels predicted by classical investment the‑
ory. Seo et al. use a real option approach to analyze the
adoption of irrigation technology among farmers in the
Texas High Plains [18]. Their simulation results highlight
inertia among farmers when deciding on replacing exist‑
ing irrigation systems for new systems with better wa‑
ter application efϐiciency. As a ϐinal example, Sanderson
et al. use real options to analyze the adaptation of Aus‑
tralian wheat production to climate change [19]. They de‑
rive threshold values for transitioning to different pro‑
duction regimes to showcase how farmers would oper‑
ate when a series of options are presented to them.

In general real options have been established to ex‑
plain investment decisions by farmers better than the
net present value method, and usage of real option the‑
ory for agricultural investment problems is still under‑
utilized [20, 21]. In this paper we therefore use a real op‑
tion approach to explore what carbon credit price levels
are required to incentivize farmers to consider switch‑
ing to regenerative farming. To the knowledge of the
authors, this paper is the ϐirst to apply a real option

approach to analyze the economic viability of carbon
markets for carbon sequestration in agriculture. The
adopted technique allows us to present the ultimate
switching decision in terms of a clear threshold value,
i.e. an investment trigger, such that when stochastically
evolving carbon credit prices pass this threshold, the de‑
cision to switch practices should be carried out. We sub‑
sequently compare investment triggers under real op‑
tion and net present value methodologies to assess the
effect of assumed investment rules on required carbon
credit levels for intervention adoption. For effective cli‑
mate and nature policy, it is imperative that policymak‑
ers better understand how uncertainty affects farmers’
investment behavior and to predict this behavior in the
future. Governments, NGOs and corporates can then bet‑
ter shape (self)regulation, subsidization and purchasing
decisions in the voluntary carbonmarket so that farmers
are encouraged to adopt regenerative farming.

Additionally, our developed modeling approach al‑
lows for more detailed analysis on how market condi‑
tions and micro‑economic variables shape farmers’ in‑
centives to switch to regenerative farming practices un‑
der a carbon credit framework. The model can there‑
fore be used by policymakers to ϐind out how the car‑
bon credit price levels required to stimulate regener‑
ative farming depend on the broader decision‑making
environment. Having a good understanding of un‑
der what conditions carbon credits can be a success‑
ful mechanism to stimulate regenerative farming prac‑
tices is paramount to estimating the future relevance
of sequestration‑based carbon credits in contributing
to mitigating the global heating problem as well as the
restoration of biodiversity and better water resilience.

Besides research that aims to explain farmer behav‑
ior, real option methodology has also been used to pro‑
vide normative frameworks on how farmers should in‑
vest or make decisions. For instance, Hertzler uses real
options to design decision making diagrams for climate
change adaptation [22]. He applies these frameworks to
climate adaptation decisionswith respect to grazing and
dryland cropping. Additionally, he uses real options
to model climate risk sharing opportunities for farm‑
ers such as yield insurance. These examples illustrate
how real optionmodels can serve as a practical decision‑
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making tool under uncertainty. When provided with the
right calibration data the model developed in this paper
can be used in a similar vain.

The remainder of this paper is organized as fol‑
lows. Section 2 covers materials and methods, contain‑
ing details on the model design, the solution algorithm
and model calibration. Next, simulation results are pre‑
sented in section 3 and discussed in section 4, including
comments on the limits of our research. Finally, section
5 concludes and provides policy implications. Appendix
A and B contain further information about the parame‑
ter values used in the model and a sensitivity analysis
concerning various model assumptions, respectively.

2. Materials and Methods
Webuild a real option framework in order tomodel

farmers’ behavior given the investment problem of mov‑
ing away from conventional farming practices towards
regenerative farming practices. As the decision maker
we take the viewpoint of a representative farmer (i.e.
typical or average farmer), from this point onwards sim‑
ply referred to as the farmer. We assume this farmer has
the opportunity, but not the obligation, to switch prac‑
tices once every year up to an assumed time horizon of
T   ∈  Z years. If the farmerhasnot adopted regenerative
farming after this period, conventional practices will be
applied indeϐinitely. Also, if the farmer does switch to
regenerative farming before T , we assume no option ex‑
ists to switch back towards conventional practices. Once
regenerative farming has been adopted, the farmer will
continue to apply these practices indeϐinitely. We indi‑
cate the state of the farmoperations by the binary indica‑
tor s, where a value of 0 indicates conventional practices,
and a value of 1 regenerative practices.

Within the setting of ourmodel stochastically evolv‑
ing carbon credit prices will form the source of uncer‑
tainty during the decision‑making process of farmers.
Deϐine S (t) as the carbon credit price level, where t  ∈
 Z denotes the timeperiod. Because carbon credit prices
are indicative of the relative proϐitability of the regenera‑
tive farming state, we also refer to S (t) as the state vari‑
able. We assume the behavior of the carbon credit prices
process is described by a geometric Brownian motion.

Let µ indicate the drift rate, determining the expected
growth of the process over time. We capture the vari‑
ability of the process by the volatility parameter σ. If we
subsequently set dz (t) as the increment of aWiener pro‑
cess, we have:

dS (t)   =  µS (t) dt +  σS (t) dz (t) (1)

Under the above condition carbon credit priceswill
develop as a randomwalkwith a trend, whichwebelieve
adequately describes voluntary carbon credit price dy‑
namics in practice. In particular we don’t have any ev‑
idence that more complex mean‑reverting processes or
jump processes would describe price movements better.
For more background on the deϐinition and characteris‑
tics of a geometricBrownianmotionwe refer toDixit and
Pindyck [14].

We assume the goal of the farmer is to maximize
the value of the farm, which consists of the discounted
stream of future proϐit ϐlows. Denote the proϐit ϐlow dur‑
ing any year tbyπt. Proϐits are subsequently determined
by the difference between revenues and costs.

Let tsdenote the moment at which the farmer
switches practices. During t  <  ts revenues consist
of the income derived from crop production. Three fac‑
tors contribute to these revenues. First there is the ex‑
ogenously determined price P (t) the farmer receives
per unit from crop sales. Second the total area of crop‑
land A, which we assume to remain constant over time,
partly determines overall production levels. Finally,
crop yields y(s, t)determineproductionper area of crop‑
land. In reality crop yields are related to a great many
variables, some inϐluenced by the farmer like adopted
farming practices, others outside the farmer’s control
like weather patterns. Our aim is not to endogenously
model the effect of these variables on crop yields, this
remains outside the scope of this paper. Instead, we re‑
quire the crop yield to be exogenously speciϐied. To al‑
low for ϐlexibility in this speciϐication we allow for dif‑
ferent crop yields over time and per policy state. This
way we allow for different assumptions on how regen‑
erative farming affects crop yields in the short‑term and
long‑term and check how these scenarios affect farming
decision making. Total yearly revenues from crop pro‑
duction are now P (t)Ay(s, t).
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During the period t  ≥  tS the farmer also receives
income from carbon credits: the farmer receives a price
S (t) per credit from carbon credit sales. This revenue
stream is not indeϐinite as there arephysical limits on the
build up of soil carbon and term limits on carbon credits
production contracts. We assume the carbon credit rev‑
enue stream ends after a period of

−
T . Deϐine the yearly

change in carbon stock per acres/hectare δ(s, t) subse‑
quently as follows:

δ (s, t) =

  0     if s = 0 or t −  ts  ≥  
−
T  

−
δ      otherwise                         

  (2)

Here
−
δ is a ϐixed parameter that indicates the average

yearly carbon build up in the soil between tsand ts+
−
T .

In practice this differencemay be variable over time, but
this would require a more elaborate modeling of bio‑
chemical processes. In total carbon credit revenues are
now S (t)Aδ(s, t).

On the costs side of farm operations, we adopt
the simplifying assumption that all costs are determin‑
istic and exogenously provided. Farmer costs originate
froma broad range of inputs/factors like seeds, fertilizer,
chemicals, fuel, lube and electricity, repairs, purchased
irrigation water, hired labor, depreciation of equipment,
opportunity costs of land, and general farm overhead.
We assume input quantities scalewith farm sizeA. With‑
out loss of generality, let q (s) be an array containing the
input quantities per acre for any relevant costs incurred
during farm operations. Usage of any kind of inputs may
depend on the state s, for instance farmers may reduce
fertilizer usage as part of the switch to regenerative farm‑
ing. If we subsequently let c (t) be an array of associated
costs per unit of input type, then total input costs are
now calculated as c (t)TAq (s).

Abovewe havemade simplifying assumptionswith
respect to the crop price P (t) and input costs like fer‑
tilizer prices by not modelling these variables stochas‑
tically. In reality these and other input prices can be
highly variable and have a major impact on farm prof‑
itability. Furthermore, when the state has an impact on
crop yields and input usage the farmer may naturally
want to take variability in these factors into account dur‑
ing the decision making process of switching to regen‑
erative farming. However, introducing stochastic pro‑

cesses for these variables would signiϐicantly increase
model complexity as well. In order to attain more easily
interpretable results, we choose not to work with mul‑
tiple state variables and leave this out of scope for this
paper. It may be adopted as a topic for future research.

Indicate yearly proϐit ϐlows by π(s, t). These proϐits
depend on the state of the farm and the time period, they
can be described as follows:

π(s, t)  =  P (t)Ay(s, t) +  S (t)Aδ(s, t) −  c (t)TAq (s)

(3)
We assume all proϐit ϐlows are earned by the end of

the year, i.e. proϐit ϐlows have to be discounted in order
to ϐind their value at the start of the year.

Part of the investment problem are friction costs I
incurred during the process of switching states. We as‑
sume I is ϐixed and does not change over time. Friction
costs consist primarily of investments in newly required
equipment.

Next let r denote the discount rate. Just like friction
costs we assume this factor is ϐixed and does not change
over time. The time preferences of the farmer are indi‑
cated by the discount rate: a forward‑looking farmer has
a low value for r, whereas a farmer that is focused on the
short‑term has a high r. We require r  >  µ, if this condi‑
tion is violated the expected growth rate of carbon credit
prices is larger than (or equal to) the discount rate. In
that case it becomes optimal to never switch practices
andwait indeϐinitely as the discounted expected returns
of waiting will always be positive.

Under the above assumptions,we cannowdescribe
the value of the farm V (t). First note that in case the
farmer chooses to use conventional farmingpractices for
the next year, the value of the farm at any year t  <  T is
simply the discounted expected value of the farm next
year plus the yearly proϐit ϐlow.

π(0,t)+E[V (t+1)]
1+r

We have assumed that the last moment the farmer
can switch farming practices is at the decision horizon
T . If the farmer has decided not to switch practices be‑
fore this moment, not switching at time T either would
lock in the farmer into conventional farming practices
indeϐinitely. In this case, the value of the farm will be
given by the sumof all discounted future proϐit ϐlows. Be‑
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cause there is no stochasticity involved here, this value
is known at T with full certainty:

∞∑
i=1

π(0,T )

(1+r)i

When the farmer switches to regenerative farming
practices, switching back is not possible by assumption.
Therefore the farmer will continue to receive the regen‑
erative farming proϐit ϐlow indeϐinitely. The value of the
farm in this case is the sumof all discounted future proϐit
ϐlows minus the investment costs of switching:

E
[ ∞∑
i=1

π(1,t)

(1+r)i

]
− I

Because the farmer has a choice between two sets
of practices, the value of the farm is dependent on the
farmer’s behavior. To resolve this dependency we em‑
ploy the earlier assumption that at any decisionmoment
t the farmer chooses optimally, i.e. with the goal of maxi‑
mizing farmvalueV (t). This allowsus todeϐine the farm
value as follows, a condition also known as the Bellman
equation [14]:

V (t) =


max

{
π(0,t)+E[V (t+1)]

1+r
,E

[ ∞∑
i=1

π(1,t)

(1+r)i

]
− I

}
,  if  t < T                

max
{∑∞

i=1
π(0,t)

(1+r)i
,E

[ ∞∑
i=1

π(1,t)

(1+r)i

]
− I

}
,     if  t = T               

(4)
Assume the ϐirst opportunity for the farmer to

switch is at t  =  1. The aim of the farmer is to ϐind the
optimal switching moment ts  ∈  Z   :  ts  ∈  [1, T ].

In order to solve our model we use the Longstaff‑
Schwartz algorithm, a widely used numerical method
used for pricing American‑style options [23]. One reason
behind the popularity of the Longstaff‑Schwartzmethod
is its ϐlexibility, as it can be applied to a wide variety
of problem settings. As such, the algorithm has been
used in a broad range of applications, including pricing
options on stocks, bonds, futures, and commodities and
also in real options. The Longstaff‑Schwartz algorithm,
while powerful and widely used, does have some limita‑
tions such as potential look‑ahead bias [24], and the key
innovation of this method in using least squares regres‑
sion to estimate the conditional expected payoff for con‑
tinuing to hold the option, similar to any estimation pro‑
cess, can introduce errors. Furthermore, the simulation‑
basednature of the algorithmmay lead to increased com‑

putational complexity as the number of state variables
grows. But, despite these challenges, in the absence of
closed form solution for American option valuation, this
algorithm can generate accurate results whilst having a
greater computational efϐiciency thanalternativenumer‑
ical methods like the ϐinite difference and binomial tree
methods [25]. These attributes lead us to adopt it and ap‑
ply it to the optimization problem (4).

Following the Longstaff‑Schwartz algorithm, we
ϐirst simulate a number of n paths of T steps for the car‑
bon credit price S (t) according to the the process (1), as
depicted by Figure 1 below. These price paths reϐlect
alternative realizations of future carbon credit price dy‑
namics, collectively they give an idea of the uncertainty
inherent in carbon credit prices. The generated paths
will form the basis for estimating continuation values, i.e.
assessing what the value of the option will be tomorrow
if we don’t exercise it today.

We analyze these paths via backward induction.
Starting at the endpoints, for each individual path we
can observe S (T ) and calculate V (T ) according to (4).
Next, we recursively apply equation (4), where for each
period we need to determine whether it is optimal to ex‑
ercise the option (i.e. switch to regenerative farming) or
to continue and keep the option alive (i.e. staying with
conventional farming).

Figure 1. Twenty example realizations of carbon credit price
paths simulated on the basis of the stochastic differential Equa‑
tion (1).

To do so we require the value of E [V  ( t  +  1 )] for
each remaining time period. These expected values are
estimated by running linear regressions using the simu‑
lated paths as input data. The dependent variable Y for
these linear regressions is the realized discounted cash
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ϐlow of the next period to model for V  (t+ 1). The inde‑
pendent variables are polynomial transformations (fol‑
lowing Longstaff and Schwartz [23]) of the current state
S (t). If we denote S (t) by X and use a second‑degree
polynomial then we obtain the regression function be‑
low where the regression parameters β0, β1and β2have
to be estimated:

E [Y |X]  =  β0 +  β1X  +  β2X
2

Each path forms a combination of data points,
where only paths that are currently “in the money” (in
the context of the put option that Longstaff and Schwartz
value) are taken into account for running the regres‑
sions [23]. This selection is made to achieve better esti‑
mation results.

We have adjusted the Longstaff‑Schwartz method
from its original application to American style put op‑
tions to function as a solution algorithm for our present
real option model. To do so we have applied the follow‑
ing adjustments to the algorithm:

• Unlike the put options analyzed by Longstaff and
Schwartz [23], not exercising our real option still
leads to cash ϐlows, i.e. the proϐits earned under
conventional farming. This means that for calcu‑
lating cash ϐlows we cannot only look at exercise
values, but we should also take any cash ϐlows un‑
der continuation into account. This is relevant
when establishing V (T ) at the start of the proce‑
dure, as this value will deviate from 0 even when
the option is never exercised. Furthermore, the
cash ϐlow matrix that needs to be recursively up‑
dated during the procedure is no longer sparse
due to the proϐit ϐlows π(0, t) that are earned in
case of continuation. All these cash ϐlows for all
upcoming periods need to be discounted accu‑
rately when establishing the dependent variable
for the linear regressions.

• The equivalent of being “in the money” in the
present real option setting is that the immedi‑
ate exercise value is larger than the series of dis‑
counted inϐinite cash ϐlows received when con‑
ducting conventional farming indeϐinitely.
For any particular set of model parameter values

(including the originally selected value for S (0)) we can

determine the percentage of paths where investment
has been triggered before the time horizon T has passed.
This is displayed in the upper part of Figure 2. A higher
percentage signals a higher likelihood that the represen‑
tative farmer will adopt regenerative farming practices.
Furthermore, we can obtain the distribution of stopping
times across all paths fromthe simulationoutput, see the
lower part of Figure 2. This gives an indication of how
quickly the representative farmer is willing to switch
practices. Both of these measures are directly depen‑
dent on the value adopted for the time horizon T . That
is, a longer time horizon may cause more farmers to in‑
vest because there aremore opportunities to do so. This
would also change the stopping time distribution.

Figure 2. The amount of paths that exercise/do not exercise
the investment option (upper graph) and the distribution of
exercise times (lower graph) of an example simulation run.

From the simulation process we are able to derive
an optimal trigger level, which is deϐined as the carbon
credit price threshold level at which upon the ϐirst pass‑
ing of the dynamic price process it is optimal to invest.
This trigger level is the key variable of interest, it sig‑
nals for a given set of parameter valueswhat level carbon
credit prices should reach in order to incentives farm‑
ers sufϐiciently to switch to regenerative farming from
a real option perspective. In case the model has been
calibrated for any individual farmer the trigger level can
function as a normative result, it signals the optimal
price level at which the farmer should adopt regenera‑
tive farming practices. If instead the model has been cal‑
ibrated for an “average” farmer it provides a descriptive
result from an economic perspective by indicating what
carbon credit price level can be considered the tipping
point for large scale adoption of regenerative farming.

We derive the optimal trigger level by letting S (0)

deviate from its selected value and instead running the
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algorithm for a series of monotonic increasing initial
states S (0) while keeping the seed constant. Mean‑
while we compare the predicted option values with the
net present value of switching practices at the ϐirst pos‑
sible opportunity. Presuming the ϐirst S (0) value is
sufϐiciently low, the net present value and option val‑
ues should converge, until they coincide, see also Fig‑
ure 3. This is the point where the Longstaff‑Schwartz
algorithm predicts immediate exercise for all simulation
paths. We take the smallest S (0) value for which this
holds true as the optimal investment trigger level. Note
that because we are searching for the point of immedi‑
ate invest, the trigger level is not affected by the selected
value for time horizon T .

Figure 3. The investment value according to the net present
value methodology (including the opportunity costs of forego‑
ing conventional farming indeϐinitely) assuming immediate in‑
vestment (orange) versus the real option methodology (blue)
as a function of .

To illustrate the functioning of the model we will
further specify a representative farmer. We presume
this farmer is active in Iowa and only farms corn. We
adopt a 50‑year investment horizon, with one oppor‑
tunity to switch practices every year. We take 2023
as the starting year for our simulations. The calibra‑
tion process is largely based on simulation results from
the COMET farmmodel for biochemical parameters and
USDA survey data for economic parameters, any remain‑
ing missing values are set by assumption.

As a ϐirst step we need to deϐine the set of practices
the farmer can choose between, i.e. what is the deϐini‑
tion of the state s and howdoes this state affect the proϐit
ϐlows π(s,t)? We base our deϐinition of the management
practices per policy state on the “VM0042 Methodology
for Improved Agricultural LandManagement” published
by Verra, a nonproϐit organization that is one of themost

well‑known names in the setting of standards for carbon
markets.

In order to calculate the yield of carbon credits over
time on the basis of farm management practices we use
the COMET farm model. This is a biochemical model de‑
veloped by NREL and Colorado State University. On the
basis of farm management practice data the model cal‑
culates for a given ϐield among others the yearly amount
of emissions and change in the carbon stock in the soil.
By comparing the model outcomes for a set of manage‑
ment practices before the intervention to the situation
after the intervention, the parameters

−
T and

−
δ can be es‑

tablished. From this we can calculate the amount of car‑
bon credits generated during the intervention period.

The COMET farmmodel tracks and provides output
on soil carbon accumulation, as well as carbon dioxide,
nitrous oxide and methane emissions. Not all sources of
emission are taken into account, e.g. for instance fossil
fuel emissions related to the use of farming equipment
is not reported on by the COMET model. For our pur‑
poses, the variables that the COMET reports on form a
subset of the factors that can contribute to the genera‑
tion of carbon credits under the VM0042 methodology.
For instance reduction in fossil fuel emissions can con‑
tribute under VM0042. Our estimates

−
δ will therefore

be on the conservative side. We denote δ(s, t) in metric
tons of CO2e per acre, i.e. the carbon and emission ϐlows
are transformed in terms of CO2e.

The VM0042 methodology lists a number of farm‑
ing practices that can be part of regenerative farming
program with the aim of generating carbon credits. One
important precondition is additionality, i.e. practices
should only be adopted as a result of the incentives pro‑
vided by carbon credit revenues and should not have
been implemented anyhow. The listed practices under
VM0042 include, but are not limited to, reducing the
tillage intensity, the introduction of cover crops and lim‑
iting nitrogen fertilizer application.

The rationale behind the mentioned practice
changes is as follows: heavy tillage disturbs the soil, al‑
lowing stored soil carbon to escape, whereas zero tillage
allows the soil to absorbmore carbon [26]. The same pos‑
itive relationship between farming practice and degree
of carbon sequestration applies to planting cover crops.
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It reduces soil erosion and improves soil health because
the roots and shoots of cover crops feed bacteria, fungi,
and other soil organisms [27]. Furthermore, by improv‑
ing soil health via e.g. cover cropping, regenerative farm‑
ing allows for reducing the reliance on synthetic sources
of soil nutrients like nitrogen fertilizer. However, the
effect of nitrogen fertilizer usage on CO2e emissions can
be complex. Applying nitrogen fertilizer causes N2O
emissions, which directly contribute to CO2e. However
nitrogen fertilizer usage also has a positive impact on
carbon sequestration rates, because it helps to increase
biomass production and it improves carbon‑nitrogen
(C:N) ratios of residues returned to the ϐield [28]. The net
impact on CO2e emissions may be situation dependent,
but the high input costs provide farmers with additional
incentives to reduce the usage of nitrogen fertilizer, espe‑
cially when there are limited long‑term effects on yield.

We will consider changes in these three farming
practices as the differentiating factors between the two
policy states s. By doing sowe are assuming that none of
these changes have been adopted by the farmer in the
initial state, as required by the additionality principle.
In practice 32,53% of farmers in the heartland region
already switched to no‑till farming by 2017, whereas
4,63% used cover cropping [9]. Our modelling scenario
will therefore only reϐlect the situation of farmers that
have not yet made these switches.

The COMET model has input ϐields related to each
of these three practices, such that the effect of the policy
change can be simulated. Table A1 in Appendix A sum‑
marizes the parameter values that have been selected to
run the COMET model for the base scenario.

To calibrate
−
T we can perform COMET runs to

gauge how long the accumulation of soil carbon and gen‑
eration of carbon credits will continue under regenera‑
tive farming practices. The simulation outcomes show
that the accumulation of soil carbon will continue for at
least 50 years. The contracts farmers enter into typically
don’t last that long, so to stay on the conservative sidewe
have set

−
T =30. AppendixBprovides a sensitivity analy‑

sis on the impact of different assumptions for
−
T , see Fig‑

ure A1.
Data related to farm costs and returns can be gath‑

ered from the United States Department of Agriculture

(USDA). Since 1975 the USDA estimates the annual costs
and returns of major agricultural commodities based on
periodical surveys conducted among farmers. We use
the 2022 data for the heartland region. The estimates
are provided as a detailed breakdown of (among others)
farm costs for several US regions, denoted as dollars per
planted acre. TableA2 inAppendixAprovidesmore de‑
tails about the adopted cost parameters. Each individual
cost parameter forms a separate entry in the array c (t).

TheUSDA survey does not list seed costs separately
for cash crops and cover crops. As such,wemake the sim‑
plifying assumption that the listed seed costs are for cash
crops only, and that upon the introduction of cover crops
these costs rise by a ϐixed percentage, see Appendix A.

In order to determine the investment costs I we
need to establish the costs of new equipment (e.g. a
no‑till drill). In practice the costs of required machin‑
ery depend on a variety of factors. First of all, what ma‑
chinery does the farmer already possess that could be
adapted for usage under regenerative farming practices?
In case new equipment is indeed required, is it acquired
or leased? And in case it is acquired, is it new or second‑
hand? Based on list prices of farm equipment and esti‑
mations derived from conversations with agronomists
we will adopt a value of $100.000 as our baseline value.
A sensitivity analysis for I is subsequently included in
Appendix B, see Figure A1.

On the side of farm revenues, we require input on
P (t). An analysis of historic price dynamics shows that
corn prices exhibit mean‑reverting behavior around a
long‑run average, lacking a clear trend for extended peri‑
ods [29]. Therefore, we simplify our analysis by assuming
that the corn price P(t) stays ϐixed over time. As a base‑
line we take the 2022 corn price from the USDA survey.

A further component of farm returns are the ex‑
pected yields y(s, t). The COMET farm model does not
calculate yields, instead it requires it as an input vari‑
able. Therefore, we adopt the reported value from the
USDA survey as a base value, which equates 200 bushels
per acre. We apply this value by default when the farm
operates under conventional farming practices (s = 0).

To model any potential effect of changing manage‑
ment practices on cash crop yields we follow results
from the agronomic literature. However results can con‑
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ϐlict and are highly context dependent [5, 6, 30]. One rea‑
son for this is that the effects may be time‑dependent:
transitioning to regenerative farming can result in a
short‑term yield drop that recovers over time as soil fer‑
tility improves due to the adopted management prac‑
tices themselves [6]. Ultimately crop yields may even
move beyond the levels under conventional farming. In
our base scenario we assume therefore yield drops of
6%, 4% and 2% in the ϐirst three years under regenera‑
tive farming practices respectively, recovering fully dur‑
ing year 4. Fromyear 5 onwardwe assume yields are 2%
greater than under conventional farming.

In terms of revenues from carbon credits, calibrat‑
ing the market dynamics for voluntary markets can be
difϐicult. Demand for carbon credits can depend signif‑
icantly on the underlying projects that have generated
the carbon credits. Markets are opaque, illiquid or both.
Historic data on the trade in nature based carbon off‑
sets is difϐicult to ϐind. Data availability is better in case
of compliance markets like the EU’s Emissions Trading
system, but price dynamics for these cap and trade sys‑
tems are not representative for voluntary carbon mar‑
kets. For our purposes we will therefore use the N‑GEO
futures contracts that are based on “nature‑based off‑
set projects” sourced from the Verra’s registry. These
are “projects that fall under the Agriculture, Forestry, or
Other Land Use (AFOLU) categories”. At the start of the
2023 calendar year the prices of these carbon credits
hovered around $5 for 1metric ton of removed/reduced
CO2e, we will use this value for S(0). Due to a lack of
price history, it is difϐicult to ϐit a geometric Brownian
motion to the available data. We therefore set values
for the market volatility and growth rate by assumption:
σ  =  0.2 and µ  =  0.06. In Section 3 and Appendix
B (see Figure A1) we will perform a sensitivity analysis
with respect to these parameters in order to assess their
impact on modelling results.

The aforementioned USDA survey also publishes
data on the average amount of acres farmer’s plant of
a particular crop for a given region. For the heartland
region it indicates an average corn acreage of 302. We
will adopt this as our default value for the parameter A.
Farms typically have more acres that are planted with
different crops: the average size of US farms that planted

corn amounted to 725 acres in 2017. However, only
acres that are planted with corn are taken into account
for the analysis. Furthermore, the averages do not in‑
dicate how land is distributed among different farmers.
According to USDA ϐigures roughly 90% farmers could
be considered small scale farmers in 2015, whereas the
same group of farmers controlled less than 50%of acres.
For large scale farmer the adopted value of 302 corn
acres will therefore most likely be an underestimation.
Section 3 provides a sensitivity analysis on how corn
acreage is linked to incentives to adopt regenerative
farming practices.

Note how we have assumed the investment costs
I are an exogenous input variable, i.e. no link with the
scale of the farming operationA has been modeled. The
relationship between these two variables will affect to
what extent the optimal trigger level will depend on the
scale of the farming operation.

Finally we set the discount rate r by assumption
to 0.10, we will test the effect of this variable on model
outcomes by performing a sensitivity analysis, see Fig‑
ure A1 in Appendix B.

3. Results
To isolate the effect of variables of interest on the

willingness of farmers to adopt regenerative farming
practices, we can alter parameter values in a ceteris
paribus manner. Given the large number of input pa‑
rameters, the model allows for a great number of differ‑
ent scenarios. We focus here on three scenarios: the
effect of carbon credit price volatility (Figure 4), the
amount of corn acreage (Figure 5) and fertilizer reduc‑
tion (Figure6). The ϐirst scenario displays how the “wait
and see” tendency of farmers is dependent on the de‑
gree of decision making uncertainty, the second inves‑
tigates economies of scale, while the third scenario indi‑
cates how individual practice changes shape incentives
for farmers.

Per scenario we present three output variables. As
displayed in Figure 2, we derive the percentage of paths
that adopt regenerative farming, as well as the aver‑
age stopping time (in terms of years) for the paths that
switch policies. Corresponding to Figure 3 we present

197



Research onWorld Agricultural Economy | Volume 06 | Issue 01 | March 2025

the option investment trigger and compare it to the trig‑
ger suggested by the net present value rule.

(a)

(b)

(c)
Figure 4. Simulation results as a function of carbon credit
price volatility . Thedisplayedoutput variables are thepercent‑
age of exercised options (a), the average stopping time (b) and
the optimal investment trigger levels (c) according to the real
option analysis (blue) and the net present value rule (orange).

(a)

(b)
Figure 5. Cont.

(c)
Figure 5. Simulation results as a function of corn acreage. The
displayed output variables are the percentage of exercised op‑
tions (a), the average stopping time (b) and the optimal invest‑
ment trigger levels (c) according to the real option analysis
(blue) and the net present value rule (orange).

(a)

(b)

(c)
Figure 6. Simulation results as a function of nitrogen fertilizer
reduction. The displayed output variables are the percentage
of exercised options (a), the average stopping time (b) and the
optimal investment trigger levels (c) according to the real op‑
tion analysis (blue) and the net present value rule (orange).

4. Discussion
In the following three subsections we discuss the

results corresponding to the three scenarios presented
in the Section 3. A ϐinal subsection comments on the lim‑
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itations of the analysis.

4.1. Carbon Credit Price Volatility

Investment options act as an insurance againstmar‑
ket downturns; as long as the option to switch to regen‑
erative farming has not been exercised, the negative im‑
pact froman unforeseen drop in the price of carbon cred‑
its on the value of the farm can be avoided. In general,
insurances are more valuable in environments with a
greater amount of uncertainty. Within the present con‑
text, this uncertainty is expressed by the carbon market
volatility parameter σ. Correspondingly, a greater value
of σ should drive the value of the investment option of
switching to regenerative farming upwards.

Whenever the option value rises, the opportu‑
nity costs of switching to regenerative farming become
larger: themoment the investment decision is taken, the
insurance against market volatility provided by the op‑
tion is lost. Intuitively this enhances the “wait and see”
effect that farmers may exhibit. As a consequence, farm‑
ers will wait for the carbon credit price to reach a higher
level before they are conϐident that switching practices
is the right way forward. In other words, the investment
trigger (i.e. the carbon credit price that triggers a prac‑
tice switch) rises asσ increases, see the blue curve inFig‑
ure 4c. The estimated investment trigger ranges from
$39.5 to $82.0 for a 10%–30% market volatility range.
The economic signiϐicance of this effect can therefore be
considerable, especially when comparing how far these
estimates are removed from the price level of $5 at the
start of 2023 (i.e. our value for S (0)).

We can compare the investment trigger level result‑
ing from option analysis with the trigger level derived
from a net present value approach, see the orange curve
in Figure 4c. Because the net present value methodol‑
ogy does not take into account the opportunity costs of
exercising the investment option, investment is initiated
already at $27.8. Furthermore, because at any moment
in time the carbon price volatility does not impact the
expected returns derived from moving to regenerative
farming, the net present value trigger does not react to
σ. Given that voluntary carbon markets are considered
to be volatile in nature, not acknowledging the impact of
option effects on the transition of farmers to regenera‑

tive forms of agriculture can therefore lead to signiϐicant
over‑optimism.

Figure 4a shows that the number of paths that
adopt regenerative farming decreases when σ rises. Be‑
cause the investment trigger increases with greater car‑
bon credit price volatility, fewer paths cross the relevant
threshold. Among the paths that do switch practices, the
average stopping time drops with greater volatility, see
Figure 4b. Even though a higher investment threshold
may cause farmers to switch later, greater price volatility
also increases the probability that a sudden price spike
crosses the investment trigger level. This latter effect
dominates.

There are more sources of uncertainty that farm‑
ers may potentially face besides volatile carbon credit
prices. In practice cash crop prices are volatile aswell, in
contrast with the assumption of a ϐixed cash crop price
level that we have adopted here. There may be inter‑
action affects between different sources of uncertainty.
For instance, in case cash crop prices are volatile, one
hypothesis could be that farmers face an incentive to di‑
versify their income streams, which would make adopt‑
ing regenerative farming relative more attractive. This
remains a topic for future research.

4.2. Corn Acreage

The size of the farming operation is an important
variable to consider: we can make more detailed predic‑
tions about the future adoption of regenerative farming
for different types of farms if we know how the adoption
rate of regenerative farming practices differs by the num‑
ber of acres.

The blue curve in Figure 5c shows how the real
option investment trigger level is a decreasing function
with respect to the planted acreage of corn, i.e. large
farming operations would switch more quickly to regen‑
erative farming practices than smaller farms. The main
driver behind this result are the assumptions regarding
the investment costs I . We have determined these costs
exogenously, in particular they do not scale withA. This
creates economies of scale: because larger farms gener‑
atemore revenue, the ϐixed investment costs become rel‑
atively less impactful. To the extent that in reality any
new machinery, learning costs, etc. related to switching
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states are indeed independent of farm size, we can ex‑
pect larger farms to be early adopters, whereas smaller
farmswillwait longer until carbonmarkets aremorema‑
ture.

The assumedeconomies of scale that result in aneg‑
ative relation between farm size and the investment trig‑
ger level is unrelated to any option effects: the same rela‑
tionship holds true for the net present valuemethod (or‑
ange curve). For any farm size however, the investment
threshold under the option approach is roughly twice
thenet present value level. This oncemore shows the rel‑
evance ofmodeling “wait and see” behavior among farm‑
ers in the present context.

The 2022 USDA survey on commodity cost and re‑
turns indicates for corn an average of 302 planted acres
per farm. At this size level, the option trigger level lies at
$56.6 per credit. However, as discussed in Section 2 the
distributionof farms sizes in theUS is skewedwith about
50% of total acreage concentrated at the 10% largest
farms. Regenerative farming programs may therefore
prove most successful in terms of removing signiϐicant
amounts of CO2/reducing CO2e emissions by initially
targeting larger farmers with a relatively high value of
production, as for these farmers it is optimal to switch
practices at comparatively low carbon credit price lev‑
els. This is further supported by Figure 5a,b: more corn
acreage increases the probability of switching to regen‑
erative farming and adoption takes places earlier.

4.3. Fertilizer Reduction

Next to reducing tillage and introducing cover
crops, we have assumed nitrogen fertilizer reduction as
one of the practice changes that the farmer implements
as part of a switch to regenerative farming. In our base‑
line simulations we have assumed a 20% reduction of
nitrogen fertilizer applications speciϐically, see also Ap‑
pendix A for more details. The current modeling set‑up
allows us to adjust the intensity of individual practice
changes and see how this impacts the value proposition
to the farmer. Herewewill investigate towhat extent the
degree of fertilizer reduction shapes farmer’s incentives
to switch to regenerative practices.

Overall nitrogen fertilizer reduction has a threefold
effect on the value of the farm. First, using less fertilizer

saves on input costs. The USDA survey reports on fertil‑
izer costs separately. We adjust these costs by 1% de‑
crease for every 1% reduction in fertilizer usage.

Second, limiting nitrogen fertilizer application will
impact the generation of carbon credit revenue. We
have carried out a series of COMET Farm simulations
where we iteratively adjust nitrogen fertilizer levels to
assess the impact on δ (s). These simulations show that
reducing nitrogen fertilizer application typically lowers
δ (s). Although emissions of N2O are reduced when less
nitrogen fertilizer is applied, the amount of carbon se‑
questered drops as well. In terms of CO2e the carbon
sequestration effect dominates the prevented N2O emis‑
sions.

Finally, reducing nitrogen fertilizer will affect crop
yields y(s, t) as well. To reϐlect this, we will adjust the
time schedules imposed to simulate short‑term yield
drops and long‑run soil fertility induced yield increases.
In particular, we will assume that every 10% reduction
in fertilizer usage during the intervention will lead to a
crop yield drop of 3%, 2% and 1% for the ϐirst three
years after switching states respectively, and an indef‑
inite increase in crop yields by 1% from year 5. How‑
ever, in order to prevent ever rising yields resulting from
larger and larger reductions in fertilizer usage, we cap
the increase in crop yields at 2% in total (i.e., there will
be no further yield increases beyond a 20% reduction in
fertilizer usage).

The mentioned effects work in different directions.
The cost effect will incentivize farmers to change states
more quickly, as it results in a cost reduction. The larger
this cost reduction, the greater the willingness to tran‑
sition. The carbon credit generation effect works in the
opposite direction, since δ (s) drops when less fertilizer
is applied. This leads to a lower revenue generation from
carbon credits, making regenerative farming less attrac‑
tive. The impact of the crop yield effect is more ambigu‑
ous: a greater yield drop disincentives switching states,
but the eventual increase in soil fertility incentivizes it
instead.

Figure 6c shows how both the option and net
present value investment triggers become smaller when
the fertilizer reduction gets larger, the effect seems to be
roughly linear with a kink at a fertilizer reduction level
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of 20%. This is the point where the maximum long run
cropyield increaseof 2% is reached, sobeyond this point
further fertilizer reductions only create a larger short‑
term yield drop. From this we can derive that the cost
effect dominates over the other two effects. As before,
volatile carbon credit prices generate “wait and see” be‑
havior, causing the option trigger level (blue) to signif‑
icantly outrank the net present value trigger level (or‑
ange). We also observe once more how a lower trigger
level corresponds to greater and faster adoption of re‑
generative farming (Figure 6a,b).

The performed calculations for the degree of ni‑
trogen fertilizer applications can be repeated for other
practice changes. In this way it is plausible to form a
view about the economic effect of each individual prac‑
tice change, or combinations thereof. This allows for the
optimal conϐiguration of regenerative farming practices,
i.e. deϐining the collection of practices that incentivizes
adoption by farmers to the greatest extent. Furthermore,
themodel couldbeused to advise farmers on theoptimal
moment to switch to regenerative farming. The validity
of such exercises do hinge strongly on an accurate cali‑
bration of the model, for which detailed farmer data is
imperative.

4.4. Limitations

During our analysis we have a made a number
of simplifying assumptions that may impact model out‑
comes. For one, we have presumed farmers can make
the decision of switching practices only once per crop
year, at the start of the season. In reality there may
be practices that can be introduced independently later
down the crop year, leading to more decision‑making
ϐlexibility. Introducing this into themodelwould require
a careful analysis of what practices could be introduced
when and how this would affect the carbon sequestra‑
tion process. The complexity this would add, makes an‑
nual decision making a useful abstraction.

Similarly also the staging atwhich certain practices
are introduced over the course of several years can be
more ϐlexible than we have assumed. In our modeling
set‑up the farmer has to make a strict choice between
two sets of practices from one year to another, there is
no middle ground. In reality it may be better to think

of regenerative farming practices as a spectrum, for in‑
stance rather than going from heavy tillage to no tillage
at all, the farmer could ϐirst experiment with reducing
the tillage intensity. This would reduce implementation
risk. Although the COMET farm model would allow for
simulations with a set of transition practices, we have
opted not to do so as our aim has not been tomodel such
implementation risk. Instead, all uncertainty in our anal‑
ysis is derived from the stochastic evolution of carbon
credit prices.

As highlighted before, in reality farmers are facing
manyother formsof uncertainty thatmay inϐluence their
decision to switch to carbon credit prices. Fluctuating
cash crop prices can interact with the yield effects regen‑
erative farming generates. And volatility in the prices of
fertilizer and seedswould introduce cost uncertainty. To
simplify the analysis, we have limited our scope to a sin‑
gle source of uncertainty. Results should therefore also
be interpreted in this context, option effects that have
been generated due to carbon credit price ϐluctuations
may also show up for other sources of uncertainty, caus‑
ing interaction effects. This remains a topic for future
research.

A further assumption we have made is that farm‑
ers cannot switch back to conventional farming. Alter‑
natively, we could assume that upon exercise the regen‑
erative farming investment option, farmers gain a new
option to return to the previous state. Whether such an
option to switch back would be likely to be exercised
depends on the economic incentives farmers face after
adopting regenerative farming, i.e., how farming costs
and yields are affected. In scenarios where the costs of
cover crop seeds are smaller than the cost savings on fer‑
tilizer, operational costs are reduced under the regener‑
ative state. This would limit incentives to switch back.
Furthermore, the adopted assumptions on how yields
are impacted under regenerative farming assure that the
possibility of returning back to conventional practices is
mostly of relevancewhen considering the short run. The
ϐirst few years after switching states a yield dip takes
place. In the long‑run farmers may actually beneϐit from
increases in yield as soil fertility improves. This would
have the effect of locking in farmers in the regenerative
state as yields would drop back to conventional levels
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when corresponding practices are reintroduced. Overall,
the ability to switch states would lower the regenerative
farming investment trigger as it creates more ϐlexibility,
but the effectmay be limited under current assumptions.

In our analysiswe have focused on corn farmers for
simplicity. Presuming sufϐicient calibration data is avail‑
able, the model could equally be applied to other crops
like e.g., soybeans and wheat. The COMET farm model
has wide number of agricultural commodities that can
be used to specify simulations, this includes the possi‑
bility to implement crop rotations. Similarly, we also
included only three farming practices in the analysis.
However, many more regenerative practices are possi‑
ble, both in practice and when using the COMET farm
tool.

Finally, both the real option and net present value
methodologies have more general limitations as a pre‑
dictive framework for farmer investment behavior and
morealternative explanationshavebeenproposed in the
literature. Ihli et al. provide an overview of sociode‑
mographic factors and farm(er) speciϐic characteristics
that are theorized to impact farmer decision making [20].
They designed an experimental set‑up where farmers
are asked to consider (dis)investments in irrigation tech‑
nology. In their experiment they ϐind that the risk atti‑
tude, age and education of the farmer, as well as farm
and household size have a signiϐicant impact on farmer
behavior. They also ϐind some evidence of learning ef‑
fects: when farmers have the opportunity to learn from
their previous investment behavior they adept by delay‑
ing their moment of investment over time. Real option
analysis as a theory to describe farmer investment be‑
havior is therefore not complete and should be placed in
a broader context of explanatory factors.

5. Conclusions
Farmers have the potential to remove greenhouse

gases from the atmosphere via carbon sequestration,
achieved by applying regenerative farming practices.
However, wide scale adopting of these measures is com‑
plicated because the costs of implementation accrue to
the farmer, whereas the beneϐits are distributed to the
broader society. Carbon markets form a possible mech‑

anism to help resolve this externality problem by pro‑
viding farmers with an additional income stream for se‑
questered carbon in the form of carbon credit sales.

The economic viability of carbon markets depends
on the signiϐicance of the incentives the carbon credit
mechanism can provide to farmers as to motivate them
to switch towards regenerative farming practices. Our
research contributes to the literature of carbon mar‑
kets by assessing in signiϐicant detail what factors shape
these incentives. In particular we have described how
real option analysis can be applied to establish the op‑
timal investment timing for farmers to switch from con‑
ventional farming practices to regenerative farming. The
developed modeling approach puts special emphasis on
the “wait and see” attitude that underlies this invest‑
ment decision, this behavioral effect is not captured in
commonly applied net present value analyses. We have
shown that omitting the tendency of farmers to remain
ϐlexible in their decision making from analysis can lead
to overoptimistic predictions regarding the willingness
to adopt regenerative farming. In general, the greater
the volatility of carbon credit prices, the more relevant
this “wait and see” behavior becomes. At an annual‑
ized volatility level of 20% the effect is strong enough to
roughly double the required carbon credit price to incen‑
tivize farmers to adopt regenerative farming practices.

Prior research has indicated that depending on
where carbon credit prices range between $20‑$100,
there exists a global carbon sequestration potential rang‑
ing from 400 to 1200 million tons per year [10]. Com‑
paratively our simulations show that for a representa‑
tive farmer located in the US state of Iowa a price level
of roughly $60 per carbon credit provides the tipping
point where the typical corn farmer faces sufϐicient in‑
centives to consider adopting regenerative farming prac‑
tices. This estimated price level can vary considerably
depending on the speciϐic characteristics of the farming
operation, such as adopted practices, production costs
and, speciϐically, acreage. Economies of scale ensure
that large farming operations have a lower investment
boundary to switch to regenerative farming practices
than smaller farms do. This effect can be considerable:
we estimate that a farmer with 200 acres of corn re‑
quires a carbon credit price of roughly $78, whereas a

202



Research onWorld Agricultural Economy | Volume 06 | Issue 01 | March 2025

farmer with double the amount of corn acreage would
have a threshold of about $48 instead.

Our advice to policy makers is to consider that to
reach sufϐiciently high adoption rates under a carbon
credit model, incentives should not only cover potential
increases in farming costs due to regenerative farming
practices, but also need to convince farmers to give up
decision making ϐlexibility. Because voluntary carbon
markets have not fully matured yet, carbon credit prices
can currently ϐluctuate wildly, which makes farmers
more hesitant to switch systems. Securing farmers with
more predictable income streams, for instance by pro‑
viding insurance against carbon credit price volatility or
other risks inherent to adopting regenerative farming
practices, will aid in improving incentives by lowering
investment thresholds to net present value levels. Fur‑
thermore, the targeting of farmers for joining regenera‑
tive farming programs should be aimed at groups with
relatively low investment threshold levels, like farmers
with sufϐicient acreage of corn.

Finally, next to the descriptive purpose, i.e. high‑
lighting how farmer behavior is affectedwhen the under‑
lying investment environment changes, the developed
modeling approach can also be used in a normativeman‑
ner: presuming sufϐicient calibration data is available
the model can suggest optimal investment strategies for
individual farmers. As such the model can be consid‑
ered an economic module on top of the biochemical
COMET Farm model. By running particular sets of farm‑
ing practices the yield of carbon credits can be deter‑
mined, which allows the real option model to estimate
the optimal trigger level under which the farmer should
adopt regenerative farming practices. As an example, we
have shown how different levels of nitrogen fertilizer ap‑
plication should affect farmer’s decision making.
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Appendix A. Calibration Details
In this appendix we specify the base scenario for

our simulations in more detail, and we provide a break‑
down of the farming costs taken into consideration.

Before the intervention, we assume the farmer uses
intensive tillage, does not plant cover crops and has a
high nitrogen fertilizer usage. After switching, no tillage
will be applied at all, and the usage of nitrogen fertil‑
izer is reduced. Furthermore, vetch will be planted ev‑
ery year as a cover crop. We select vetch because COMET
simulations indicate it generatesmore carbon sequestra‑
tion than other cover crops such as cereal rye. Table A1
provides a summary of all the selected parameter values
for the base scenario. The listed values have been se‑
lected mostly because they are defaults provided by the
COMET Farm tool.

Based on the above speciϐication, the COMET farm
tool indicates 1.075 metric tons of CO2e per acre can be
removed/reduced on a yearly basis. We adopt this value
for δ(1, t).

In terms of farming costs we have adopted the
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Table A1. Summary of the adopted farming practice values under the conventional and regenerative states.

Parameter Farming Practice

Conventional Regenerative

Cash Crop Planting Date 6th of May
Cash Crop Harvest Date 22nd of November

Cover Crop Type N.A. Vetch
Cover Crop Planting Date N.A. 23rd of November
Cover Crop Harvest Date N.A. 29th of April

Tillage Method Intensive Tillage No Tillage
Tillage Date 5th of May N.A.

N Fertilizer Type Urea Ammonium Nitrate (30‑00‑00)
N Fertilizer Amount 130.3 lbs/acre 104.2 lbs/acre

N Fertilizer Application Method Surface Band/Sidedress
N Fertilizer Application Date 6th of May

cost entries in c(t) and associated values in the Table
A2. These are derived from USDA recent cost and re‑
turns dataset for corn, the heartland region, year 2022.
During our simulations we keep these values ϐixed over
time. Whenapplying fertilizer reductionby a certainper‑
centage under the intervention, we will reduce fertilizer
costs on a one‑by‑one basis. Upon the introduction of
cover crops we increase seed costs by 50%.

Table A2. Summary of the adopted values for cost parameters.
Cost Parameter Value ($/Acre)

Seed 100.96
Fertilizer 228.65
Chemicals 44.30

Custom Services 27.15
Fuel, lube and electricity 40.19

Repairs 39.89
Interest on operating capital 5.87

Hired labor costs 4.30
Opportunity costs of unpaid labor 32.30

Capital recovery of machinery and equipment 173.36
Opportunity costs of land 210.98
Taxes and insurance costs 13.95

General farm overhead costs 22.01

Appendix B. Sensitivity Analysis
To assess how themodel results respond to the val‑

ues adopted for the most important parameters, we per‑
form a sensitivity analysis. Figure A1 indicates how the
trigger level is dependent on the expected carbon credit
price growth rate µ, the discount rate r, the investment
costs I and the saturation time

−
T respectively.

Increasing the expected growth rate for carbon
credit prices µ directly raises the reward from switching

practices as the expected stream carbon credit revenue
will be larger, improving the net present value of the in‑
vestment. This makes the investment proposition more
attractive, which puts downward pressure on the trigger
level: as visible inFigure5a the trigger level dropswhen
µ grows larger. This holds both for the option model
(blue) as well as the net present value model (orange).

(a)

(b)

(c)
Figure 7. Cont.

204



Research onWorld Agricultural Economy | Volume 06 | Issue 01 | March 2025

(c)
Figure 7. The real option trigger level (blue) and the net
present value trigger level (orange) as a function of the ex‑
pected carbon credit price growth rate (a), the discount rate
(b), the investment costs (c) and the saturation time (d).

The discount rate r is a difϐicult parameter to cali‑
brate, as it reϐlects the value the farmer attaches to time,
which may differ from individual to individual. A larger
discount rate makes the far future less important. Un‑
der our assumptions switching to regenerative farming
requires upfront investment costs and generates a short‑
term yield drop, whilst carbon credit revenues are only
received over the course of multiple decades. Therefore,
farmers with a high value for r, i.e. a strong focus on the
immediate future, will be relatively difϐicult to convince
to adopt regenerative farming. Figure 5b shows that
this effect can be strong: increasing the discount rate by
50% can roughly double the required trigger level.

Farmer behavior also reacts sensitively to the in‑
vestment costs parameter I . Raising the investments
costs from $50.000 to $150.000 increases the required
trigger level from $39.4 to $73.8, see Figure 5c. Any
measures reducing the costs of switching to regenerative
farming practices are therefore crucial in improving the
adoption rates of regenerative farming under a carbon
credit system.

The level of
−
T determines how long it takes before

no more carbon can be sequestered and/or no further
carbon credits can be issued. The longer this period
continues, the greater the sum of the discounted rev‑
enue streams from carbon credits will be for farmers. A
higher value of

−
T therefore makes regenerative farming

more attractive and reduces the trigger level (see Fig‑
ure 5d). Presuming contractual factors are not limiting,
this result also indicates that the carbon credit system
may reward farmers differently based on their past be‑
havior. Farmers who previously applied intensive farm‑
ing practices that deteriorated soil healthmay have a rel‑

atively large
−
T because at the onset carbon soil stocks

have been depleted signiϐicantly compared to the satura‑
tion level. In contrast, farmers who paid more attention
to soil carbon stocks to begin with may have a relatively
small value for

−
T , which reduces the incentives to further

adopt regenerative farming practices.
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