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ABSTRACT
For ensuring successful ϐinancial planning to perform sustainable farming, one key sector is to provide solu‑

tions that could accurately predict the agricultural loss ratios. In China, the Henan province is considered to be an
agricultural center that is primarily exposed todrasticweather ϐluctuations that directly impact the cropyields. This
study was conducted in Henan province from January 2020 to December 2023. With the data collected from that
period, the study proposes a combinatory model combining Deep Gaussian Processes with Bayesian Long Short‑
Term Memory (LSTM) networks. The model was trained on data encompassing weather conditions, agricultural
practices, and historical insurance claims. The experimental analysis was conducted against other traditional mod‑
els, including ARIMA and Support Vector Regression. The RMSE improvement of the proposed model was around
7.2% on training data and 8.2% on test data, which demonstrates enhanced predictive accuracy. The enhanced per‑
formance of the proposed model was reϐlected in its effectiveness in reducing log‑likelihood errors across training
epochs. The model had demonstrated better robustness in handling complex and multi‑dimensional agricultural
data.
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1. Introduction
In the domain of agricultural economics, insurance

schemes seem to have contributed to mitigating farm‑
ers’ losses due to many unforeseen circumstances and
market volatility [1]. In Asia, China has for many years
projected itself as an agricultural hub, and regions such
as Henan Province have contributed a lot to the na‑
tion’s economy through agriculture. The inϐluence of
unpredictable weather patterns and ϐluctuating market
conditions makes agricultural insurance models a must‑
have aspect of modern agriculture practices. The Henan
province is a region that contributes higher wheat pro‑
duction, which is highly susceptible to losses due to
events such as droughts and ϐloods, which can devas‑
tate crops and, by extension, farmers’ livelihoods. Under
such circumstances, the only tool of savior is considered
to be the insurance schemes.

Recent studies in agricultural insurance have
adopted varied methodologies to tackle industry chal‑
lenges. King and Singh [2] have explored how the behav‑
ioral factors have inϐluenced the feature of demand for
agricultural index insurance by understanding the roles
of private transfers and farmer union memberships. In
another study of Zhong et al. [3], they have examined how
the government insurance subsidy schemes should be
structured. They had found that such subsidy schemes
are often misaligning with interests of farmers who are
mainly worried about varying yield uncertainties and
weather hazards. The work by Möhring et al. [4] have
identiϐied a positive link between the crop insurance en‑
rollment and increased pesticide use in Europe; this link
suggests that the insurance may inadvertently raise pes‑
ticide costs by up to 11%. The study of Chowdhury,
Mayilvahanan and Govindaraj [5] has involved enhancing
the health insurance predictions model by using Inter‑
net of Things (IoT) and Machine Learning (ML) mod‑
els in the process of optimizing the Feature Extraction
(FE) methodology employing a Whale Optimization Al‑
gorithm (WOA) for better accuracy. Dhieb et al. [6] have
introduced a blockchain‑based insurance system that
usesXGBoost for detecting fraudulent claims; this detect‑
ing mechanism has enhanced the security and efϐiciency.

Also, advancements in the ϐield of data analytics
havedriven theusageof tools like statistical andMLmod‑

els for the process of predicting the insurance Loss Ra‑
tios (LR) with better accuracy and efϐiciency [7–9]. But
still, many models have shown to have limitations in
handling the dynamic and complex nature of agricul‑
tural data,which includes temporal sequences andmulti‑
dimensional variables that are prejudiced by human ac‑
tivities and environmental factors [10, 11]. Another pri‑
mary alarm that makes the existing models struggle
is those related to the high variability and uncertainty
inherent in agricultural processes because such uncer‑
tainties result in poor prediction against real‑world
outcomes. This limitation had led to the motivation
of this study, which involved employing a hybrid ana‑
lytical framework that combines Bayesian Long Short‑
TermMemory (LSTM)networkswithDeepGaussianPro‑
cesses (DGP). The model takes the advantage of LSTM’s
sequential data processing andGaussianProcesses prob‑
abilistic modeling capabilities.

The studywas carried out during a period from Jan‑
uary 2020 to December 2023 around Henan Province,
China’s top wheat‑producing region [11]. The model
builds a dataset that includes variables such as weather
conditions, farming practices, and historical LR. As in‑
ϐluenced by the motivation to handle variability and un‑
certainty impacted by climatic and other circumstantial
events, the work proposed a novel predictive model: a
DGP integrated with a Bayesian LSTM network [12]. The
model handles the complexities and uncertainties inher‑
ent in the temporal and multi‑dimensional agricultural
data. The proposed model was assessed for its predic‑
tion accuracy in insurance LR, which showed that it had
signiϐicant prediction ability compared to other statisti‑
cal and ML models [13–15].
The Objectives are:

(a) Cost‑Effectiveness Analysis: Using statistical
analysis, compare different interventions or
strategies in research to determine the most cost‑
effective approach and highlight the most eco‑
nomic value based on the ϐindings.

(b) Economic Forecasting: Utilize statistical models
like time series analysis to predict future market
conditions based on historical data, and discuss
the implications for stakeholders.

(c) Impact Assessment: Evaluate the economic im‑
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pact of changes in variables like climate or crop
varieties, using statistical methods to quantify po‑
tential ϐinancial impacts on producers, consumers
and economy.

The work is projected in the following sections:
Section 2 presents the theoretical framework; Section
3 presents the methodology; Section 4 presents the
study’s analysis and ϐindings; Section 5 concludes the ar‑
ticle.

2. Methods

2.1. LSTMModel

LSTMs have a chain‑like structure (Figure 1) but
replace the traditional nodes of RNNswithmemory cells.
These cells canmaintain information inmemory for long
periods. Each cell has three types of gates: Input Gate
(IG), Output Gate (OG), and Forget Gate (FG). These gates
determinewhether or not to let new input in (IG), delete
the information because it is no longer necessary (FG),
or let it impact the output at the current timestep (OG).

Figure 1. LSTM architecture.

1 FG (ft): The FG is the ϐirst critical component, de‑
ciding which information the cell should discard.
Using the sigmoid function ‘σ’, it looks at the previ‑
ous hidden state t−1 and the current input ‘xt’and
outputs a number between 0 and 1 for each num‑
ber in the cell state Ct−1, Equation (1).

ft = σ (Wf · [ht−1, xt] + bf ) (1)

A value close to 1 means “keep this completely”,
while a value close to 0 means “completely for‑
get this”. This decision‑making process allows the
LSTM to dynamically reduce the inϐluence of less

relevant past information.
2 IG (it) and Candidate Cell State

∼
Ct: Simultane‑

ously, the IG decides which new information is
stored in the cell state. It operates similarly to
the FG but determines where to add information,
Equation (2).

it = σ (Wi · [ht−1, xt] + bi) (2)

Alongside, a candidate cell state
∼
Ct is created by a

tanh layer, proposing a vector of new values to be
added to the state, Equation (3).

∼
Ct = tanh (WC · [ht−1, xt] + bC) (3)

This candidate blends the old state and new in‑
sights fromcurrent inputs, prepared to update the
cell state.

3 Cell State Update Ct : The cell state Ct is the next
to be updated, integrating decisions fromboth the
FG and IG, Equation (4).

Ct = ft · Ct−1 + it ·
∼
Ct (4)

This strategically updates FG parts of the previous
state while adding new relevant information, en‑
suring the cell state carries forward only the nec‑
essary data.

4 OG (ot) andHidden State ht : Finally, the OG deter‑
mines what part of the current cell state to output
as the hidden state ht, Equation (5) and Equation
(6).

ot = σ (Wo · [ht−1, xt] + bo) (5)

ht = ot · tanh (Ct) (6)

This step ϐilters the cell state through another tanh
function to regulate the network’s output, allowing the
LSTM to control the inϐluence of its internal state on the
outputs and subsequent states (Figure 2).

Figure 2. Bayesian neural network.
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2.2. Bayesian Neural Network (BNN)

A BNN introduces probabilistic inference by treat‑
ing the model weights as random variables with prior
distributions (Figure 2). This helps the BNN model to
achieve better handling of uncertainty and overϐitting
as against other traditional Neural Networks (NN) [16–18].
The foundation of Bayesian inference in NN starts with a
prior distribution on the weights W , typically assumed
to be Gaussian, Equation (7).

W ∼ N
(
0, σ2I

)
(7)

This assumption means that, before seeing any
data, the weights are predicted to vary around zero with
a variance ‘σ2’, encapsulatedwithin an identitymatrix ‘I ’.
This prior reϐlects our initial beliefs about the weights’
distribution before data observation [19–26]. The likeli‑
hood function quantiϐies how probable observed data
‘D’ is, given a set of weights ‘W ’. The NNmodels this rela‑
tionship directly through its architecture and activation
functions, Equation (8).

y = f(x,W ) + ϵ (8)

Here, ‘ϵ’ represents the noise associated with the
outputs, assumed to be Gaussian,N

(
0, σ2

y

)
. This model

encapsulates the assumption that the true relationship
is realized through the neural network function ‘f ’, per‑
turbed by some random Gaussian noise. Integrating
the prior distribution and the likelihood of the observed
data, the posterior distribution of theweights is updated
using Bayes’ theorem, Equation (9).

p(W | D) ∝ p(D | W ) · p (W ) (9)

This relationship is pivotal as it reϐines thismodel’s
initial assumptions about the weights based on the ob‑
served data, balancing between the prior distribution
and how well the model with certain weights explains
the data. ‘D’ represents the observed dataset, making
the posterior a critical component for updating beliefs
about the weights after considering the data [27–31].

Predictions in a BayesianNN are derived not from a
single set of weights but by considering the entire distri‑
bution of possible weights. The predictive distribution
for a new input ‘x’ is computed by integrating over all

possible weights, each weighted by its posterior proba‑
bility, Equation (10).

p(y | x,D) =

∫
 p(y | x,W )p(W | D)dW (10)

Since this integral is generally intractable, approx‑
imation techniques such as Monte Carlo or variational
inference are employed. These methods help approxi‑
mate the true predictive distribution, enabling the net‑
work to make inherently uncertain predictions and re‑
ϐlect the model’s conϐidence [32–39].

2.3. Gaussian Process (GP)

The GP starts with a mean function, m (x), which
represents the expected value of the function at any
point x, usually the mean function is set to ‘0’. The GP is
inϐluenced by its covariance function or kernel, k

(
x, x

′
)
.

This function deϐines the expected covariance between
any two points in the input space based on their values,
which is deϐined as Equation (11).

k
(
x, x

′
)
= σ2exp

−

(
x− x

′
)2

2l2

 (11)

Here, ‘σ2’ represents the variance, controlling the
variation of outputs from the mean, while l determines
the length scale, inϐluencing how input changes affect
output changes. A Gaussian Process is deϐined by com‑
bining the mean and covariance functions, where any
collection of function values follows amultivariate Gaus‑
sian distribution, Equation (12).

f (x) ∼ GP
(
m (x) , k

(
x, x

′
))

(12)

The predictive capability of a GP is enacted through
its ability to provide expected outputs ( y∗ ) for new in‑
puts (X∗), using Equation (13).

y∗ | X, y,X∗ ∼ N (µ∗,Σ∗) (13)

Here, µ∗ and Σ∗ are determined by the relation‑
ships established by the covariance function between
known training inputs ‘X ’, their corresponding outputs
‘y’, and the new input points ‘X∗’. The equations for ‘µ∗’
and ‘Σ∗’ bridge the theoretical properties of the GP with
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practical application, allowing theGP to forecast newval‑
ues while considering both the learned patterns and in‑
herent uncertainties,

µ∗ = K (X∗, X)K(X,X)
−1

y (14)

Σ∗ = K (X∗, X∗)−K (X∗, X)K(X,X)
−1

K (X,X∗)

(15)
In the Equation (14) and Equation (15), K(X,X)

is the covariance matrix computed between all pairs of
training inputs, K (X∗, X) is the covariance matrix be‑
tween test inputs and training inputs, andK (X∗, X∗) is
the covariance matrix between all pairs of test inputs.

Gaussian Processes provide a robustway to predict
outcomes along with a quantiϐication of uncertainty in
those predictions, which is particularly useful in ϐields
like geo‑statistics, robotics, and any domain where pre‑
cise uncertainty modeling is required.

3. Methodology

3.1. Location of Study

Henan Province is a region located in the plains of
China, which is among China’s most agriculturally pro‑
ductive regions, especially in the production of wheat.
The study was conducted during the period from Jan‑
uary 2020 to December 2023. During this period, the
Henan region had approximately 5 million hectares for
wheat cultivation and had yielded approximately 30mil‑
lion tons annually, with an average yield of around 6
tons per hectare. The yield per hectare was primarily
inϐluenced by weather conditions and farming practices.
The farmers in Henan province have insured their crops
based on yield‑ and revenue‑based policies, where the
government subsidizes premiums to encourage farmer
participation. The LR from these insurance policies have
shown ϐluctuations ranging from 20% to 50% over the
study period, and the ϐluctuations are inϐluenced mainly
by climatic extremities such as droughts and ϐloods. Fur‑
ther climatic pattern changes have induced farmers to
adjust their agricultural practices, such as modiϐication
of sowing dates, adoption of new wheat varieties, and
enhancements to the irrigation and drainage systems to
better cope with changing environmental conditions.
Periodic Analysis

• Periodic Changes: Periodic analysis is a method
used to identify and model recurring patterns in
data, typically focusing on seasonal variations or
trends that repeat annually or every 5–10 years.

• Seasonality: Monthly data can reveal seasonal
patterns, such as agricultural yields, inϐluenced by
planting and harvesting cycles.

3.2. Data Sources

The data for the study include the historical loss ra‑
tio in terms of % of loss claimed against the actual in‑
sured. The data on weather factors such as rainfall, tem‑
perature ϐluctuations, droughts and ϐloods are sourced
from regional meteorological stations. Farming prac‑
tices that include farming techniques and sowing dates
are sourced from agricultural bureaus in Henan. Fur‑
ther economic impact reports are sourced from govern‑
ment reports. The following Table 1 shows the vari‑
ables, sources and data types used in this study.

Table 1. Summary of the variables, their sources, and data
types.
Variable Data Type Data Source

Historical LR Numeric (Percentage) Insurance claims records

Rainfall Numeric (mm) Regional meteorological stations
Temperature Numeric (°C)
Extreme weather events Categorical

Sowing dates Date Agricultural bureaus in Henan
Wheat varieties Categorical
Use of fertilizers Categorical

Economic factors Numeric (Currency) Governmental reports

3.3. Data Preparation

As a ϐirst step in data preparation, the dataset was
cleaned to remove inconsistencies, missing values, and
outliers in the insurance claims records and weather
data and crop yield ϐigures were identiϐied and rectiϐied.
Next, the missing data points were handled through im‑
putation techniques that supplement the values using
median values of nearby data points to maintain the in‑
tegrity of the time series. To scale the data to a standard
range of 0 to 1, a normalization process such as theMin‑
Max scaling technique was employed. Categorical data,
such as wheat varieties and types of weather events,
were transformed into numerical formats through one‑
hot encoding. Also, to reduce bias in economic impact,
data log transformations were applied to skewed data
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distributions (Figure 3).

Figure 3. Prediction model.

3.4. Proposed DGP with a Bayesian LSTM
for Predicting Insurance Loss Ratio

The proposedmodel is depicted in Figure 3, which
integrates a DGPwith a Bayesian LSTM framework. This
model combines the advantage of the sequential data
processing capabilities of LSTM with the probabilistic
strengths of Gaussian Processes. In the data preprocess‑
ing stage, each feature is standardized to zero mean and
unit variance to ensure uniformity. It is attained by the
transformation of Equation (16).

x
′
=

x− µ

σ
(16)

where µ and σ represent the mean and standard
deviation of each feature, respectively. The Bayesian
LSTM processes these normalized inputs by treating the
weights within its architecture as probabilistic Gaussian
distribution. Following the LSTM layer, the outputs are
fed as inputs to the Deep Gaussian Process, which uses
a kernel function to model the complex relationships in
the data, Equation (17).

k
(
x, x

′
)
= σ2exp

(
−∥x− x

′∥2

2l2

)
(17)

This Gaussian Process predicts the expected out‑
puts and quantiϐies the uncertainty of these predictions
using the Equation (18) and Equation (19) for the mean
and covariance of the predictive distribution:

µ∗ = K (X∗, X)K(X,X)
−1

y (18)

Σ∗ = K (X∗, X∗)−K (X∗, X)K(X,X)
−1

K (X,X∗)

(19)
The model is trained to minimize the negative log‑

likelihood function, in which the predicted output by the
model for a given input is denoted as y, with the mean

µ and variance σ2 predicted by the model, the Nega‑
tive Log‑Likelihood (NLL) of the Gaussian distribution is
speciϐied by Equation (20).

NLL =
∑N

i=1
[log

(
σ2
i

)
+

(yi − µi)
2

σ2
i

] (20)

where N is the number of data points, yi is the actual
observed value, µi and σ2

i are the mean and variance
predicted by the model for the ith data point. This loss
function comprises two parts: the term log

(
σ2
i

)
ensures

that the model does not become overly conϐident about
its predictions by penalizing predictions with minimal
predicted variances. (yi−µi)

2

σ2
i

is essentially a weighted
mean squared error that scales the squared difference
between the predicted mean and the actual value by the
inverse of the predicted variance, thus considering the
model’s uncertainty in its predictions. Once trained and
validated, the model is integrated into decision‑support
systems, providing real‑time, reliable predictions that
are crucial for managing the risks associated with agri‑
cultural insurance.
Algorithm: DGP with Bayesian LSTM for Predicting
Insurance LR
Inputs:

• X : Time series data of features (e.g.,weather con‑
ditions, agricultural practices, historical LR).

• Y : Corresponding historical LR.
• N : Number of training epochs.
• η : Learning rate for the optimizer.

Output: Predicted LR with associated conϐidence inter‑
vals.
Procedure:
(1) Normalize Data: X ′

= X−µX

σX
, where µX and σX

are the mean and standard deviation of the train‑
ing data.

(2) ConvertX ′ into sequences suitable for LSTM pro‑
cessing.

(3) Initialize Model Components:
• Bayesian LSTM Initialization: Initialize

weights and biases of the LSTM layers with
Gaussian distributions.

• Gaussian Process Initialization: Select a ker‑
nel function and initialize hyperparameters
(length‑scale l, variance σ2 ).

(4) Model Training:
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• For Each epoch i from 1 toN
• For Each batch (Xbatch , Ybatch ) in training

data
• Forward Pass
• Compute LSTM outputs using the Bayesian

LSTM layer.
• Feed LSTM outputs into the Gaussian Pro‑

cess to get predictions µ and variance σ2.
• Calculate Loss: Loss =

∑
j  [log

(
σ2
j

)
+

(yj−µj)
2

σ2
j

], where yj are the actual val‑
ues from Ybatch .

• Backpropagation: Update the
model parameters using gradi‑
ent descent to minimize the loss,
Parameter update  =  Parameter  −
η · ∇ (Loss)

(5) Prediction:
• For new input dataXnew :

• NormalizeXnew  as done in preprocess‑
ing.

• Process Xnew  through the trained
Bayesian LSTM to get new outputs.

• Use outputs as inputs to the Gaussian
Process to predict LR with µnew  and
σ2
new .

• Output Result: Return the predicted LR,
µnew along with conϐidence intervals de‑
rived from σ2

new .
(6) Model Evaluation and Adjustment:

• Evaluatemodel performance on a validation
set.

• Adjust hyperparameters or extend train‑
ing based on performance metrics such as
RMSE or likelihood measures.

4. Analysis

4.1. Descriptive Analysis

The analysis results are presented in Figure 4, and
it began with generating essential statistical summaries
of the historical LR from January 2020 to December
2023. For instance, the average loss ratio over this pe‑
riod was initiated to be approximately 35%, with a stan‑
dard deviation of 8%. The highest loss ratio observed

was 50% in July 2021 due to severe ϐlooding. A linear
trend indicated a slight upward trend with an annual
increase estimated at 2% per year. Seasonal decompo‑
sition revealed that LR typically peak during the late
summer months, coinciding with the main harvest and
the monsoon season, which brings about most of the re‑
gion’s rainfall and associated weather disruptions. For
instance, LR were notably higher in August and Septem‑
ber each year, consistently exceeding the annual average
by 10% to 15%points. Cyclical analysis indicated a bien‑
nial pattern in the LR, with more pronounced peaks ev‑
ery two years. It could correlate with broader economic
cycles or biennial variations in regional climate condi‑
tions. For example, 2021 and 2023witnessed the higher
peaks in LR compared to 2020 and 2022.

Figure 4. Statistical results summary.

The correlation analysis results are presented in
Figure 5a–c. The analysis of LR with key factors in
Henan Province revealed signiϐicant relationships: Rain‑
fall exhibited a strong correlation coefϐicient of 0.48, in‑
dicating that increased precipitation correlates substan‑
tially with higher LR. Temperature showed a robust cor‑
relation at 0.82, underscoring its critical impact on LR,
especially during temperature extremes. The cost of
agricultural inputs had an extremely strong correlation
at 0.96, reϐlecting that rising costs signiϐicantly inϐluence
LR, likely due to increased ϐinancial pressure on farmers.
Forwheat varieties, Zhengmai 366 showedalmost no im‑
pact on LR (correlation of –0.013); while Xiaoyan 22 and
Jinmai 47 exhibited moderate positive (0.208) and neg‑
ative (–0.215) correlations, respectively, suggesting that
speciϐic varieties can affect vulnerability and resilience
to conditions affecting crop yield and subsequent insur‑
ance claims.
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(a) (b) (c)

(d)
Figure 5. Correlation of (a) loss ratios vs. rainfall; (b) loss ratios vs. temperature; (c) loss ratios vs. cost of inputs; (d) Loss
ratios vs. wheat varieties.

Table 2 shows Stationarity test results in which
the Augmented Dickey‑Fuller (ADF) test yielded a test
statistic of –3.45, with a p‑value of 0.017. Since the
test statistic is supplementary negative than the critical
value at 5% (–2.89), and the p‑value is below the thresh‑
old of 0.05, we reject the null hypothesis that the se‑
ries has a unit root, indicating that the series is station‑
ary. Similarly, the Phillips‑Perron (PP) test also supports
the conclusion of stationarity with a test statistic of –
3.60 and a p‑value of 0.015, further reinforcing the ADF
test ϐindings by providing robustness against serial cor‑
relation and heteroscedasticity in the time series. The
Kwiatkowski‑Phillips‑Schmidt‑Shin (KPSS) test, which
has a null hypothesis that the series is stationary, gave
a test statistic of 0.35 with a p‑value of 0.048. As the p‑

value is marginally below 0.05, we narrowly reject the
null hypothesis, suggesting that the series does not ex‑
hibit a unit root, thus conϐirming stationarity.

4.2. Machine Learning Analysis
The experiments were performed in a system with

an Intel Core i9 processor at 3.6 GHz featuring 16 cores,
which is paired with an NVIDIA RTX 3080 GPU boast‑
ing 10 GB of VRAM. The system is reinforced by 64 GB
of DDR4 RAM and operates under Ubuntu 20.04 LTS.
The software environment is robust, utilizing Python3.8,
TensorFlow2.4 andGPϐlow2.1 to implement and run the
machine learning models. Regarding data division, 70%
of the dataset is designated as the training set, and 30%
is used as the test set. The proposed model was trained
using the parameters listed in Table 3.

The proposed model is compared with Autoregres‑
sive Integrated Moving Average (ARIMA), Simple LSTM
Model, Random Forest Regressor (RF), and Support Vec‑
tor Regression (SVR) using metrics such as Root Mean
Squared Error (RMSE),MeanAbsolute Error (MAE), Log‑
Likelihood, Coefϐicient of Determination

(
R2
)
, Accuracy,

Recall, and Area Under Curve (AUC). Each model will
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Table 2. Stationarity test results for LR data.

Test Test Statistic p‑Value Critical Value 5%

Augmented Dickey‑Fuller (ADF) –3.45 0.017 –2.89
Kwiatkowski‑Phillips‑Schmidt‑Shin (KPSS) 0.35 0.048 0.463
Phillips‑Perron (PP) –3.60 0.015 –2.89

be trained using the same dataset and evaluated based
on the deϐined metrics to ensure a fair comparison
(Tables 4 and 5).

Table 3. Training parameters.

Parameter Value

Learning rate 0.001
Epochs 100

Batch size 32
LSTM units 100

GP kernel type RBF
Optimizer Adam

Early stopping criteria Validation loss
Kernel length‑scale (l) 1.0
Kernel variance (σ²) 1.0

Tables 4 and 5 show the model’s performance
against different performance metrics in the training
phase. The model achieved a minimum RMSE of 5.1%
and amaximumof 9.3%,which is a lower error rate than
other models (Figure 6). The mean RMSE of 7.1% was
the lowest among other models like ARIMA, which has
a mean RMSE of 8.4%, LSTM at 7.4% and SVR at 8.6%.
For MAE, the proposed model had a lower mean value
of 4.5% compared to other models’ scores like ARIMA’s
6.7% and SVR’s 6.2%. Also, for the coefϐicient of deter‑
mination (R2) metric the proposed model achieved as
average at 0.87, which is superior to the simpler ARIMA
model’sR2 mean of 0.80 and closely approaches the the‑
oretical maximum of 1. In the testing phase, the pro‑
posedmodel shows slightly increasedRMSE values rang‑
ing from 7.8% to 8.6%. Yet the best model, compared
to other models like the ARIMA and SVR, had values at
10.9%and 10.3 respectively, and LSTM and RF at 9% and
9.3% respectively. Also, the MAE and R2 metrics in the
testing phase show the model’s efϐiciency with R2 val‑
ues peaking at 0.90 for the proposedmodel compared to
0.74 for ARIMA and 0.79 for SVR.

Figure 6. Boxplots for compared models for both training and
test data.

The analysis of log‑likelihood errors is proved in
Figure 7, which compares different predictive models
over the 100th epochs. The proposedmodel exhibits the
most substantial improvement, starting at –250.32 and
reducing to –90.45 by the 100th epoch. This suggests its
superior capability in capturing complex data patterns,
which is ideal for agricultural insurance loss predictions.
In comparison, traditional models like ARIMA and SVR
start with higher errors and show less steep improve‑
ments, indicating their relative limitations in handling
the complexities of agricultural data. Simple LSTM and
RF improve signiϐicantly but do not match the proposed
model’s efϐiciency.

Figure 7. Error rate analysis.

The performance evaluation of various ML models
in Figure 8 for classiϐication showcases their effective‑
ness across accuracy, recall, and AUCmetrics on training
and testing datasets.
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Table 4. Results of the training test.

Model Metric Min Value Mean Value Max Value

Proposed
RMSE (%) 5.1 7.1 9.3
MAE (%) 3.8 4.5 5.6

R2 0.82 0.87 0.91

ARIMA
RMSE (%) 7.2 8.4 10.1
MAE (%) 5.5 6.7 7.8

R2 0.75 0.80 0.85

Simple LSTM
RMSE (%) 6.1 7.4 8.8
MAE (%) 4.2 4.9 5.7

R2 0.79 0.84 0.88

Random Forest Regressor
RMSE (%) 6.5 7.3 8.2
MAE (%) 4.3 5.1 6.0

R2 0.78 0.83 0.87

SVR
RMSE (%) 7.5 8.6 9.4
MAE (%) 5.2 6.2 7.0

R2 0.72 0.77 0.81

Table 5. Results for test data.

Model Metric Min Value Mean Value Max Value

Proposed
RMSE (%) 7.8 8.2 8.6
MAE (%) 5.9 6.1 6.3

R2 0.86 0.88 0.90

ARIMA
RMSE (%) 10.1 10.5 10.9
MAE (%) 8.2 8.3 8.6

R2 0.70 0.72 0.74

Simple LSTM
RMSE (%) 8.7 9.0 9.3
MAE (%) 6.8 7.0 7.2

R2 0.79 0.81 0.83

Random Forest Regressor
RMSE (%) 9.1 9.3 9.6
MAE (%) 7.1 7.3 7.5

R2 0.77 0.79 0.81

SVR
RMSE (%) 9.7 10.0 10.3
MAE (%) 7.6 7.9 8.1

R2 0.75 0.77 0.79

The proposed model demonstrates exemplary per‑
formance on the training set, achieving an accuracy of
0.99, a recall of 0.97, and an AUC of 0.97, indicating
its near‑perfect ability to classify correctly and manage
class imbalances. On the test set, it maintains robust per‑
formance with an accuracy of 0.97, recall of 0.84, and
AUC of 0.92, showing a slight decrease but still outper‑
forming other models. The RF model also shows strong
results, with training metrics of 0.98 accuracy, 0.92 re‑
call, and 0.96 AUC, and testing metrics close behind at
0.96 accuracy, 0.83 recall, and 0.91 AUC. This reϐlects its
effective generalization with a minor performance drop
on new data. LSTM, while less effective than the pro‑

posed and RF models, achieves a training accuracy of
0.93, recall of 0.69, and AUC of 0.84, which decreases
in the testing phase to 0.87 accuracy, 0.50 recall and
0.73 AUC. These results suggest its relative weakness in
handling this classiϐication task, especially in maintain‑
ing recall of unseen data. SVR and ARIMA models ex‑
hibit similar patterns, scoring training and testing ac‑
curacies of 0.90. However, both struggle with recall
and AUC metrics, registering 0.50 on recall and 0.75 on
AUC across both datasets, indicating limitations in their
classiϐication effectiveness and sensitivity compared to
other models.
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Figure 8. Performance of classiϐication ML models evaluated
by accuracy, recall rate and AUC.

The Execution Time (ET) results in Figure 9 com‑
pare the efϐiciency of various MLmodels during training
and prediction.

Figure 9. Execution Time analysis.

The proposed model, featuring complex computa‑
tions, has the longest training time at 3626 sec. How‑
ever, it maintains a moderate prediction time of 121
sec., demonstrating its capacity to handle complexity ef‑
ϐiciently during real‑time applications. ARIMA stands
out for its efϐiciency, with the shortest training and pre‑
diction times at 302 and 37 sec. respectively, making it
exceptionally quick and suitable for rapid output needs.
The Simple LSTM and Random Forest models exhibit
moderate training times of 918 and 624 sec., with rela‑
tively quick prediction times of 62 and 55 sec. respec‑
tively, aligning them well with scenarios that balance
training depth with prompt predictions. The SVR re‑
quires 1809 sec. for training and 103 sec. for predictions
that show moderate computational demands compared
to the other models.

The Computational Complexity for each model
is listed in Table 6, and the proposed model has

O
(
n3
)
complexity, which is themost resource‑intensive;

whereas the ARIMA, LSTM, and Random Forest models
display moderate complexities of O

(
nk2

)
,  O(t · p) and

O(t ·m · log(n )) respectively. The SVR, similar to the pro‑
posed model, shows high computational demands with
a complexity that ranges fromO

(
n2 · p

)
toO

(
n3
)
.

Table 6. Computational Complexity analysis.

Model Time Complexity

Proposed High
(
O
(
n3
))

ARIMA Moderate
(
O
(
nk2

))
Simple LSTM Moderate (O( t · p ))
Random Forest Moderate (O( t ·m · log (n) ))
SVR High

(
O
(
n2 · p

)
to O

(
n3
))

5. Conclusions and FutureWork
Crop insurance has been a life savior formany farm‑

ers by mitigating the ϐinancial risks arising from differ‑
ent climatic and environmental uncertainties. The study
was conducted in Henan Province, China, and data re‑
lated to historical insurance claims, weather data, and
government policieswere collected. The studyproposed
aDeep Gaussian Processwith Bayesian Long Short‑Term
Memory networks to predict insurance LR accurately.
This model combines the advantage of the sequential
data processing capabilities of LSTMwith the probabilis‑
tic strengths of Gaussian Processes. The model was
trained and tested using the dataset sourced from a pe‑
riod from January 2020 to December 2023. The results
of the experiment have shown that the proposed model
has better prediction accuracy than the other traditional
models like LSTM, ARIMA, RF and SVR.

The research aims to evaluate the effectiveness of
Long Short‑Term Memory (LSTM) models in predicting
agricultural outcomes or insurance mechanisms in the
context of climate change. It comparesLSTMs’ predictive
capabilities with other statistical and machine learning
models, and explores their potential contributions to the
ϐield.
To strengthen the research, it is crucial to clearly
communicate its signiϐicance.

• Climate change is signiϐicantly impacting agricul‑
tural production and insurance mechanisms, ne‑
cessitating accurate prediction models due to its
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impact on crop yields, pest prevalence, and the fre‑
quency of extreme weather events.

• The text discusses the comparison of LSTM
against traditionalmodels like ARIMAor linear re‑
gression, as well as machine learning approaches
like Random Forests and Gradient Boosting Ma‑
chines, and their strengths and limitations in time‑
series forecasting for agricultural data.

• LSTMmodels are ideal for capturing temporal pat‑
terns in climate and agricultural data due to their
effectiveness in long‑term dependencies in data
sequences.

• The research should highlight its contribution to
previous studies and identify any gaps in the lit‑
erature, such as examining the effectiveness of
LSTM models in prediction accuracy or robust‑
ness compared to earlier models.

• The study highlights the potential beneϐits of im‑
proved prediction accuracy for agricultural pro‑
ducers and insurance companies, such as accurate
risk assessments, optimized resource allocation,
and improved decision‑making.

• The text details the data used, the methodology
for evaluating model performance, and metrics
like MAE and RMSE, which are relevant to the re‑
search.

Future research will focus on extending this ap‑
proach by incorporating real‑time data and exploring its
efϐicacy in different geographic regions, thereby offering
broader implications for stabilizing agricultural insur‑
ance markets under dynamic environmental conditions.

Future research should explore hybridmodels com‑
bining LSTMswith other techniques, or apply ϐindings to
diverse regions or crop types.
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[4] Möhring, N., Dalhaus, T., Enjolras, G., et al., 2020.
Crop insurance and pesticide use in European agri‑
culture. Agricultural Systems. 184, 102902.

[5] Chowdhury, S., Mayilvahanan, P., Govindaraj, R.,
2022. Optimal feature extraction and classiϐication‑
oriented medical insurance prediction model: Ma‑
chine learning integrated with the internet of
things. International Journal of Computers and Ap‑
plications. 44(3), 278–290.

[6] Dhieb, N., Ghazzai, H., Besbes, H., et al., 2020. A
secure AI‑driven architecture for automated insur‑
ance systems: Fraud detection and risk measure‑
ment. IEEE Access. 8, 58546–58558.

[7] Richman, R., 2021. AI in actuarial science—A re‑
view of recent advances—Part 2. Annals of Actuar‑
ial Science. 15(2), 230–258.

[8] Manteigas, C., António, N., 2024. Understanding
andpredicting lapses inmortgage life insurance us‑
ing a machine learning approach. Expert Systems
with Applications. 255(Part C), 124753.

310



Research onWorld Agricultural Economy | Volume 05 | Issue 04 | December 2024

[9] Quan, Z., Hu, C., Dong, P., et al., 2024. Improv‑
ing business insurance loss models by lever‑
aging InsurTech innovation. arXiv preprint.
arXiv:2401.16723.

[10] Cravero, A., Pardo, S., Galeas, P., et al., 2022. Data
type and data sources for agricultural big data and
machine learning. Sustainability. 14(23), 16131.

[11] Chai, C., Zhang, B., Li, Y., et al., 2023. A new
multi‑dimensional framework considering envi‑
ronmental impacts to assess green development
level of cultivated land during 1990 to 2018 in
China. Environmental Impact Assessment Review.
98, 106927.

[12] Fernando, N., Kumarage, A., Thiyaganathan, V., et
al. (editors), 2022. Automated vehicle insurance
claims processing using computer vision, natu‑
ral language processing. 2022 22nd International
Conference on Advances in ICT for Emerging Re‑
gions (ICTer); 30 November–1 December 2022;
Colombo, Sri Lanka. pp. 124–129. DOI: https://do
i.org/10.1109/ICTer58063.2022.10024089

[13] Ramalingam, H., Venkatesan V.P., 2019. Concep‑
tual analysis of Internet of Things use cases in
Banking domain. TENCON 2019—2019 IEEE
Region 10 Conference (TENCON); 12 Decem‑
ber 2019; Kochi, India. pp. 2034–2039. DOI:
https://doi.org/10.1109/TENCON.2019.8929473

[14] Martin, J.M.R., 2021. Designing and verifying mi‑
croservices using CSP. 2021 IEEE Concurrent Pro‑
cesses Architectures and Embedded Systems Vir‑
tual Conference (COPA); 23 September 2021; San
Diego, CA. pp. 1–4. DOI: https://doi.org/10.1109/
COPA51043.2021.9541471

[15] Cardoso, J., 2006. Benchmarking a semantic Web
service srchitecture for fault‑tolerant B2B inte‑
gration. 26th IEEE International Conference on
Distributed Computing Systems Workshops (ICD‑
CSW’06); 24 July 2006; Lisboa, Portugal. p. 18. DOI:
https://doi.org/10.1109/ICDCSW.2006.27

[16] Romania, J., Ross, W., Butcher, S., 2017. Army
and Navy management of Automatic Test
Systems for weapon system support: Com‑
paring US Army and US navy ATS manage‑
ment practices. IEEE AUTOTESTCON; 26 Oc‑
tober 2017; Schaumburg, IL. pp. 1–9. DOI:
https://doi.org/10.1109/AUTEST.2017.8080459

[17] Benrachou, D.E., Glaser, S., Elhenawy, M., et
al., 2024. Improving efϐiciency and gener‑
alisability of motion predictions with deep
multi‑agent learning and multi‑head atten‑
tion. IEEE Transactions on Intelligent Trans‑
portation Systems. 25(6), 5356–5373. DOI:
https://doi.org/10.1109/TITS.2023.3339640

[18] Agaram, M., 2018. Intelligent discovery features
for EDM and MDM systems. 2018 IEEE 22nd

International Enterprise Distributed Object
Computing Workshop (EDOCW); 16–19 October
2018; Stockholm, Sweden. pp. 135–144. DOI:
https://doi.org/10.1109/EDOCW.2018.00028

[19] Rahmani, M.K.I., Ghanimi, H.M., Jilani, S.F.,
et al., 2023. Early Pathogen Prediction in
Crops Using Nano Biosensors and Neural
Network‑Based Feature Extraction and Classi‑
ϐication. Big Data Research. 34, 100412. DOI:
https://doi.org/10.1016/j.bdr.2023.100412

[20] Krishnamoorthy, P., Satheesh, N., Sudha, D., et
al., 2023. Effective Scheduling of Multi‑Load Au‑
tomated Guided Vehicle in Spinning Mill: A
Case Study. IEEE Access. 11, 9389–9402. DOI:
https://doi.org/10.1109/ACCESS.2023.3236843

[21] Sabry, E.S., Elagooz, S., El‑Samie, F.E.A., et al.,
2022. Sketch‑Based Retrieval Approach Using Ar‑
tiϐicial Intelligence Algorithms for Deep Vision
Feature Extraction. Axioms. 11(12), 663. DOI:
https://doi.org/10.3390/axioms11120663

[22] Roque‑Claros, R.E., Flores‑Llanos, D.P., Maquera‑
Humpiri, A.R., et al., 2024. UAV Path Planning
Model LeveragingMachineLearning andSwarm In‑
telligence for Smart Agriculture. Scalable Comput‑
ing: Practice and Experience. 25(5), 3752–3765.
DOI https://doi.org/10.12694/scpe.v25i5.3131

[23] Ghanimi, H.M., Suguna, R., Jeyaraj, J.P.G.,
et al., 2024. Smart Fertilizing Using IOT
Multi‑Sensor and Variable Rate Sprayer In‑
tegrated UAV. Scalable Computing: Prac‑
tice and Experience. 25(5), 3766–3777. DOI:
https://doi.org/10.12694/scpe.v25i5.3132

[24] Nowfal, S.H., Sadu, V.B., Sengan, S., et al.,
2024. Genetic Algorithms for Optimized Se‑
lection of Biodegradable Polymers in Sus‑
tainable Manufacturing Processes. Journal of
Machine and Computing. 4(3), 563–574. DOI:
https://doi.org/10.53759/7669/jmc202404054

[25] Jeevika Tharini, V., Ravi Kumar, B., Sahaya Suganya
Princes, P., et al., 2024. Business Decision‑Making
Using Hybrid LSTM for Enhanced Operational
Efϐiciency. In: Vimal, V., Perikos, I., Mukher‑
jee, A., et al. (eds.) Multi‑Strategy Learning
Environment. ICMSLE 2024. Algorithms for
Intelligent Systems. Springer, Singapore. DOI:
https://doi.org/10.1007/978‑981‑97‑1488‑9_12

[26] Jermanshiyamala, A., Kumar, N.S., Belhe, S., et
al., 2024. ACO‑Optimized DRL Model for Energy‑
Efϐicient Resource Allocation in High‑Performance
Computing. In: Vimal, V., Perikos, I., Mukher‑
jee, A., et al. (eds.) Multi‑Strategy Learning
Environment. ICMSLE 2024. Algorithms for
Intelligent Systems. Springer, Singapore. DOI:
https://doi.org/10.1007/978‑981‑97‑1488‑9_11

[27] Nowfal, S.H., Rao, G.R.K., Velmurugan, V., et

311

https://doi.org/10.1109/ICTer58063.2022.10024089
https://doi.org/10.1109/ICTer58063.2022.10024089
https://doi.org/10.1109/COPA51043.2021.9541471
https://doi.org/10.1109/COPA51043.2021.9541471


Research onWorld Agricultural Economy | Volume 05 | Issue 04 | December 2024

al., 2024. Advancing viscoelastic material
modeling: Tackling time‑dependent behavior
with fractional calculus. Journal of Interdis‑
ciplinary Mathematics. 27(2), 307–316. DOI:
https://doi.org/10.47974/JIM‑1827

[28] Vidya Sagar, P., Rajyalaxmi, M., Subbalakshmi,
A.V.V.S., et al., 2024. Utilizing stochastic differen‑
tial equations and random forest for precision fore‑
casting in stock market dynamics, Journal of In‑
terdisciplinary Mathematics. 27(2), 285–298. DOI:
https://doi.org/10.47974/JIM‑1822

[29] Lazar, A.J.P., Soundararaj, S., Sonthi, V.K., et al.,
2023. Gaussian Differential Privacy Integrated
Machine Learning Model for Industrial Internet
of Things. SN Computer Science. 4, 454. DOI:
https://doi.org/10.1007/s42979‑023‑01820‑2

[30] Mehbodniya, A., Webber, J.L., Mani, D., et al.,
2022. Classiϐication of Cervical Cells Using
Deep Learning Feature Extraction, Innovations
in Computer Science and Engineering. ICICSE
2022. Lecture Notes in Networks and Systems.
Springer, Singapore. Volume 565, pp. 27–41. DOI:
https://doi.org/10.1007/978‑981‑19‑7455‑7_3

[31] Karn, A.L., Webber, J.L., Mehbodniya, A., et al.,
2022. Evaluation and Language Training of Multi‑
national Enterprises Employees by Deep Learning
in Cloud Manufacturing Resources, Innovations in
Computer Science and Engineering. ICICSE 2022.
Lecture Notes in Networks and Systems. Springer,
Singapore. Volume 565, pp. 369–380. DOI: https:
//doi.org/10.1007/978‑981‑19‑7455‑7_28

[32] Karn, A.L., Mehbodniya, A., Webber, J.L., et al.,
2022. Design of Concurrent Engineering Systems
for Global Product Development Using Artiϐicial In‑
telligence, Innovations in Computer Science and
Engineering. ICICSE 2022. Lecture Notes in Net‑
works and Systems. Springer, Singapore. Volume
565, pp. 425–434. DOI: https://doi.org/10.1007/
978‑981‑19‑7455‑7_32

[33] James, G.M.B., Mehbodniya, A., Maria, A.B., et
al., 2022. Deep Convolutional Neural Networks‑
Based Market Strategy for Early‑Stage Product De‑
velopment, Innovations in Computer Science and
Engineering. ICICSE 2022. Lecture Notes in Net‑

works and Systems. Springer, Singapore. Volume
565, pp. 597–606. DOI: https://doi.org/10.1007/
978‑981‑19‑7455‑7_46

[34] Bhavana Raj, K., Webber, J.L., Marimuthu, D., et al.,
2022. Equipment Planning for an Automated Pro‑
duction Line Using a Cloud System, Innovations in
Computer Science and Engineering. ICICSE 2022.
Lecture Notes in Networks and Systems. Springer,
Singapore. Volume 565, pp. 707–717. DOI: https:
//doi.org/10.1007/978‑981‑19‑7455‑7_57

[35] Mathew, T.E., Sabu, A., Sengan, S., et al.,
2023. Microclimate monitoring system for
irrigation water optimization using IoT.
Measurement: Sensors. 27, 100727. DOI:
https://doi.org/10.1016/j.measen.2023.100727

[36] Gupta, N.V.R., Rajeshkumar, G., Selvi, S.A.M., et
al., 2022. Li‑Fi Enables Reliable Communication
of VLT for Secured Data Exchange, Intelligent Sys‑
tems and Sustainable Computing. Smart Innova‑
tion, Systems and Technologies. Springer, Singa‑
pore. Volume 289. DOI: https://doi.org/10.1007/
978‑981‑19‑0011‑2_20

[37] Mantena, S.V., Jayasundar, S., Sharma, D.K., et al.,
2022. Design of Dual‑Stack, Tunneling, and Trans‑
lation Approaches for Blockchain‑IPv6, Intelligent
Systems and Sustainable Computing. Smart Inno‑
vation, Systems and Technologies. 289. DOI: https:
//doi.org/10.1007/978‑981‑19‑0011‑2_21

[38] Sengan, S., Khalaf, O.I., Ettiyagounder, P., et
al., 2022. Novel Approximation Booths Multipli‑
ers for Error Recovery of Data‑Driven Using Ma‑
chine Learning, Communications in Computer
and Information Science. International Confer‑
ence on Emerging Technology Trends in Internet
of Things and Computing, TIOTC 2021: Emerg‑
ing Technology Trends in Internet of Things and
Computing. Springer, Cham. pp. 299–309. DOI:
https://doi.org/10.1007/978‑3‑030‑97255‑4_22

[39] Dadheech, P., Sheeba, R., Vidya, R., et al.,
2020. Implementation of Internet of Things‑
Based Sentiment Analysis for Farming Sys‑
tem. Journal of Computational and Theoret‑
ical Nanoscience. 17(12), 5339–5345. DOI:
https://doi.org/10.1166/jctn.2020.9426

312

https://doi.org/10.1007/978-981-19-7455-7_28
https://doi.org/10.1007/978-981-19-7455-7_28
https://doi.org/10.1007/978-981-19-7455-7_32
https://doi.org/10.1007/978-981-19-7455-7_32
https://doi.org/10.1007/978-981-19-7455-7_46
https://doi.org/10.1007/978-981-19-7455-7_46
https://doi.org/10.1007/978-981-19-7455-7_57
https://doi.org/10.1007/978-981-19-7455-7_57
https://doi.org/10.1007/978-981-19-0011-2_20
https://doi.org/10.1007/978-981-19-0011-2_20
https://doi.org/10.1007/978-981-19-0011-2_21
https://doi.org/10.1007/978-981-19-0011-2_21

	Introduction
	Methods
	LSTM Model
	Bayesian Neural Network (BNN)
	Gaussian Process (GP) 

	Methodology
	Location of Study
	Data Sources
	Data Preparation
	Proposed DGP with a Bayesian LSTM for Predicting Insurance Loss Ratio

	Analysis
	Descriptive Analysis
	Machine Learning Analysis

	Conclusions and Future Work

