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ABSTRACT
Food security is threatened by climate change worldwide; consequently, agriculture and farming livelihoods

must adapt to new and unpredictable conditions. These conditions vary along spatial scales, and since agricultural
yields are sensitive to microclimate conditions, a locally tailored data‑driven approach may be helpful. Further‑
more, limited agricultural resources like water and labor increasingly constrain food production. This research
proposes a regional portfoliomodel for identifying crop choices and regional portfolio compositions that alignwith
known and forecasted microclimate variation in temperature and humidity. The model will enable farmers to as‑
sess tradeoffs between the ϐinancial returns and agricultural production risks. The goal of this work is to provide
new insights into agricultural planning in the face of climate risk and limited access to water and labor resources.
Three steps are taken. Firstly, regional agricultural land is divided into farming subunits, with each representing a
terroir characterized by temperature and humidity. Then a simulated yield coefϐicient is used to assess the effect
of microclimate variables on the yield of the different crops in the portfolio of each subunit. Secondly, farming re‑
source allocation, represented by water and labor, across crops and farming subunits is optimized to maximize the
yield and associated ϐinancial return from farming across the agricultural region. Finally, a resilient agricultural
planning model is developed based on the assumed data for regional microclimate and agricultural resources. The
results of this research can be used by regional farmers as a reference for selecting crop portfolios and resource
allocations to maximize overall proϐit.
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1. Introduction
Global food security faces unprecedented chal‑

lenges as climate change continues to disrupt agricul‑
tural systems worldwide. With the global population
expected to reach nearly 10 billion by 2050, the pres‑
sure on agricultural systems to produce sufϐicient food
in a sustainablemanner is immense [1, 2]. Climate change
is exacerbating these challenges by altering weather
patterns, increasing the frequency of extreme weather
events and shifting growing seasons, all of which have
profound effects on agricultural productivity [3, 4]. The
agricultural sector is particularly vulnerable due to its re‑
liance on climatic factors such as temperature, precipita‑
tion, and humidity, which directly inϐluence crop growth
and yield [5].

Microclimates, or localized climate conditions near
the Earth’s surface, play a critical role in agricultural pro‑
ductivity. Thesemicroclimates are shaped by a combina‑
tion of environmental variables including radiation, air
and surface temperatures, humidity, wind and carbon
dioxide levels [6]. The importance of microclimates is un‑
derscored by their inϐluence on key ecological processes
such as soil respiration, plant regeneration, wildlife habi‑
tat selection, and nutrient cycling [7, 8]. Understanding
andmanaging thesemicroclimatic factors is essential for
optimizing crop yields and ensuring the sustainability of
agricultural practices in the face of changing global cli‑
mate conditions [9, 10].

Recent studies have highlighted the need for adap‑
tive strategies in agriculture that take into account the
variability and complexity ofmicroclimates [11, 12]. These
strategies include the adoption of diversiϐied crop port‑
folios that are resilient to climatic ϐluctuations, as well
as the development of precise, data‑driven approaches
to farming that leverage high‑resolution climate data [13].
By tailoring agricultural practices to speciϐic microcli‑
matic conditions, farmers can enhance their resilience
to climate change, reduce the risk of crop failure, and im‑
prove overall productivity [14].

One of the most signiϐicant challenges in adapting

agricultural systems to climate change is the accurate
prediction of howdifferent cropswill respond to varying
climatic conditions. Traditional crop models often rely
on broad, coarse‑scale climate data, which can overlook
the nuances of local microclimates and lead to less ac‑
curate predictions [15, 16]. High‑resolution microclimate
data, on the other hand, allows for more precise mod‑
eling of crop suitability and yield, enabling farmers to
make better‑informed decisions about which crops to
plant and when to plant them [17]. This data‑driven ap‑
proach is particularly important in regions with signiϐi‑
cant climatic variability, where small changes in temper‑
ature or humidity can have a large impact on crop per‑
formance [18].

In addition to the challenges posed by climate
change, the agricultural sector must also contend with
the increasing scarcity of vital resources such as water,
arable land and labor [19, 20]. The competition for these
resources is intensifying as population growth drives up
demand for food, leading to more intensive agricultural
practices and greater strain on the environment [21, 22].
Efϐicient resource management is therefore crucial for
maintaining agricultural productivity and sustainability.
The application of ϐinancial portfolio theory to agricul‑
ture offers a promising solution to this problem by opti‑
mizing the allocation of resources across different crops,
balancing the trade‑offs between risk and return [23].

The concept of portfolio agriculture is based on the
principles of diversiϐication, which in the ϐinancial world
involves spreading investments across a range of assets
to minimize risk and maximize returns. In agriculture,
this approach involves diversifying crop selection and re‑
source allocation to buffer against the uncertainties of
climate change and market ϐluctuations [24]. By adopt‑
ing a portfolio approach, farmers can increase their re‑
silience to adverse conditions, optimize the use of lim‑
ited resources, and enhance the sustainability of their
farming practices [25].

This study builds on the principles of portfolio agri‑
culture by developing a regional portfolio model that
integrates microclimate data with resource allocation
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strategies. The model is designed to help farmers make
informed decisions about crop selection and resource
use, taking into account the speciϐic microclimatic condi‑
tions of their land. By dividing agricultural land into sub‑
units characterized by distinct microclimates—referred
to as terroirs—the model assesses the impact of tem‑
perature and humidity on crop yields and optimizes re‑
source distribution accordingly. The goal is to maximize
agricultural output while minimizing risk, thereby con‑
tributing to more sustainable and resilient farming prac‑
tices in the face of climate change. Three steps will be
taken to achieve these goals. Firstly, we divide regional
farmlands by terroir and measure the effect of microcli‑
mate on crop yields by inducing the yield coefϐicient. Sec‑
ondly, we optimize farming resource allocation among
crops and farmlands by using a portfolio model for crop
selection in each terroir farm allocation. Finally, a nu‑
merical experiment is carried out to verify and validate
the model.

2. Methodology
In this study, we aim to identify crop choices and

portfolio diversiϐication that alignwith forecastedmicro‑
climate variationwith the goal of helping local farmers to
make tradeoffs between the returns and risks of agricul‑
tural production. The methodology encompasses three
key components: terroir, resource allocation theory, and
the portfolio agriculture planning model. Terroir in‑
volves dividing agricultural land into subunits based on
environmental factors such as temperature and humid‑
ity, which signiϐicantly impact crop yields. Resource allo‑
cation theory is used to optimize the distribution of lim‑
ited agricultural resources like water and labor across
different crops and subunits. The portfolio agriculture
planning model applies ϐinancial portfolio optimization
principles to agriculture, allowing farmers to balance the
tradeoffs between risk and return when selecting crop
portfolios and resource allocations.

2.1 Terroir

Terroir, a term rooted in the French tradition of
viticulture, broadly encompasses the environmental fac‑
tors that inϐluence crop growth and quality. Among

these factors, temperature and humidity play pivotal
roles in determining crop yield. Temperature affects
plantmetabolism, growth rates, anddevelopment cycles,
with each crop having an optimal temperature range for
maximumproductivity. Excessive heat or cold can stress
plants, reducing yields or even causing crop failure. Hu‑
midity, on the other hand, inϐluences water availability,
disease prevalence, and transpiration rates. High humid‑
ity can promote fungal diseases, while low humidity can
lead to water stress. Together, temperature and humid‑
ity create a complex interplay that signiϐicantly impacts
agricultural output. Understanding and managing these
elements of terroir are crucial for optimizing crop yield
and ensuring food security in the face of changing cli‑
matic conditions.

In this paper, we divide regional agricultural land
into farming subunits that each represents a terroir char‑
acterized by mean temperature and humidity. We de‑
note all farmlands of a rural household as S and assume
that we can divide all farmlands as k distinguished farm‑
ing subunits with different terroir, such as temperature
and humidity, which essentially affect the yield produc‑
tivity of different crops. For example, 15 distinguished
farming subunits have been divided in Figure 1. For il‑
lustrative purposes of this terroir approach, we assume
temperature decreases from north to south by 1℃ and
humidity increases from west to east by 1% for each
farming subunit. Hence, if we denote T and H as tem‑
perature and humidity, they can be expressed by the fol‑
lowing equation for each farming subunit:

Figure 1. Example of farming subunits.

Temperature Equation:

(1)

Humidity Equation:

(2)
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Next, we used a simulated yield coefϐicient to as‑
sess the effect of temperature and humidity on the yield
of corn, soybeans and cotton for each farming subunit.
These common crops are chosen to illustrate the portfo‑
lio model, based on data available in the literature. Ac‑
tual crop yield data would have to be collected to apply
the model in practice. Schlenker and Roberts estimated
the impact of climate change on crop yields [26]. Table 1
shows the data they collected for temperature with the
corresponding log yield of corn, soybeans and cotton.

Table 1. Relation between temperature and crop yield.
Log Yield (Bushels)Temperature

(Celsius) Corn Soybeans Cotton

0 0.002 0.003 –0.025
5 0.001 0.001 0.01
10 –0.003 –0.005 –0.015
15 –0.002 –0.003 0
20 –0.001 –0.002 –0.003
25 0.01 0.01 –0.006
30 0.0015 0.004 0.02
35 –0.02 –0.02 –0.01
40 –0.04 –0.04 –0.04

In this table, a difference of 0.001 indicates approx‑
imately a 1% difference in average yield growth. For ex‑
ample, the yield of corn at a temperature of 25 Celsius
is 5% higher than that at 40 Celsius, holding all else the
same. We did regression analysis to create polynomial
trendline equations below to formulate the relationship
between temperature and yield of corn, soybeans and
cotton.

Corn:

Y1 = 2E–08T5–2E–06T4 + 7E–05T3 − 0.0009T2

+0.0034T
(3)

Soybeans:

Y2 = 2E–08T5–2E–06T4 + 8E–05T3–0.001T2

+0.0038T
(4)

Cotton:

Y3 = 2E–08T5–2E–06T4 + 8E–05T3–0.0011T2

+0.0052T
(5)

Furthermore, based on the USDA News Releases
from2021 to 2023 and the relative humiditymap for Vir‑
ginia, Table 2 was created to show the average relative

humidity of Virginia inAugust and September from2021
to 2023 with corresponding yield per acre of corn, soy‑
bean and cotton.

We did regression analysis to create polynomial
trendline equations below to formulate the relationship
between the average relative humidity and the yield per
arc of corn, soybeans and cotton.

Corn:

y1 = −0.0042H5 + 1.45H4 − 201.5H3+

13977H2 − 483816H+ 7E+ 06
(6)

Soybeans:

y2 = 0.0125H5 − 4.5417H4 + 659.9H3−
47929H2 + 2E+ 06H− 3E+ 07

(7)

Cotton:

y3 = −0.4375H5 + 157.29H4 − 22615H3+

2E+ 06H2 − 6E+ 07H+ 8E+ 08
(8)

If we regarded 25 Celsius and 70% average relative
humidity as a standard terroir combination, then we in‑
troduced yield coefϐicient β to express the effects of ter‑
roir on crop yields. To simplify the model, we use a lin‑
ear function to sum‑up the effects of temperature andhu‑
midity on crop yields as follows:

Corn:

β = (Y1 − 0.01)/0.01 + (y1 − 162)/162 (9)

Soybeans:

β = (Y2 − 0.01)/0.01 + (y2 − 47)/47 (10)

Cotton:

β = (Y3 + 0.006)/0.01 + (y3 − 1036)/1036 (11)

2.2 Resource Allocation Theory

The portfolio model was originally developed to
help investors select asset portfolios that maximize re‑
turns orminimize risks in the ϐinancialmarket. The chal‑
lenge farmers face in selecting the optimal resource allo‑
cation among crops can be viewed as a speciϐic applica‑
tion of this investment model. Several studies have uti‑
lized the portfolio model to optimize how farmland is al‑
located among different crops [27, 28]. Lence [29] applied a
standard portfolio model, incorporating additional land
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Table 2. Relation between Average relative humidity and crop yield.
Year Month Average Relative

Humidity (%)
Corn

(bushels/arc)
Soybean

(bushels/arc)
Cotton

(pounds/arc)

2021 August 72 158 45 1045
September 74 157 43 1100

2022 August 71 160 46 1045
September 70 162 47 1036

2023 August 75 156 41 1131
September 76 150 40 1000

constraints, to address the issue of land resource allo‑
cation. Nalley [30] employed portfolio theory to select
wheat varieties, aiming tominimize riskbasedonhistori‑
cal yield levels. In agricultural production, allocating lim‑
ited resources is fundamentally similar to how investors
manage assets in the ϐinancial market. Therefore, opti‑
mal resource allocation across different crops is achiev‑
able.

2.3 Portfolio Agriculture Planning Model

In this research, the portfolio model was used to
optimize the distribution of essential agricultural re‑
sources, speciϐically water and labor. This approach al‑
lows stakeholders to balance the trade‑offs between re‑
turn and risk across various investment options, with
risk being quantiϐied by the variance in returns [31]. A
higher variance indicates greater risk variability and po‑
tentially higher investment returns.

We denote all farmlands of a rural household as S
and assume that we can divide all farmlands as k dis‑
tinguished farmland area with different terroir, such as
temperature and humidity, which essentially affect the
yield productivity of different crops. We simplymeasure
this effect as a yield coefϐicient β.

Assuming that a rural household grows n kinds of
crops in k farmlands, the net return rate from farming
can be calculated as:

R =
∑s = k

s = 1

∑m = 2

m = 1

∑i = n

i = 1
xmsirmi · αs · (1 + βsi)   

(12)
where:

  
∑s = k

s = 1

∑i =n

i = 1
xsi = 1 (13)

Where: R is the total net return rate of farming re‑
sources invested in all farmlands for this household or
farming subunit. All returns in this study are net returns.

xmsi is the proportion of the agricultural resourcem (wa‑
ter or labor) invested in crop i in farmland s. rmi is the
net return per unit resource m of crop i. αs is the pro‑
portion of the total area of farmland s. βsi is the yield
coefϐicient for crop i in farmland s, which is affected by
terroir. m = 1, 2. s = 1, 2 ,…, k. i = 1, 2 ,…, n.

Then the investment risk is:

V =
∑i = n

i = 1

∑j = n

j = 1
xixjσij (14)

Where V is the investment risk measured by vari‑
ance without unit. xi is the proportion of an agricultural
resource invested in crop i. xj is the proportion of an
agricultural resource invested in crop j. σij is the covari‑
ance of net return per unit resource between crop i and
j. i, j = 1, 2 ,…, n.

The covariance of net return per unit resource be‑
tween two crops is:

σij = E {[ ri − E (ri) ][ rj − E (rj)} (15)

Where: ri is the net return per unit resource of crop
i; rj is the net return per unit resource of crop j.

To maximize the net return rate of farming under a
certain risk level, the objective equation is expressed as
follows:

Max R =
∑s = k

s = 1

∑m = 2

m = 1

∑i = n

i = 1
xmsirmi ·αs ·(1 + βsi)

(16)
s.t.  V =

∑i = n

i = 1

∑j = n

j = 1
xixjσij ≤  γ (17)

∑s = k

s = 1

∑i=n

i=1
xsi = 1 (18)

∑s = k

s = 1
αs = 1 (19)

Where: γ is the actual average risk of farming.
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3. Results and Discussions
In this section, we perform a numerical experiment

to demonstrate the application of the portfolio agricul‑
ture planning model. We divide the farmland of a rural
farming region into 20distinct farming subunitswith dif‑
ferent terroir. Tables 3–5 show the information of area
proportion, temperature and humidity for each farming
subunits.

Table 3. Area proportion of farming subunits.
S11 S12 S13 S14 S15

α 0.05 0.03 0.04 0.06 0.04
S21 S22 S23 S24 S25

α 0.02 0.06 0.04 0.03 0.05
S31 S32 S33 S34 S35

α 0.03 0.04 0.08 0.03 0.02
S41 S42 S43 S44 S45

α 0.05 0.07 0.06 0.12 0.08

Temperatures (Celsius) decrease from north to
south. We assume the temperature for farming subunits
S11 is 25 Degree Celsius; then the temperature for other
farming subunits canbederivative from the temperature
equation as shown in Table 4:

Table 4. Temperature for farming subunits.
S11 S12 S13 S14 S15

T 25 25 25 25 25
S21 S22 S23 S24 S25

T 24 24 24 24 24
S31 S32 S33 S34 S35

T 23 23 23 23 23
S41 S42 S43 S44 S45

T 22 22 22 22 22

Average Relative Humidity (%) increase from west
to east. We assume the average relative humidity for
farming subunit S11 is 70%; then the average relative hu‑
midity for other farming subunits can be derived from
the humidity equation as shown in Table 5:

Furthermore, the assumednet returnof agriculture
resources, water and labor, for the three crops corn, soy‑
bean and cotton are shown in the Table 6.

Table 5. Average relative humidity for farming subunits.
S11 S12 S13 S14 S15

H 70 71 72 73 74
S21 S22 S23 S24 S25

H 70 71 72 73 74
S31 S32 S33 S34 S35

H 70 71 72 73 74
S41 S42 S43 S44 S45

H 70 71 72 73 74

Table 6. Net return of agriculture resources for corn, soybean
and cotton.
Water (USD
per m3)

Labor (USD
per day)

Corn 0.3 66.7
Soybean 0.6 143.3
Cotton 0.19 19.3

These net return data are chosen to illustrate the
portfolio model, and actual net return data would have
to be collected to apply the model in practice. It should
be calculated by the following equation:

Net return = price× yield− production cost
(the cost of labor, machinery, seeds, water,

fertilizer, pesticide, and so on).
(20)

We assume that the original farming strategy for
the rural farms can be described in Table 7, which
means that the farmer distributes water and labor
equally to each farming subunit, and terroir has not been
considered at this stage.

Based on the growing strategy described above, the
total net return rate of resources of farming invested in
all farmlands for this region is $4.32, and the actual aver‑
age risk of farming γ is 1.24.

Next, we input the initial data of area proportion,
temperatures, average relative humidity, and net return
of agriculture resources into the Portfolio Agriculture
Planning Model. The aim is to optimize the farming re‑
source allocation across crops and farming subunits and
maximize the yield and associated ϐinancial return rate
from farming across the agricultural region. The optimal
farming strategy is shown in Table 8.
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Table 7. Original farming strategy.
Farming Subunit Crop Water Labor

S11 Corn 0.050 0.050
S12 Corn 0.050 0.050
S13 Soybean 0.050 0.050
S14 Soybean 0.050 0.050
S15 Cotton 0.050 0.050
S21 Corn 0.050 0.050
S22 Corn 0.050 0.050
S23 Soybean 0.050 0.050
S24 Soybean 0.050 0.050
S25 Cotton 0.050 0.050
S31 Corn 0.050 0.050
S32 Corn 0.050 0.050
S33 Soybean 0.050 0.050
S34 Soybean 0.050 0.050
S35 Cotton 0.050 0.050
S41 Corn 0.050 0.050
S42 Corn 0.050 0.050
S43 Soybean 0.050 0.050
S44 Soybean 0.050 0.050
S45 Cotton 0.050 0.050

Table 8. Optimal farming strategy.
Farming Subunit Crop Water Labor

S11 Corn 0.024 0.065
S12 Corn 0.062 0.011
S13 Cotton 0.037 0.063
S14 Soybean 0.049 0.047
S15 Cotton 0.084 0.027
S21 Soybean 0.013 0.086
S22 Corn 0.025 0.067
S23 Soybean 0.064 0.021
S24 Corn 0.071 0.033
S25 Cotton 0.092 0.029
S31 Soybean 0.05 0.066
S32 Corn 0.036 0.071
S33 Soybean 0.028 0.043
S34 Corn 0.049 0.058
S35 Cotton 0.057 0.069
S41 Cotton 0.083 0.027
S42 Corn 0.044 0.039
S43 Soybean 0.039 0.047
S44 Soybean 0.042 0.096
S45 Cotton 0.051 0.035

Based on this strategy, farmers have a clear guid‑
ance on growing selected crops in each farming subunits
and the optimal agriculture resources (water, labor) in‑
put. Considering terroir as essential factors for crop agri‑
culture and applying the Portfolio Agriculture Planning
Model (PAPM) to optimize the resource allocation, the
total net return rate is increased from 4.32 to 5.81, and
the actual average risk of farming, γ, is decreased from

1.24 to 0.89. Consequently, we can conclude that PAPM
can help regional farmers to select crop portfolios and
make resource allocations based on terroir to maximize
overall proϐit.

4. Conclusions
This study underscores the potential and efϐicacy

of the Portfolio Agriculture Planning Model in optimiz‑
ing resource allocation across various crops and farming
subunits by incorporating unique terroir characteristics.
By integratingmicroclimate factors such as temperature
and humidity, the model has demonstrated a signiϐicant
enhancement in the total net return rate, increasing from
$4.32 to $5.81, while simultaneously reducing the actual
average farming risk from 1.24 to 0.89. These improve‑
ments highlight the model’s ability to provide regional
farmerswith a robust framework for selecting crop port‑
folios and allocating resources to maximize overall prof‑
itability and sustainability.

The application of the Portfolio Agriculture Plan‑
ning Model offers a strategic advantage in efϐiciently
managing agricultural resources, addressing critical
challenges such as limited farmland, water scarcity, and
labor shortages. By tailoring crop choices and resource
inputs to speciϐic microclimates, farmers can achieve
higher yields and improved economic outcomes, con‑
tributing to more resilient and sustainable agricultural
practices. The model’s ability to optimize resource al‑
location based on terroir ensures that agricultural prac‑
tices are both economically viable and environmentally
sustainable, supporting the broader goals of food secu‑
rity and climate adaptation.

Moreover, this research provides valuable insights
for policymakers and agricultural planners aiming to
enhance food security and optimize agricultural pro‑
ductivity amidst climatic variability and resource con‑
straints. The model’s ϐlexibility allows for the incorpo‑
ration of additional variables, such as soil characteris‑
tics and economic factors, to further reϐine agricultural
planning strategies. This adaptability ensures that the
Portfolio Agriculture Planning Model can be tailored to
address broader regional and global agricultural chal‑
lenges, making it a versatile tool for diverse agricultural
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contexts.
Future research should focus on expanding the

model to incorporate real‑time data and more granular
variables to further improve its predictive accuracy and
applicability. Additionally, ϐield trials and practical im‑
plementations of the model can provide empirical vali‑
dation and offer opportunities to reϐine themodel based
on real‑world feedback. By continuing to develop and
reϐine the Portfolio Agriculture Planning Model, we can
support the agricultural sector in adapting to climate
change, optimizing resource use, and ultimately secur‑
ing a sustainable and resilient food supply for the future.
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