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ABSTRACT
The presented article considers the problem of estimating the parameters of root crop biomass based on 

Earth remote sensing data. The underground commercial part of the biomass of this type of crops is inaccessible 
to optical remote sensing. The authors develop a classical approach to estimating the parameters of the state of 
dynamic systems based on mathematical models. In their previous works, this approach was implemented by the 
authors to assess crops with above-ground commercial biomass. Such crops are cereals and perennial grasses. To 
assess the biomass of crops with an underground commercial part, the authors proposed using three mathemati-
cal models. The first, main one, is the model of the dynamics of the biomass of a root crop, reflecting the relation-
ship between the above-ground part of the biomass and the mass of root crops. The second is a dynamic model 
of the parameters of the soil environment, reflecting the removal of nutrients and moisture by the biomass of 
the root crop. The third is a model of optical remote sensing, reflecting the relationship between the reflectance 
parameters in the red and near infrared optical ranges with the parameters of the above-ground part of the bio-
mass. Since underground biomass is inaccessible to Earth remote sensing, special requirements are imposed on 
the model of biomass parameter dynamics. This model must have the property of observability, which ensures 
the assessment of all components of the root crop biomass when probing its above-ground part. The presence of 
three mathematical models allows simultaneous assessment of the root crop biomass parameters and soil envi-
ronment parameters with the closure of the assessment algorithm on real Earth remote sensing data. The pro-
posed methodology and algorithms are quite applicable to other root crops, such as carrots, potatoes, etc.
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1. Introduction

Agriculture is one of the most popular areas of us-
ing Earth remote sensing (ERS) data [1,2]. Based on this 
information, it becomes possible to build modern ef-
fective systems for monitoring the state of agricultural 
land, create automated systems for managing agricul-
tural technologies, and solve many research problems 
in a new way. By means of effective monitoring systems, 
it is possible to solve such important national economic 
problems as forecasting the final result (harvest) of ag-
ricultural crops, detecting emergency situations in the 
fields, assessing the fertility and degree of soil degrada-
tion, accounting, inventory, and classification of agricul-
tural land with the simultaneous formation of special 
large-scale plans and maps. All this makes it possible to 
implement effective support for management decisions 
in agriculture [3]. 

Remote sensing technologies have evolved over 
the years, and modern agriculture has many options to 
choose from in terms of both technical platforms (satel-
lite, unmanned aerial vehicle, ground-based measuring 
instruments) and sensors of various physical nature 
(e.g., visible, multispectral, hyperspectral, thermal, ra-
dar) for collecting various agricultural data. With such 
technical capabilities, it is important for an agricultural 
producer to clearly understand the possibilities of ex-
tracting information for implementing management de-
cisions. This is especially true for quantitative param-
eters of agricultural crops and the soil environment. 
Without such information, no management actions 
can be implemented. This work is aimed at solving the 
problem of estimating quantitative parameters of agri-
cultural crops. The approach developed in it has already 
been considered in the authors’ previous works [3–9]. It 
is based on the classical approach to estimating the pa-
rameters of the state of agricultural crops using remote 
sensing data, based on the use of mathematical models. 
When using this approach, remote sensing data are 
considered as an indirect measurement of the state of 
the object of assessment [5]. In the works of the authors, 
this approach was tested on grain and forage crops. The 
commercial part of the biomass of these crops (yield) 
is formed above the field surface and is accessible to 

remote sensing tools. 
The situation changes radically when assessing 

the parameters of the state of root crops, the com-
mercial part of the biomass of which is formed in the 
soil and is inaccessible to remote sensing tools. At the 
same time, the availability of such information is neces-
sary for technology management aimed at a significant 
increase in the yield of these crops. The problem of as-
sessing the parameters of the biomass of root crops can 
be solved in two significantly different directions. The 
first of them implies a significant change in the techni-
cal base of remote sensing due to the involvement of 
radar (RLS) sensing tools. They allow assessing the 
parameters of the physical state of the soil environment 
and, on their basis, setting and solving the problem of 
assessing the parameters of root crop biomass. The dif-
ficulties in implementing this direction are associated 
with the weak development of radar sensing tools on 
satellite and air platforms. The results of radar probing 
of soils with root crops are also insufficiently studied. 
The second direction is associated with the further de-
velopment of the methodology of classical assessment 
of the state of biomass and soil environment, in which 
mathematical models play a leading role. This approach 
is considered in this paper, where the problem of as-
sessing the parameters of sugar beet biomass is solved.

2. Development of Methods for 
Using Remote Sensing of the 
Earth in Agriculture

Methods for using remote sensing data in agri-
culture can be divided into two main areas. These are 
the assessment of non-quantitative parameters of the 
state of the soil and vegetation cover and the assess-
ment of quantitative parameters of crops and the soil 
environment. The first of these areas has currently 
received much greater development than the second. 
Its development followed a simple and obvious path. 
For this, combinations of reflection parameters of pre-
selected channels were used. Such combinations were 
called indices, and the so-called index space was built 
on them. In this space, images were built in each pixel, 
according to which attempts were made to isolate the 
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object under study and assess its condition. In this case, 
the spectral indices used to assess the state of vegeta-
tion received the generally accepted name of vegetation 
indices (VI) [10–21].

In essence, the VI is a dimensionless scalar indica-
tor reflecting the state of vegetation on a given surface 
area that corresponds to a pixel of the image. The num-
ber of such indices has grown rapidly and currently 
more than 200 variants have been obtained. No scien-
tific and methodological basis was developed for their 
formation, and they were selected empirically. For this 
purpose, the spectrum sections most correlated with 
the corresponding physical parameters and properties 
of the studied object were selected. Most often, the two 
most stable sections of the plant reflectance spectra 
were selected for these purposes. It was found that the 
red zone of the spectrum (620–750 nm) accounts for 
the maximum absorption of solar radiation by chloro-
phyll, and the near infrared zone (750–1300 nm) for 
the maximum reflection of energy by the cellular struc-
ture of the leaf. At the same time, photosynthetic activ-
ity is manifested by greater reflection parameters in the 
near infrared region compared to the red region. This 
allows using the ratio of the reflection parameters in 
these areas and thus ensuring high distinguishability of 
the plant against the background of other elements of 
the soil and vegetation cover. This type of index is used 
to compile vegetation maps, which highlight areas not 
covered by vegetation.

Currently, the most widely used is the NDVI (Nor-
malized Difference Vegetation Index), which was pro-
posed by B.J. Rose [22]. Since its inception, it has most 
often been used to assess the quantitative parameters 
of the soil and vegetation cover. However, such attempts 
have most often been unsuccessful. The reasons for 
such failures are analyzed below. At the same time, it 
should be noted that this index has served as an effec-
tive indicator in detecting various types of defects and 
problem areas of the soil and vegetation cover. Given 
the lack of dimension in the NDVI index, the identified 
problem areas are conveniently displayed on maps in 
shades of different colors. At the same time, any vegeta-
tion indices do not reflect the quantitative indicators of 
the soil and vegetation cover, and their values largely 

depend on the shooting conditions and the characteris-
tics of the equipment used. Therefore, they reflect only 
the relative properties of the vegetation cover, which is 
typical for indicators of any physical nature. Analysis 
of the results of using various spectral indices and the 
rapid growth in their number shows that to date a uni-
fied scientific and methodological approach to their for-
mation has not yet been developed. This position does 
not allow to justify the emergence of new indices and 
analyze the efficiency of their use. The most unsuccess-
ful by many criteria are attempts to use indices of vari-
ous types to assess the quantitative parameters of the 
vegetation cover and biomass of agricultural crops. An 
analysis of a large number of works in this area showed 
that attempts to assess the quantitative parameters of 
the soil and vegetation cover based on indices are not 
strictly scientific, since they do not meet the require-
ments of modern information theory.

Thus, all indices are formed by the ratio of the 
sums or differences of the reflection parameters in the 
selected spectral ranges to their products. As a result 
of such operations, dimensionless scalar quantities are 
obtained, often normalized to unity and having posi-
tive and negative signs, depending on the ratio of the 
selected reflection parameters. It is impossible to esti-
mate quantitative indicators of vegetation and soil cov-
ers by a dimensionless scalar indicator, due to the fact 
that restoring physical quantities from a dimensionless 
indicator contradicts modern information theory. 

Modern information theory of assessment indi-
cates that to assess quantitative indicators of any physi-
cal nature, a mathematical model of both the object of 
assessment itself and a model of the relationship of the 
reflection parameters from the assessed indicators is 
necessary [9]. The assessment procedure requires for 
its implementation a certain ratio between the sizes of 
the vector of the estimated parameters and the vector 
of the spectral channels of remote sensing. Any scalar 
indices representing combinations of spectral channels 
do not meet such requirements.

Analyzing the background of the use of remote 
sensing data in agriculture, one should pay attention 
to a large review article [23]. It analyzes the scientific 
literature for the period from 2000 to 2019. Particular 
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attention in this analysis was paid to the use of remote 
sensing technologies in agriculture at all stages of pro-
duction. This analysis was aimed at improving the sci-
entific understanding of the potential of remote sens-
ing.

Thus, if at the beginning of its development, the 
attention of researchers was focused on monitoring the 
physical parameters of soils and plant diseases, then 
recently the number of works on information support 
for management decisions at all stages of agricultural 
production has noticeably increased. At the same time, 
the authors did not touch upon the methods on which 
previous studies were based, and did not give compre-
hensive recommendations on how to use remote sens-
ing data in the best possible way. The authors focused 
on the characteristics of the types and platforms of re-
mote sensing sensors.

Conducting an analysis of the information and 
technical base of remote sensing, the authors paid spe-
cial attention to the possibility of assessing the yield 
of agricultural crops using remote sensing data. At the 
same time, the authors’ remark that in order to obtain 
such an assessment, it is necessary to attract additional 
information on influencing factors and introduce em-
pirical or mechanistic models is very important.

The authors’ conclusion is important, indicating 
that the use of remote sensing provides a timely and 
non-destructive approach to identifying, quantifying 
and mapping stresses in agricultural crops. Despite the 
very large volume of analyzed sources, the authors did 
not touch upon the scientific and methodological foun-
dations of the problem of assessing the quantitative 
parameters of the state of agricultural crops based on 
remote sensing data. At the same time, it can be argued 
that this work is in many ways a prologue to solving 
this problem.

According to the authors, four methodological cat-
egories are mainly used to solve this problem today:

1. Parametric regression methods. Here, the esti-
mated quantitative parameter is associated with spec-
tral indices by a regression model, most often linear.

2. Nonparametric regression methods or con-
trolled data methods. Here, the regression model direct-
ly links the specified spectral data with the estimated 

variable. Unlike parametric regression methods, here 
it is necessary to make an implicit choice regarding the 
spectral indices and the fitting function. Nonparametric 
methods are divided into linear and nonlinear regres-
sion methods.

3. Methods of inversion of physical models. These 
are physically based algorithms that reflect physical 
laws that reflect cause-and-effect relationships between 
physical variables. 

4. Hybrid regression methods. The hybrid method 
combines elements of nonparametric regression and 
physically based models.

The boundaries of the above methods are not 
clearly defined, since spectral indices are used as input 
variables for both parametric and nonparametric meth-
ods.

Most of the above methods are not intended for 
estimating quantitative parameters of vegetation cover. 
This is due to the fact that regression models of any 
kind are characterized by a high degree of parameter 
uncertainty, which entails large errors in estimating 
quantitative parameters, often exceeding 50%.

Higher accuracy can be achieved using nonlin-
ear nonparametric methods. This is achieved by using 
probabilistic approaches such as Gaussian process 
regression. Hybrid regression methods based on com-
bining regression models with a machine learning algo-
rithm can overcome the problem of spectral informa-
tion processing speed.

3. Materials and Methods

3.1. Mathematical Models of the Object of 
Assessment

When choosing a mathematical model of the dy-
namics of root crop biomass, the following features 
should be taken into account.

The growth of leaves and roots are closely interre-
lated, but the dynamics (course) of the increase in these 
components of biomass during the growing season is 
not the same. Thus, in the second half of the growing 
season, the growth rate of tops can significantly lag 
behind the growth rate of roots. At the beginning of the 
growing season, there is an intensive growth of the leaf 



44

apparatus and the feeding root system. Later, in July-
August, root crops grow more intensively.

In this regard, at the beginning of the growing 
season, the mass of leaves is several times greater, and 
by the end of the growing season, on the contrary, the 
mass of roots exceeds the mass of tops. By harvesting, 
leaves make up 1/3–1/2 of the root crop harvest.

It has been established that the more leaf surface 
per unit of root crop mass at the beginning of the grow-
ing season, the higher the mass of the root crop of such 
a plant by the time of harvesting, i.e., the higher the 
yield. Therefore, it is necessary to do everything so that 
the plants have optimal, but not excessively developed 
tops throughout the growing season. The mass of leaves 
usually reaches its maximum by August and then grad-
ually decreases, while the growth of the root crop and 
the accumulation of sugar in it continue continuously 
until harvesting. Figure 1 shows the growth process of 
sugar beet plants, where the development phases differ 
only in the number (density) of leaves, i.e. the density 
of the above-ground biomass.

Figure 1. Phenophases of sugar beet development.

In Figure 1, individual phenophases of crop de-
velopment differ in the number of leaves, from 2 leaves 
on the 12th day, to complete closure of the tops on the 
40th day and full maturity of root crops on the 50th 
day.

The density of the above-ground biomass always 
corresponds to a certain biomass of root crops. The 
model must take into account the influence of all the 
main factors of growth and development, which include 
nutrients and external meteorological factors, as well 
as the features of vegetation listed above. Among all the 
possible parameters of the state of the biomass of root 
crops, we distinguish the total and raw biomass of the 
above-ground part and the mass of root crops. In this 
case, the model of the dynamics of these parameters 
can be presented in expanded form
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or in symbolic vector-matrix form
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where: t is the vegetation period, days; x1, x2, x3 are the 
average field-area value of the total biomass of crop 
leaves (tops), raw above-ground biomass of crop leaves 
(tops), total biomass of crop root crops, cwt·ha–1; dN, 
dK, dP are the average field-area rates of foliar applica-
tion of nitrogen, potassium and phosphorus fertilizers, 
respectively, kg·ha–1; vN, vK, vP is the average field-area 
content of the active substance, respectively, nitrogen, 
potassium and phosphorus in the soil, kg ha–1, v4 is the 
average field-area content of soil moisture, mm; φ(t–t0) 
is a vector whose components are a linear and a quad-
ratic function of the growing season, which take into ac-
count the different rates of growth of the tops and root 
crops; t0 is the moment of the growing season, from 
which the biomasses of the tops and root crops grow at 
different rates; f1 is the average daily air temperature, 
℃; f2 is the average daily solar radiation, W m–2, f3 is 
the average daily precipitation intensity, mm; ζ1, ζ2, ζ3, 
ζ4 are random modeling errors that take into account 
unobservable and unaccounted for factors, which are 
random processes with zero means and variances σ2

1, 
σ2

2, σ2
3, σ2

4; a11–a44 are the parameters of the dynamic 
matrix of model (1), (2); b11–b23 are the parameters of 
the control transfer matrix of model (1), (2); k31–k44 – 
parameters of the matrix of the relationship between 
the parameters of the state of the crop biomass and the 
soil parameters; c11–c43 – parameters of the matrix of 
the transfer of climatic disturbances of model (1), (2).

Model (1), (2) is the main block of parameters of 
the state of the root crop. In addition to this block, it is 
necessary to introduce into consideration the model of 
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parameters of the state of the soil environment (SE). 
The expanded form of this model has the following 
form [4,5]:
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or compact symbolic form

 V = AV  + BD  + C  −MX  (4) (4)

where DN, DK, DP, D4 are the average application rates of 
nitrogen, potassium, phosphorus, kg × m2, and irriga-
tion rates, mm, for the field area.

3.2. Estimation of Sugar Beet Biomass Pa-
rameters

Estimation of crop biomass parameters involves 
a comparison of estimated and actually observed pa-
rameters. When using remote sensing data, reflection 
parameters are observed in the used ranges of techni-
cal sensing tools. Such a comparison is only possible 
with the introduction of a remote sensing model. The 
physical basis of such models is the laws of reflection 
from the soil and vegetation cover, which have an expo-
nential form [10,24]. When expanding exponential compo-
nents into power series, such a model has the following 
form [3,5].

1
2
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3
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3 (5)

 Z P,X = P W X +   (6)

where: ZT = [z1 z2] is the vector of reflection parameters 
for the spatial coordinate in the visible range (400–700 
nm) (z1) and in the near infrared range (750–950 nm) 
(z2); 

P =
01 11 12 13 14 15 16
02 21 22 23 24 25 26

 i s  the 

matrix of model parameters, is a W(X) = [1   x1(y, h)   
x2(y, h)   x1

2(y, h)   x2
2(y, h)   x1

3(y, h)   x2
3(y, h)] vector func-

tion, where the arguments are the parameters of the 
crop state, T = 1 2  is the vector of errors in mod-
eling remote sensing with zero mean and the covari-
ance matrix Kz.

The presence of the remote sensing model (4), 
(5) allows us to form estimates of the reflection param-
eters in the spectral ranges used, compare them with 
real remote sensing data and, based on such a compari-
son, form estimates of the biomass parameters in real 
time. Such a procedure for restoring the full vector of 
biomass state parameters (ground and underground 
parts) based on remote sensing data observations is 
possible only for a system that includes models (2), (4) 
that have observability properties [25].

In simple terms, the observability property can be 
defined as the ability to determine the state vector X of 
model (1) from the vector Z of model (6) over a finite 
time interval t0–t1 ((t0 > t1). This property is determined 
by the structure of models (2), (6).

This property is determined by the structure of 
models (2), (4). Let us introduce into consideration the 
transition matrix for model (2)

 Φ  = A Φ  ,  ∈ 0,  ,Φ 0 =  (7)

where E is the identity matrix.
The observability condition of the system (2),(4) 

has the following form

 det 0
ΦT ∂ P,X

∂X

T ∂ P,X
∂X

 ≠ 0  (8)

where det[…] is the determinant of the matrix.
The absence of zero terms in the matrices A and 

 P,X
X

 indicates that the determinant of matrix (8) is 

different from zero, i.e. the matrix is non-singular.
More simply, this condition can be interpreted 

as the absence in matrix A of columns, all elements of 
which are equal to zero.

As shown in [3–5], the classical theory of estimating 
the parameters of the state of agricultural crop biomass 
is based on the integration of a priori information gen-
erated by a mathematical model of biomass dynamics 
and a posteriori information contained in remote sens-
ing data.
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In this case, the estimation procedure for system 
(2), (6) has the following form [25,26].

 

X  = AX  + DV  + CF  + R
∂WT P, X

∂X

K
−1   −WT P, X R

⋅
 = R  AT + AR  −

R  ∂WT P,X
∂

K
−1 ∂W P,X

∂X
PTR

 (9)

matrices of estimation errors, having a dimension 
corresponding to the vectors of biomass parameters of 
model (2).

The implementation of the estimation algorithm 
(9) faces the problem of estimating the vector of pa-
rameters of the state of the soil environment, which is 
an important component of the algorithm. Due to the 
fact that the parameters of the state of the soil environ-
ment in turn depend on the parameters of the state of 
the crop due to the removal of nutrients and moisture, 
such a connected estimation can be implemented ac-
cording to the following computational scheme:

Step 0. The initial value of the vector of param-
eters of the state of the soil environment is set con-
stant for the entire considered interphase period V0, 

iod V0,  ∈ −1, , the cyclic variable i = 0 is set.
Step 1. The system (8) of the estimation algorithm is solved, an intermediate estimate of the

vector of parameters of the state of the crop is formed X  .
Step 2. The current value of the efficiency criterion of the general estimation procedure is

calculated
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4. Results

4.1.	 Identification	of	Mathematical	Models	
and Estimation of Biomass Param-
eters

The accuracy and reliability of assessment meth-
ods based on mathematical models largely depend on 
the quality of the models themselves. Therefore, the 
process of their identification based on real data is of 
particular importance. For these purposes, the fields 
of the experimental biopolygon of the Agrophysical 
Institute (St. Petersburg, Russia) were used during 
2021–2024. 10–12 small plots of 10–15 m2 each were 
selected on the agricultural field. From these plots, 
employees of the analytical laboratory of the institute 
simultaneously collected samples of plant biomass of 
the above-ground and underground parts, as well as 
soil samples with subsequent analysis of the content of 
nutrients and moisture in it. In parallel with sampling 
using UAVs, remote sensing of the entire field area, 
including control plots, was carried out. Sessions to 
obtain information about the real state of the object 
of assessment were carried out every three days. At 
the preliminary stage of the research, such procedures 
were purely identification in nature, and in real time 
they are designed to adapt the system to real changes 
in the parameters of mathematical models. Without 
performing such procedures, it is impossible to reliably 
assess the quantitative indicators of crops of any crops. 
Identification algorithms, due to their complexity and 
many possible options, deserve separate consideration 
and are not discussed in detail here. However, the main 
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features of such algorithms that were used in this work 
should be disclosed. This will ensure the repeatability 
of the results by other researchers. In connection with 
the use of two types of mathematical models for their 
identification based on experimental data, two types of 
algorithms were used.

For the static model of remote sensing (5), (6), 
one of the variants of the least squares method (LSM) is 
used [27]
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in which the variables of the algorithm are related 
to the variables of the model (5): 

- output variables, which are components of the 
vector Y: y1 = z1, y2 = z2;

- input variables, which are components of the 
vector W: w1 = 1, w2 = x1, w3 = x2, w = x21, w = x22, w = x31, 
w = x32.

The estimated parameters of the model (5), which 
are components of the matrix P, are designated through 
the variables of the algorithm (10) as follows:

p1 = p01, p2 = p11, p3 = p12, p4 = p13, p5 = p14, p6 = p15, 
p7 = p16, p8 = p02, p9 = p21, p10 = p22, p11 = p23, p12 = p24, p13 = 
p25, p14 = p26;

R, G, E, z are the intermediate variables of the algo-
rithm; k is the iteration variable of the algorithm, which 
coincides with the serial number of the experimental 
data record used to identify the model (5).

More complex in its algorithmic approach is 
the identification of dynamic models of the form (2). 
Here, the general principles of control theory are used. 
They allow us to somewhat expand the identification 
capabilities by including in the estimation algorithm, 
in addition to the parameters of the dynamic model, 
the initial conditions for models (2), which are often a 
priori unknown. At the same time, the choice of initial 
conditions for any dynamic model can have a decisive 
effect on the accuracy of identification.

To proceed to the identification algorithm, it is 

necessary to introduce a common vector of model 
parameters P. For this, the parameters of models (2) 
which are components of the matrices, are sequentially 
designated row by row as components of the vector P. 
In addition, it is necessary to introduce a criterion for 
the quality of identification
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where Y(t) is the vector of experimental values of the 
variable models, X, t is the daily time belonging to the 
interval (0,T).

To find the minimum of the quality criterion (11) 
for the vector of unknown parameters P and the initial 
conditions X0, it is necessary to formulate and solve a 
two-point boundary value problem (TBP) [3]. To do this, 
it is necessary to introduce the Hamiltonian of the sys-
tem:
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where Ψ is the vector of conjugate variables, 
Φ(X,F,P,t) is the operator of the mathematical model (2).

Based on the expressions for the Hamiltonian of 
the system, it is possible to obtain relationships be-
tween all states and parameters of the model (2)
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The sequence of operations for estimating un-
known parameters and initial conditions of the model 
is as follows.

Step 1. When introducing a cyclic variable j, the 
initial values of the parameter vector Pj0, Xj0 are speci-
fied.

Step 2. The model Equation (2) Xj(t) is solved.
Step 3. According to relations (13)  the variables 

Ψj(0), Гj(0) are determined.
Step 4. The optimal step length Δ* is determined 

in the procedure Pj+1 = Pj–Δ*jГj(0) as a one-factor mini-
mization of the quality criterion.

Step 5. With the optimal step length, a new value 
of the parameter vector Pj+1 = Pj-Δ*jГj(0) and initial con-
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ditions X0,j+1 = X0,j – Δ*jΨj(0) are obtained.
Step 6. Solve the equation for the model (2).
Step 7. Find new gradients Ψj(0), Гj(0).
Step 8. Determine the direction of the conjugate 

gradients

 +1 =− Γ 0 +1 +
Γ 0 +1

2

 0
2  (14)

at j = 1,  = Γ 0 0;

+1 =−Ψ 0 +1 +
Ψ 0 +1

2

 0
2  (15)

at j = 1,  = − Ψ 0 0;

 (14)

at j = 1, 

+1 =− Γ 0 +1 +
Γ 0 +1

2

 0
2  (14)

at j = 1,  = Γ 0 0;

+1 =−Ψ 0 +1 +
Ψ 0 +1

2

 0
2  (15)

at j = 1,  = − Ψ 0 0;

;

 

+1 =− Γ 0 +1 +
Γ 0 +1

2

 0
2  (14)

at j = 1,  = Γ 0 0;

+1 =−Ψ 0 +1 +
Ψ 0 +1

2

 0
2  (15)

at j = 1,  = − Ψ 0 0;

  (15)

at j = 1, 

+1 =− Γ 0 +1 +
Γ 0 +1

2

 0
2  (14)

at j = 1,  = Γ 0 0;

+1 =−Ψ 0 +1 +
Ψ 0 +1

2

 0
2  (15)

at j = 1,  = − Ψ 0 0;;
return to step 4.

Figure 2 shows the results of identification of the 
mathematical model of remote sensing, and Figure 3 
shows the process of identification of the model of bio-
mass dynamics up to the moment of time when the rate 
of increase of the biomass of root crops lagged behind 
the rate of increase of the biomass of tops.

Figure 4 shows the process of identifying the bio-
mass dynamics model after the moment of time when 
the rate of increase in root crop biomass outpaced the 
rate of increase in tops biomass. As can be seen from 
the presented graphs, the mathematical models used 
together with the identification algorithms have suf-
ficient accuracy (±10%) and stability for constructing 
evaluation algorithms.

Figure 2. The process of identifying the remote sensing model.

Figure 3. The process of identifying the model of beet biomass dynamics in the area of the lag in the rate of increase of root 
crop biomass from the biomass of tops.
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4.2. Evaluation of Beet Biomass Param-
eters

It was carried out according to the evaluation al-
gorithm (9) based on real data from remote sensing of 

the Earth.
Figure 5 shows the process of estimating the pa-

rameters of beet biomass over the entire vegetation in-
terval. The estimation error, including the mass of root 
crops, does not exceed 10%.

Figure 4. The process of identifying the model of beet biomass dynamics in the area of advance of the rate of increase of root 
crop biomass and tops biomass.

Figure 5. The process of assessing the parameters of beet biomass throughout the entire vegetation period.
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5. Discussion

The development of methods for estimating the 
mass parameters of agricultural crops in the direction 
of root crops is an important turning point in the gen-
eral theory of using Earth remote sensing data in agri-
culture. The extension of these methods to crops with a 
similar biomass structure, carrots, beets and radishes, 
will not encounter serious difficulties. Here, math-
ematical models with a similar structure will be used, 
the differences will affect only the parameters of the 
models themselves. The bottleneck of the estimation 
methods based on the use of mathematical models is 
the accuracy of identifying such models. The problem is 
that the identification of such models is carried out by 
periodically sampling plant biomass and soil samples 
from sample points of the field area. The accuracy of 
model identification largely depends on the number of 
sampling points by area and the frequency of sampling 
over time. Therefore, additional research is required to 
optimize the number of sampling points and their fre-
quency during the growing season of the crop.

Difficulties in implementing the method will arise 
when estimating the biomass of potatoes. This is due 
to the fact that this crop has a complex morphological 
structure of biomass and several phenophases of crop 
development. A more complex dynamic model of po-
tato crop biomass dynamics should be substantiated 
here, taking into account the change in morphological 
structure over time. Naturally, this will also lead to a 
more complex structure of the algorithm for estimating 
potato crop mass parameters.

6. Conclusions

A classical methodology for assessing quantitative 
parameters of agricultural crop biomass is being devel-
oped, based on the use of mathematical models. In this 
paper, this development is extended to assessing the 
parameters of root crop biomass for conditions when 
the root crop biomass is inaccessible to Earth remote 
sensing (ERS) tools, and the number of ERS channels 
used is less than the number of parameters being as-
sessed.

The main provisions for the development of the 

methodology are:
- the use of three mathematical models, the first of 

which is a dynamic model of root crop biomass parame-
ters, reflecting the relationship of the aboveground part 
of the biomass with the mass of root crops, as well as 
the dependence of both components on the parameters 
of the soil environment and meteorological factors;

- the second is a model of the relationship of ERS 
parameters, reflecting the relationship of the reflec-
tance parameters in the red and near infrared optical 
range with the parameters of the aboveground part of 
the root crop (ERS model);

- the third is a model of the dynamics of soil en-
vironment parameters, reflecting the removal of nutri-
ents and moisture by the biomass of the root crop;

- formulation of the requirement for observability 
of the dynamic model for the selected remote sensing 
channels, as a possibility of assessing all components of 
the root crop biomass;

- ensuring stability and reducing errors in assess-
ing the parameters of the root crop biomass and soil 
environment parameters, the assessment algorithm is 
closed through a remote sensing model with real re-
mote sensing data.

The proposed methodology and software for its 
practical use does not require special training of per-
sonnel and can be applied to other root crops, such as 
carrots and potatoes.
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