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ABSTRACT
Food security remains a critical global concern. The rising world population has led to a continuous increase 

in foGlobal food security relies significantly on the agricultural sector, with tomatoes being a vital dietary compo-
nent worldwide. However, various diseases pose an ongoing threat to tomato crop yield and quality. Prompt and 
accurate identification of these diseases is crucial for sustainable agriculture and effective management practices. 
This study introduces an innovative approach using Convolutional Neural Networks (CNNs) to enable rapid de-
tection and classification of tomato leaf diseases through image analysis. The system utilizes a high-resolution 
dataset comprising images of tomato leaves showing symptoms of common diseases such as bacterial wilt, early 
blight, and late blight. Before training, the dataset undergoes preprocessing to enhance image clarity and elimi-
nate noise, followed by division into training and testing subsets. A custom CNN architecture is developed and 
trained to automatically learn and extract hierarchical features from the images. Additionally, transfer learning 
methods are explored to improve the model’s efficiency and generalization. The model’s performance is evalu-
ated using various metrics including accuracy, precision, recall, and F1 score. Results indicate that the CNN model 
demonstrates high accuracy and robustness in early disease detection. This approach holds substantial potential 
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1.  Introduction

Growing tomatoes is a vital part of agriculture 
worldwide, providing crucial nutrients to a wide range 
of people. However, a recurring danger to the sustain-
able production of tomatoes is the emergence of several 
diseases that impair the health and productivity of to-
mato plants. Early diagnosis and accurate classification 
of these diseases are crucial for the timely and efficient 
implementation of disease management measures, 
which in turn guarantee the health and productivity of 
tomato crops.

Recent advancements in machine learning and 
computer vision have led to promising findings con-
cerning the automated assessment of plant diseases 
using photographic images, particularly through the 
use of convolutional neural networks [1, 2]. This work 
focuses on the using CNNs. Through the use of this 
technology, we want to develop a dependable and ef-
ficient system that can accurately identify common 
tomato leaf diseases, such as bacterial wilt, early blight, 
and late blight, in their early stages.

The significance of early detection cannot be over 
stated, as it allows for prompt intervention, minimizing 
the spread of diseases and potential yield losses. In this 
study, we will provide an overview of the current chal-
lenges in tomato disease management, the limitations 
of traditional methods, and the potential benefits of 
integrating CNNs for early detection and classification 
as in previous literartue .By tackling these issues, our 
study hopes to support the creation of technologically 
advanced, environmentally friendly solutions for the 
agriculture industry, thereby assuring the food security 
of the world and the lives of farmers.

Tomatoes are a staple crop in global agriculture, 
playing a crucial role in providing essential nutrients to 

millions of people worldwide. However, the sustainable 
cultivation of tomatoes faces continuous threats from 
various foliar diseases that significantly impact plant 
health, yield, and overall crop quality. These diseases, 
if left undetected or mismanaged, can lead to severe 
economic losses for farmers and disrupt food supply 
chains. Therefore, the early diagnosis and precise clas-
sification of tomato plant diseases are imperative to 
ensure timely intervention and effective disease man-
agement strategies [3, 4].

Traditional methods of disease detection and clas-
sification rely heavily on manual inspection by experts, 
which can be time-consuming, subjective, and often 
impractical for large- scale farming operations. These 
conventional approaches require significant expertise 
and may not always provide timely results, increasing 
the likelihood of disease spread and irreversible crop 
damage. Furthermore, visual symptoms of different dis-
eases can appear similar, making it challenging for even 
trained professionals to accurately distinguish between 
them. This calls for automated, precise, and scalable so-
lutions that can enhance the efficiency and accuracy of 
disease detection in tomato plants.

CNNs can effectively learn and extract complex 
features from images, making them particularly well- 
suited for detecting and categorizing plant diseases 
based on leaf symptoms. With their strong capabilities 
in pattern recognition and feature extraction, CNNs 
have demonstrated significant potential in agricultural 
settings, providing accurate and scalable solutions for 
real-time disease monitoring. This study focuses on lev-
eraging CNNs for the early detection and classification 
of tomato leaf diseases, specifically targeting three com-
mon and economically significant infections: bacterial 
wilt, early blight, and late blight [5]. By implementing a 

for practical implementation, offering farmers and agricultural professionals a powerful tool for timely and pre-
cise disease management. By enabling targeted responses and supporting precision agriculture, the proposed 
method represents a significant advancement in integrating modern technology with sustainable farming, ulti-
mately contributing to agricultural stability and global food security.
Keywords: Importing Libraries and Datasets; Tomato Disease Classification; Convolutional Neural Networks 
(CNN); Transfer Learning; Data Augmentation; Pre-Processing and Feature Extraction; Testing and Training; Pre-
vention;  Recommendation of Pesticides
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CNN-based system, our goal is to develop a reliable, ef-
ficient, and user-friendly model that can identify these 
diseases at an early stage, enabling proactive disease 
management. Early detection is particularly critical as 
it allows farmers and agricultural professionals to take 
swift preventive measures, thereby limiting disease 
spread, reducing yield losses, and optimizing the use of 
pesticides and other control measures.

In this content, the present difficulties in manag-
ing tomato diseases, the shortcomings of conventional 
detection techniques, and the benefits of incorporating 
CNNs into the diagnosis of agricultural diseases. By ad-
dressing these challenges, this research aims to contrib-
ute to the development of technologically advanced and 
environmentally sustainable solutions for the agricul-
tural industry. Ultimately, the findings of this study hold 
the potential to enhance global food security, improve 
farming efficiency, and support the livelihoods of farm-
ers by offering an intelligent, automated, and accessible 
disease detection system.

2. Related Work

Scientists have recently focused their attention on 
CNNs, because of their potential uses in the early iden-
tification and categorization of plant diseases, particularly 
those impacting tomato plants. As stated in the works 
of Mina Farmanbar, Önsen Toygar and Shahram Taheri,  
et al. [4, 5], this part examines pertinent literature that 
has investigated analogous techniques, offering insights 
into methodology, difficulties, and accomplishments in 
the field of automated plant disease diagnosis.

Deep Learning for the Identification of Plant Dis-
ease: Several research have demonstrated how well 
deep learning methods—in particular, CNNs—work to 
automate the diagnosis of plant diseases. Researchers 
have employed various CNN architectures to analyze 
leaf images and effectively distinguish between healthy 
and diseased plants. The works of Andrew Kwok-Fai 
Lui, Yin-Hei Chan and Sue Han Lee, et al. [6, 7] demon-
strated notable accuracy in the classification of multi-
ple plant diseases, laying the foundation for applying 
similar methodologies to tomato leaf diseases. Transfer 
Learning in Plant Pathology: Plant disease identification 
has benefited from the application of transfer learning, 

a method in which previously trained models are modi-
fied for particular applications [8, 9]. By fine-tuning CNNs 
on plant disease datasets, researchers have achieved 
improved performance even with limited labeled data. 
The work of Mohit Agarwal, Xiao Chen and Guoxiong 
Zhou, et al. [10, 11] showcased the efficacy of transfer 
learning in identifying tomato diseases, emphasizing 
the potential for leveraging pre-trained models to en-
hance classification accuracy.

2.1. Image Datasets and Annotation Tech-
niques

The availability of well-curated image datasets is 
crucial for training robust CNN models. Recent stud-
ies, such as that by Patrick Wspanialy, Medhat Moussa 
and Jones, C.D., et al. [12, 13], have emphasized the impor-
tance of large and diverse datasets for training models 
capable of recognizing various tomato leaf diseases. 
Additionally, innovative annotation techniques, as ex-
plored by the works of Díbio L. Borges, Samuel TC de 
M. Guedes and Jayme Garcia Arnal Barbedo, et al. [14, 15],  
have played a role in improving dataset quality and 
model generalization. Integration of IoT and CNNs for 
Real-Time Monitoring: Some researchers have explored 
the integration of Internet of Things (IoT) devices with 
CNN-based models for real-time monitoring of plant 
diseases. Christian Szegedy, Wei Liu and Vincent Van-
houcke, et al. [16, 17] implemented a system that combines 
CNNs with sensors to detect and classify tomato leaf 
diseases, providing a dynamic and responsive approach 
to disease management.

2.2. Challenges and Future Directions

While the application of CNNs in plant disease de-
tection has shown promising results, challenges such 
as limited labeled data, model interpretability, and 
robustness to environmental variations persist. Chris-
tian Szegedy, Sergey Ioffe and Kaiming He, et al. [18, 19]  
have discussed these challenges and proposed avenues 
for future research, emphasizing the need for address-
ing practical considerations in deploying CNN-based 
solutions in agricultural settings. In conclusion, a sub-
stantial body of research highlights CNNs’ potential for 



18

Intelligent Agriculture | Volume 01 | Issue 01 | May 2025

automating the early identification and categorization of 
tomato leaf diseases, such as those found in the works 
of Kaiming He, Xiangyu Zhang and Karen Simonyan,  
et al. [20, 21]. Our study seeks to further the develop-
ment of these systems for the benefit of sustainable 
agriculture and global food security, drawing on the ap-
proaches and insights from the previous studies [22, 23]. 
Absolutely! Creating a (CNN) architecture for the early 
detection and classification of tomato leaf diseases re-
quires customizing the model to efficiently extract fea-
tures from leaf images, as demonstrated in the work of 
François Chollet [24, 25]. Below is a proposed CNN model 
for this task:

The architecture of the CNN model for classifying 
plant diseases is explained extensively in the Table 1, 
which also emphasizes the type of layer, output dimen-
sions, and the total number of trainable parameters. 
The model starts with a Convolutional layer (Conv2D) 
that extracts low-level characteristics like edges and 
textures using 64 3x3 filters. A MaxPooling2D layer, 
which reduces spatial dimensions while preserving 
important information, comes next. In order to refine 
feature extraction, the second Conv2D layer raises the 
filter count to 128 and is once more followed by a pool-
ing layer to avoid overfitting. The third Conv2D layer 
further expands to 256 filters, enhancing feature learn-
ing by capturing complex patterns in plant leaf images.

Table 1. Classification of CNN Model.

Layer (Type) Shape of Output Parameters Count

Convolution Layer 1 (None, 64, 64, 64) 1,792

Max Pooling Layer 1 (None, 32, 32, 64) 0

Convolution Layer 2 (None, 32, 32, 128) 73,856

Max Pooling Layer 2 (None, 16, 16, 128) 0

Convolution Layer 3 (None, 16, 16, 256) 295,168

Max Pooling Layer 3 (None, 8, 8, 256) 0

Flatten Layer (None, 16,384) 0

Fully Connected Layer 1 (None, 512) 8,389,120

Dropout Layer 1 (None, 512) 0

Fully Connected Layer 2 (None, 256) 131,328

Dropout Layer 2 (None, 256) 0

Final Output Layer
(None, number_of_
classes)

17

After the convolutional and pooling layers, a Flat-
ten layer converts the extracted features into a one-di-
mensional vector of size 16,384, which serves as input 

to fully connected (Dense) layers. The first Dense layer 
has 512 neurons, making it the most parameter-heavy 
layer with 8,389,120 parameters, followed by another 
Dense layer with 256 neurons, refining high-level fea-
ture representations. Dropout layers are incorporated 
after each dense layer to prevent overfitting and en-
hance model generalization.

This suggested architecture consists of the follow-
ing layers: Conv2D Layers: Convolutional operations 
are carried out by these layers to extract features from 
input pictures. As we get deeper into the network, there 
are more filters.

MaxPooling2D Layers: These layers help to focus 
on the most significant characteristics and increase 
computing efficiency by reducing the spatial dimen-
sions of the feature maps.

Flatten Layer: To prepare the data for the fully 
linked layers, this layer transforms the 3D tensor out-
put into a 1D tensor.

Dense Layers: Fully linked layers that use the re-
trieved characteristics to conduct categorization. Neu-
ron count declines as one approaches the output layer.

Dropout Layers: These layers introduce a regu-
larization technique to prevent overfitting by randomly 
dropping a specified fraction of neurons during train-
ing.

Output Layer: The last layer for multiclass classifi-
cation uses a SoftMax activation function, in which the 
number of neurons is matched to the number of classes 
(disease kinds).

The input size, number of classes, and other hy-
perparameters may need adjustments based on your 
specific dataset and requirements. Additionally, training 
this model would require a labeled dataset of tomato 
leaf images with different disease classes [26, 27].

3. Materials and Methods

3.1. Convolutional Neural Network

Tomato crops are susceptible to various foliar 
pathogens, which can significantly impact yield and 
quality. Early detection and accurate classification of 
these pathogens are essential for timely intervention 
and effective disease management. This article presents 
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a method for automatic detection using a convolutional 
neural network (CNN) and the classification of tomato 
foliar pathogens from digital images.

The comprehensive dataset comprises high-
resolution images of tomato leaves infected with dif-
ferent pathogens, including bacterial, fungal, and viral 
infections. Each image in the dataset is annotated with 
the corresponding pathogen class label, enabling super-
vised learning of the CNN model.

As depicted in Figure 1, the CNN structure in-
cludes multiple convolution layers, which are followed 
by max-pooling operations and fully connected layers. 
Leverage transfer learning is carried out by fine-tuning 
a pre-trained CNN model on a large-scale image dataset 
to expedite convergence and improve generalization. In 
addition, data augmentation methods like as rotation, 
flipping, and scaling are used to increase the size of the 
training dataset and improve the model’s ability to han-
dle different variations.

Figure 1. Proposed Workflow.

The model demonstrates high sensitivity in de-
tecting early signs of infection, enabling proactive dis-
ease management strategies. Furthermore, it exhibits 
competitive performance compared to traditional 
methods and expert manual inspection.

The findings highlight the potential of CNNs in 
revolutionizing the field of plant pathology by provid-
ing farmers and agronomists with an automated and 
efficient tool for disease diagnosis and management. By 
deploying the CNN model in real-world agricultural set-
tings, integrating additional sensor data for enhanced 
disease monitoring, and exploring transfer learning 
techniques to adapt the model to new pathogen species 

and crop varieties.

3.2. Holdout Validation

The PlantVillage dataset, which is freely available 
and commonly used for plant disease classification 
tasks, was employed in this work. The dataset was di-
vided into two sets: training and testing. Training took 
up 80% of the data, while testing took 20%. This simple 
yet effective technique enables a fast assessment of the 
model’s generalization capabilities. To eliminate bias 
and provide a fair evaluation, stratified sampling was 
used, resulting in a representative distribution of class-
es in both the training and testing groups. The PlantVil-
lage collection contains approximately 54,000 photos 
covering 38 unique classes, including healthy and sick 
leaves from diverse plant species such as tomato, po-
tato, maize, and grape.

3.3. Cross-Validation

The k-fold cross-validation technique involves 
splitting the dataset into k subgroups and training and 
testing the model k times, testing on a new subset for 
each iteration. It lessens performance evaluation vari-
ability, which is particularly helpful for limited datasets.

It also offers a more thorough examination but de-
mands more computer power.

3.4.	 Stratified	Sampling

To avoid biases brought on by class imbalance, 
make sure that the distribution of classes in the testing 
set and the training set are similar. The advantage is 
that it increases performance metrics’ dependability, 
particularly for unbalanced datasets. Disease-class-
based stratified sampling is considered.

3.5. Data Augmentation during Testing

The data augmentation techniques (e.g., rotation, 
flipping) are applied to test images during evaluation, 
simulating real world variations. It enhances the mod-
el’s robustness to diverse conditions and perspectives. 
Avoiding aggressive augmentation is considered that 
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may distort images beyond realistic variations.

3.6. Performance Metrics

When assessing classification performance, make 
use of relevant measures, including recall, accuracy, 
precision, F1 score, and confusion matrix. Considering 
the specific requirements of the problem; for instance, 
in agricultural applications, minimizing false negatives 
(missing diseased plants) might be crucial.

3.7. Threshold Adjustment

Adjusting the decision threshold for classification 
based on the specific needs of disease detection. This 
can be important for balancing sensitivity and specific-
ity. Customizing the model’s output to align with prac-
tical considerations in disease management is the ad-
vantage. Demands knowledge of the trade-offs between 
false negatives and false positives can be considered.

3.8. Real-World Deployment Testing

Installing the model in the field for ongoing ob-
servation and assessing its performance in a real-world 
setting. Validating the model’s effectiveness in practical 
scenarios and providing insights into any challenges in 
deployment are the advantages. Ensuring that the mod-
el can adapt to changing environmental conditions and 
remains effective over time can be under consideration. 
When testing the CNN model for tomato leaf disease 
detection, it’s essential to document and analyze the 
results thoroughly, iteratively refining the model if nec-
essary [28]. Considering the specific characteristics of 
your dataset and the practical implications of misclas-
sifications in the context of agricultural practices is the 
advantage.

4. After the Effects of Expertization 
Precise

4.1. Disease Labeling

Domain experts contribute their specialized 
knowledge to label different disease symptoms in the 
dataset accurately. The precise annotation is crucial for 

training a CNN model to recognize subtle variations in 
leaf conditions associated with various diseases, lead-
ing to improved diagnostic accuracy.

4.2. Contextual Understanding of Disease 
Patterns

Experts bring a contextual understanding of dis-
ease patterns, growth stages, and environmental fac-
tors influencing tomato plants. The knowledge helps in 
tailoring the CNN model to consider contextual cues, 
making it more robust and adaptable to the diverse 
conditions encountered in real-world agricultural set-
tings.

4.3. Enhanced Feature Selection

Collaboration with experts aids in selecting rel-
evant features for disease identification within tomato 
leaf images. Identifying the most informative features 
ensures that the CNN model focuses on critical aspects, 
improving its efficiency and interpretability rationale. 
The precision and effectiveness of a (CNN) in identify-
ing diseases in tomato leaves largely rely on the choice 
of pertinent characteristics from the input images.

While CNNs inherently learn hierarchical features 
through their layered structure, expert collaboration 
is crucial in guiding the model toward identifying the 
most informative and diagnostically significant features. 
This ensures that the network does not focus on irrel-
evant patterns but rather captures the essential charac-
teristics necessary for precise disease classification.

Collaboration with domain experts in plant pa-
thology is essential for selecting, validating, and refin-
ing the most informative features for disease identifi-
cation within tomato leaf images. By ensuring that the 
CNN model learns meaningful and relevant patterns, 
expert-guided feature selection enhances the model’s 
accuracy, efficiency, and interpretability, ultimately 
leading to a more reliable and practical solution for 
real-world agricultural disease management.

4.4. Guidance for Data Augmentation

Experts guide the selection of realistic data aug-
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mentation techniques that mimic variations in disease 
presentation is in effect.

Realistic augmentation improves the model’s abil-
ity to handle diverse conditions, contributing to its gen-
eralization capability and robustness in rationale.

4.5. Validation of Model Outputs

Domain experts validate the accuracy of the mod-
el’s predictions based on their practical observations or 
diagnostic tools.

Expert validation adds a layer of real-world veri-
fication, instilling confidence in the model’s reliability 
and ensuring it aligns with expert knowledge.

4.6. Iterative Model Improvement

Ongoing collaboration with experts facilitates it-
erative model improvements based on continuous feed-
back and evolving disease patterns.

The dynamic nature of plant diseases requires 
a flexible approach, and expert input enables timely 
updates to the model for increased effectiveness over 
time.

4.7. Practical Implementation Consideration

Experts contribute insights into the practical im-
plications of model outputs and misclassifications in 
the agricultural context.

Understanding how model predictions impact dis-
ease management strategies helps in refining the model to 
better suit the needs of farmers and agricultural practices.

4.8. User-Centric Interface Design

Collaboration with domain experts aids in de-
signing user- friendly interfaces for end-users, such as 
farmers or agricultural practitioners.

Ensuring that the technology is accessible and 
easily interpretable by the target audience enhances 
the adoption and usability of the CNN-based system.

4.9. Model Behavior and Performance

Figure 2 illustrates the training and validation ac-

curacy graphs for the convolutional neural network (CNN) 
model that was created for the early identification and 
categorization of tomato foliar infections. The accuracy 
patterns illustrate the model’s learning process, stability, 
and generalization capabilities throughout several training 
epochs.

Both training and validation accuracy have sig-
nificantly increased in the first epochs, suggesting that 
learning proceeds quickly as the model finds significant 
patterns in the data. This Stages implies that impor-
tant features associated with tomato leaf diseases have 
been successfully recovered by the CNN. Accuracy in-
creases, albeit more slowly, as training moves into the 
early epochs, indicating that the model has improved 
and optimized its feature representations. It has been 
shown time and time again that training accuracy is 
slightly greater than validation accuracy. This indicates 
some overfitting and is a typical feature of deep learn-
ing models. The incredibly narrow gap, however, shows 
that the model is still doing well in generalization, most 
likely as a result of the application of appropriate regu-
larization strategies, including dropout, batch normali-
zation, and data augmentation.

Figure 2. Accuracy and loss plots.

It has been frequently shown that training accu-
racy is somewhat greater than validation accuracy. This 
indicates significant overfitting and is a typical feature 
of deep learning models. The extremely narrow gap, 
however, suggests that the model is still doing well in 
generalization, most likely as a result of the applica-
tion of appropriate regularization strategies, including 
dropout, batch normalization, and data augmentation.

This work significantly enhances the effectiveness 
of CNN models for early detection and classifies tomato 
leaf diseases by providing domain-specific insights, 
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validation, and iterative refinement, ultimately improv-
ing the model's practical applicability in the field of ag-
riculture [29].

5. Results

The proposed CNN model accomplished a preci-
sion of 98.64% on the test set, showing its viability in 
characterizing tomato leaf sicknesses. The model had 
the option to accurately order pictures of sound tomato 
leaves as well as those impacted by different diseases 
with high exactness. The disarray network showed that 
the model performed well in recognizing the different 
sickness classes, with the most noteworthy precision 
for early scourge (99.73%) and the least exactness for 
bug parasites (96.97%) as shown in Figure 2.

The subjective simulation outcomes of the pro-
posed (CNN) model for detecting and classifying toma-
to leaf diseases are presented in Figure 3 and Figure 4. 
Besides efficiently recognizing and categorizing affect-
ed leaves, the algorithm also delivers disease-specific 
details, including causes, symptoms, and preventive 
measures.

The classification of Septorial Leaf Spot, a fungal 
infection that leads to yellowing, wilting, and ultimately 
the shedding of leaves, is illustrated in Figure 3. In 
order to stop the spread of this disease, the model iden-
tifies the condition and provides useful recommenda-
tions, such as transitioning from overhead irrigation to 
drip irrigation.

The Tomato Mosaic Virus, which frequently arises 
from mechanical wounds, is categorized in Figure 4. 
Stunted growth, mottling, and distorted and curled 
leaves are some of the signs. In order to reduce the 
spread of diseases, the model recommends minimizing 
plant handling, eliminating sick plants, and employing 
crop rotation.

The highly contagious plant disease known as 
tomato mosaic virus (ToMV) significantly impacts the 
productivity of tomato crops. The disease is mostly 
transmitted by direct contact with infected plants, con-
taminated tools, or mechanical wounds from handling. 
This study used a simulation model to identify ToMV 
based on visual symptoms seen in infected leaves.

The affected plants exhibited distorted and curled 

leaves, patchy yellowing, and stunted growth as char-
acteristic signs. The model successfully identified these 
anomalies, demonstrating its value in the early identifi-
cation of disease. To reduce the virus’s spread, preven-
tive measures such as minimizing direct handling, get-
ting rid of ill plants, controlling weeds, rotating crops, 
and avoiding contaminated regions are recommended.

Figure 3. Subjective simulation results of the proposed model 
for Septorial Leaf spot.

Figure 4. Subjective simulation results of the proposed model 
for the Tomato Mosaic Virus.
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Figure 3 and Figure 4 represent the subjective 
simulation of the propounded CNN model for septoria 
leaf spot and tomato mosaic virus. The performance of 
the propounded model is compared with the traditional 
detection models such as Support Vector Machine 
(SVM), Random Forest, Decision Tree, and Naive Bayes 
classifier. The accuracy of the propounded model is 
around 3.26% higher compared to the existing model 
of Figure 5. The precision of the propounded model is 
around 4.09% higher than the other traditional detec-
tion model. The Recall of the propounded CNN model 
is around 5.32% higher than the traditional model. The 
overall performance of the propounded CNN outper-
forms the traditional detection model.

Figure 5. Performance Analysis of the proposed model.

The performance analysis graph compares the 
accuracy, precision, and recall of various detection algo-
rithms used for classifying plant diseases. The Convolu-
tional Neural Network (CNN) stands out as the most re-
liable model for classification, achieving an accuracy of 
99.05%, a precision of 99.04%, and a recall of 97.58%. 
Following closely is the Support Vector Machine (SVM), 
which demonstrates good performance but falls short 
of the CNN, with an accuracy of 95.82%, a precision of 
94.6%, and a recall of 92.38%.

Random Forest has a moderate level of perfor-
mance with 93.45% accuracy, 90.5% precision, and 
90.75% recall. The Decision Tree model shows a further 
decline with an accuracy of 90.74%, precision of 88.5%, 
and recall of 87.68%, indicating either a probable over-

fit or a poorer generalization ability. Finally, at 88.95% 
accuracy, 86.95% precision, and 83.45% recall, the 
Naïve Bayes Classifier fares the poorest, showing that it 
struggles to handle complex feature distributions. This 
investigation demonstrates that when it comes to plant 
disease identification and classification, deep learning-
based methods—in particular, CNN—perform notice-
ably better than conventional machine learning models.

6. Conclusions

Convolutional Neural Networks serve as a power-
ful tool for quickly identifying and classifying diseases 
in tomato leaves. Consequently, incorporating special-
ized knowledge or experience in this field is essential 
for enhancing the model’s efficiency and real-world 
usage. A more knowledgeable, accurate, and approach-
able solution is promoted by the cooperative synergy 
between domain experts and machine learning practi-
tioners, which has a positive impact on several aspects 
of model creation and deployment. Therefore, when 
used by farmers, the skilled CNN model becomes an 
effective instrument that promotes timely disease con-
trol, sustainable agriculture, and global food security.

Furthermore, the selection of pertinent spectral 
characteristics and preprocessing methods that im-
prove the model’s resilience to outside influences like 
occlusion, shadows, and overlapping leaves may be 
guided by domain expertise. CNNs may be modified to 
include hierarchical disease categorization by utilizing 
expert insights. This allows for the distinction between 
infections that are progressed and those that are still 
in the early stages of symptoms. Additionally, Figure 
5 expert validation after model deployment is crucial 
for ongoing model improvement, guaranteeing that the 
system continues to be successful against newly devel-
oping plant pathogens and changing disease trends.

A well-trained CNN model becomes a very practi-
cal, user- friendly decision-support tool at the farmer 
level, enabling accurate disease control, prompt inter-
vention, and early disease identification. In addition to 
minimizing output losses and reducing the overuse of 
pesticides, this proactive strategy increases food secu-
rity, encourages sustainable agricultural practices, and 
boosts the financial results for farming communities 
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throughout the world. Thus, a paradigm change toward 
intelligent, scalable, and ecologically conscious plant 
disease control is represented by the integration of ar-
tificial intelligence and domain knowledge.
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