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1. Introduction
Thermal anomaly is a manifestation of renewable 

and environmentally benign green geothermal energy 
resources. Geothermal studies are carried out based on 
magnetic anomaly [1-10]. Curie point depth/Curie depth is 
the point depth at which the magnetic sources at a particu-

lar geographic location within the Earth’s crust lose their 
magnetism contents completely at a specific temperature 
known as the Curie point temperature [11]. 

The Curie (magnetic bottom) depths are often derived 
and computed from magnetic anomalies on the basis of 
spectral analysis [2,8-10,12-19]. Modification of the convention-
al spectral method was made for a robustly new method 
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called ‘the centroid method’ as presented [8,10,20,21]. 
Whereas, Surface Heat Flow (SHF) is the movement of 

heat energy from the interior part of the Earth to the sur-
face. It can generally be estimated from the Curie depths 
using 1-D Fourier law based on heat transfer through con-
duction mode [2]. The process happens during the cooling 
of the Earth’s core and the generation of radiogenic heat 
energy between 20 km and 40 km of the Earth’s upper 
crust [19]. SHF is usually higher in the areas of high tecton-
ic activity and thinner Earth’s crust [19].

The Nigerian Benue trough despite a number of quan-
titative geothermal research based on magnetic anomalies 
in the region [20,22-27], which suggested Curie depths be-
tween 11 km and 33 km, SHF values between 51 mWm–2 
and 132 mWm–2, there are still more to be interpreted 
about the geodynamic process of the region in terms of 
these values.

In the present study therefore, the computed Curie 
depths using modified centroid method were used in the 
calculation of SHF using 1-D Fourier’s law in the study 
region.

2. Geological Formations and Tectonics of the 
Region

The Benue trough (Figure 1) is a mega rifted system 
for many forms of Earth sciences research [28-37]. The sedi-
mentary rocks beneath the region under study are the Asu 
River Group, which comprises Albian marine shales and 
limestones with sandstone intercalations that formed the 
oldest formation beneath the region. 

Asu River Group is observed around the areas of Ab-
akaliki, Iku mbur, Ugba, Oturkpo and somewhere around 
the east of Ebeel area (Figure 2). The Cenomanian-Tu-
ronian Eze-Aku formation consists of the blackshales, 
siltstones and calcareous sandstones. The Awgu formation 
is a coal-bearing formation of the Late Turonian-Early 
Santonian. The Nkporo formation comprises the shales 
and mudstone of the Coniacian/Maestrichtian depositional 
cycle. Exposure of Nkporo formation is observed around 
the village of Otukpa area of Enugu (Figure 2). Bassange 
formation is composed of the sandstones and ironstones, 
which are also of the Coniacian/Maestrichtian deposition-
al cycle. This formation (Bassange) is sandwiched be-
tween the Nkporo and Awgu shales (Figure 2). The lower 
coal formation comprising coal, sandstones and shales is 
overlain by the Nkporo formations in the Anambra basin. 
The Nsukka formation comprises the false-bedded sand-
stones that mark yet another transgression in the Anambra 
basin during the Paleocene [34,35]. Understanding the base-
ment setup on the basis of gravity and magnetic anomalies 
in the region has been reported [36-39].

Figure 1. Geological map of Nigeria showing the NE-SW 
Benue trough, sub-divisions and location of study.

Interpretation of computed Curie depths has been done 
in terms of the different rock types found in the area [39]. 
The different basement rock types are; the Precambrian 
granites and gneisses [36,37,40,41]. Both the Cretaceous and 
Tertiary-recent sediments have been intruded by igneous 
intrusions [39]. 

Anticlinal axes within the sedimentary section have 
also been identified and interpreted in the region [38,40,42,43]. 
The intruded igneous rocks (Tertiary volcanic) and the an-
ticlinal axes (Santonian) account for the shallow basement 
as well as the thinner crust in the region [28,29,31].

3. Data and Methodology

The aeromagnetic data presented in this work are part 
of the Nigeria’s nation-wide high-resolution geophysical 
data project [36,39]. The high-resolution aeromagnetic data 
are obtained from the Nigerian Geological Survey Agency 
(NGSA) flown between 2006 and 2007 by Fugro Airborne 
Survey. The data acquisition was done on the basis of the 
dominant NE-SW regional strike (i.e., parallel to the orien-
tation of the Benue trough). The traverse line spacing was 
set at 500 m and 2 km control line. The data were record-
ed 80 m above the ground’s surface every 0.1 s. Figure 3 
shows the reduced-to-the-magnetic-pole (RTP) of the TMI 
of the area. The RTP is obtained at a geomagnetic inclina-
tion of 15°, geomagnetic declination of 2° and amplitude 
correction of 40 m. On the map, the magnetic highs and 
lows were identified and interpreted in other reported re-
search [36].

Depth calculation from susceptibility studies based on 
borehole data is more accurate and reliable [18,44-47]. Scaling 
of geology from the magnetization point of view showed 
that power law: φm(lx, ly) ∝ l –β [48-52], where, φm stands for 
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magnetization power spectra, lx and ly are the wavenum-
bers in the x and y directions and their Euclidean norm 

 =  +   measured in rad/km, and β  represents the 

scaling exponent which described the non-homogeneity of 
sources in a region [36,47,52].

The top depth (Zt) of an anomalous body in terms of 
magnetic field (Φt(l)) of 1-D radially averaged power 
spectrum is calculated as follows [7]:

ln   = 1 − 2 −  ∗ ln () (1)

where A1 is a constant.
Whereas, centroid depth (Z0) of the anomalous magnet-

ic body is as follows [8,10]:

ln  
2

= 2 − 20 −  ∗ ln () (2)

where A2 is a constant, which depends upon the magneti-
zation of source body.

A combination of the two equations was used and com-
puted for the bottom (i.e., Curie) depths (Zb) as follows [2]:
 = 20 −  (3)

Figure 2. The geology and major structural features (anticlines) 68 of the study area.
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Because of the non-consistency in results of the simul-
taneous estimation of depths and scaling exponent (β) val-
ues [17,18,53] using Equations (1) and (2), for which others are 
of the option that scaling exponent (β) be given a constant 
value for a region of common geology [9,51,52]. Fixed frac-
tal parameter (scaling exponent, β) of unity was used [39]  
on the basis of publication [20] and calculated the top (Zt) 
depths (km) and centroid (Z0) depths (km) from each of 
the power spectral blocks (A, B, C, …, Y) of the magnetic 
anomaly of the study area.

Curie depth (Zb) results have been used in the estimation 
of SHF values for the study area [2], using the 1-D Fou-
rier law based on a conductive mode of heat transfer [54].  
The Fourier law works where there is no heat transpor-
tation by mode of convection, no radiogenic heat and 
constant temperature gradient (dT/dz). Empirically, the 
Fourier law [54], can be written as:

 =  
  (4)

where, qs stands for SHF, k is thermal conductivity  
(W/m°C) which depends upon the lithology, temperature 
and pressure. The average thermal conductivity for the 
region is 2.5 W/m°C [39]. The Curie temperature is written 
as a function of temperature gradient and Curie depth as 
follows [54]:

 = (



)  (5)

From the above Equations (4) and (5), the SHF can be 
derived as:

 =



 (6)

Here, Curie temperature of θc = 580°C is used in the 
calculations of SHF in the region. 

4. Results and Discussion

Figure 4 shows the power spectrum of block (C) and 
the calculated top, centroid and bottom depths of magnet-
ic body.

Detailed results of the Curie depths as well as the com-
puted SHF values in all of the blocks (A, B, C, …, Y) are 
shown in Table 1.

The interpretation of geophysical data because of am-
biguity, is usually constrained on the basis of geological 
formations found in the region or other regions of similar 
geology/tectonic [29-31,38,40,41,55-58].

Detailed and critical analysis of results shows Curie 
depths (km) between 11 km and 27 km. Plot of the cal-
culated curie depths between 12 km and 26 km at a 2 km 
contour interval is as shown (Figure 5). The shallowest 
depth of 11 km is calculated around the area of Abakali-

Figure 3. RTP-TMI anomaly map of the study area. Centers of block (A–Y) are shown in white dots for estimation of 
bottom magnetic (Curie) depths as well as the surface heat flow values (SHF) underneath the study area. Every block is 
50% overlapped over the other as shown. 
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Figure 5. Computed Curie depths (km) underneath the area based on the modified centroid method is presented. The 
calculated depths are in the range between 11 km and 27 km. The map is prepared based on the overlapping blocks. The 
legends: (1) is the Tertiary-recent sediments (2) is the Tertiary volcanic (3) is the Cretaceous sediments and (4) is the 
Precambrian basement rocks.

Figure 4. Plots of power spectrums for Block (C) for the 
bottom (Zb) and centroid (Zo) depths (a) and top (Zt) depth 
(b) calculations. Best fits for computations of the depths 
on the spectra are shown (i.e., in red lines). 

Table 1. Results of estimated magnetic bottom (Curie) 
depths surface heat flow (SHF) values for different blocks 
in the region.

Magnetic Block Curie Depth (km) Surface Heat Flow (mWm–2)

A 11 132

B 16 91

C 14 104

D 15 97

E 12 121

F 18 81

G 18 81

H 17 85

I 17 85

J 15 97

K 27 54

L 22 66

M 18 81

N 19 76

O 20 72

P 23 63

Q 23 63

R 22 66

S 16 91

T 17 85

U 19 76

V 19 76

W 23 63

X 22 66

Y 18 81

ki (A) whereas the deepest depth was calculated around 
Otukpa (K). The lowest Curie depth as calculated is relat-
ed to the Abakaliki anticlinorium while the deepest result 
is in connection with the Anambra basin. It is stimulating 
to notice that lower Curie depths are noted over the base-
ment rocks and areas affected by Tertiary volcanic [59,60]. 
Elucidation of geology and interpretation of geophysical 
data in the region has shown the animation of underplat-
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ing in the crust underneath the region as the result of past 
tectonic activity [29-31,40,41].

We presented the lower, intermediate and higher calculat-
ed values of SHF in the region of study as shown in Table 2. 

The lowest (i.e., in block K) SHF as calculated is along 
the Anambra basin with the highest (block A) result cal-
culated along the Abakaliki anticlinorium axis (Figure 6). 
It is observed that the zones of the higher values of SHF 
are consistent with the areas of magmatic intrusions and 
basement complexes. The Abakaliki anticlinorium along 
which the highest result (132 mWm–2) is the area strong-
ly affected by intense tectonic and magmatic activities. 
Published geology and geophysical data show that the in-
trusion beneath the Abakaliki anticlinorium is beyond its 

surface exposure [30,31,38,40,41].
Results of the calculated Curie depths (km) [39] were 

compared with the previously calculated crustal thickness 
(Moho depths) in the region. The Moho depths results in 
the region come from regional gravity and seismological 
studies [30,55,61-63]. Studies of depths to the major density 
contrast beneath parts of the Benue trough show that 
Moho depth of about 24 km was reported around Makur-
di [61]. The present study found Curie depth of 22–23 km 
around the Makurdi area. Along the Abakaliki axis, Moho 
depths of 10–20 km were reported [31,61-63]. The result is 
comparable with the calculated Curie depth of 11–20 km 
along this axis. Along the Anambra axis, Moho depths be-
tween 28–34 km were reported from gravity data [61-63] and 

Table 2. Calculated values of SHF over some major locations in the region.

SHF Status SHF Values (mWm–2) Block Numbers Locations

Lower
54 K Utukpa

63 P, Q & W Uturkpo & Makurdi

Intermediate

81 F & G Akwana & Igumale

76 U & V Ogam/Obangedde

66 L, R & X Onuweyi, Igbor & Akwana

Higher

132 A Abakaliki

91 B & S Ebeel & Yandev

104 C Okpoma

85 H Ogoja

Figure 6. Calculated SHF values in the area based on 1-D Fourier’s law. The estimated results in the region are between 
54 mWm–2 and 132 mWm–2. The map is also prepared by extrapolation to visualize the entire region of the study. The 
legends: (1) is the Tertiary-recent sediments (2) is the Tertiary volcanic (3) is the Cretaceous sediments and (4) is the 
Precambrian basement rocks.
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Moho depth of 23 km [55] from the broad band seismologi-
cal station in the region. 

The study found the only bore-hole heat flow measure-
ments between 48–76 mWm–2 [64-66], in the region from the 
Anambra basin. In the present study, SHF as calculated 
along the Anambra basin was between 54–81 mWm–2. 
The Anambra basin is a rifted subsidiary that formed part 
of the lower Benue trough. It is of great importance with 
a high energy-rich in-filled sedimentary thickness of over 
9 km [32,38]. In general, it is observed that, with the excep-
tion of the Makurdi area where there is surface exposure 
of Tertiary volcanic, areas where higher SHF values were 
recorded are consistent with the areas of volcanism and 
exposed basement rocks. This could indicate that basalts 
are perhaps deep beneath the sediments around Makurdi. 
In the region, volcanism intrudes on both the sediments and 
basement rocks [33]. It is interesting to observe that volcanism 
in the region is inseparable from the anticlinal folds. In the 
region, a hot spring (i.e., middle Benue spring) with the high-
est temperature of around 53.5 °C was recorded [67].

5. Conclusions 

This study presents estimation of Curie depth and SHF 
values in the lower and part of middle Benue trough in-
cluding part of Anambra basin. The recorded Curie depths 
in the region vary between 11 km and 27 km. The shal-
lower (11–18 km) Curie depth was interpreted in terms of 
the Tertiary volcanic and the Precambrian metamorphic 
(basement) rocks. The computed SHF values are between 
54 mWm–2 and 132 mWm–2 within the study area. High-
er SHF (85–132 mWm–2) accounts for the volcanic and 
metamorphics in the regions. Lower SHF values interpret 
zones of thick crustal architecture. The results presented 
are therefore, an attempt towards quantitatively assessing 
the viability of the thermal energy potentials, extractable 
of the energy and an installation of a power plant to ascer-
tain the viability of generating electricity from the reser-
voir.
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